Симплексный метод решения задач линейного программирования. Решение производственной задачи табличным симплекс-методом

Читайте также:
  1. V2: ДЕ 57 - Фундаментальная система решений линейного однородного дифференциального уравнения
  2. Б1 2. Линейный оператор в конечномероном пространстве, его матрица. Характеристический многочлен линейного оператора. Собственные числа и собств векторы.
  3. Базовые управляющие структуры структурного программирования
  4. Билет 13 Угол между 2 мя прямыми, условия параллельности и перпендикулярности. Преобразование линейного оператора при переходе к новому базису
  5. Билет 13. Линейные операторы. Матрица линейного оператора.
  6. Билет 26. Корневые подпространства. Расщепление линейного пространства в прямую сумму корневых подпространств.
  7. Билет 27. Жорданов базис и жорданова матрица линейного оператора в комплексном пространстве.
  8. Билет 35. Эрмитовы операторы и эрмитовы матрицы. Эрмитого разложение линейного оператора.
  9. Билет 7 Скалярное произведение векторов, проекция одного вектора на другой. Понятие линейного пространства и подпространства, критерии подпространства

Теорема (о выборе разрешающего элемента)

Если в нескольких столбцах z-ой строке есть отрицательные элементы, то разрешающим столбцом нужно выбрать тот столбец у которого максимально произведение абсолютного значения коэффициента в z-ой строке и минимально симплексное отношение данном столбце.

Доказательство:

Пусть разрешающим будет элемент . В результате шага модифицированных жордановых исключений свободным членом в z-строке будет число , равное .Поскольку и ,скобка в этом выражении всегда будет положительной. А так как значение функционала всегда равно свободному члену, эта скобка представляет собой тот добавок к функционалу, который получается в результате сделанного шага.

Чем большее приращение будет получать функционал на каждом шаге, тем меньше потребуется шагов (т.е. вычислений) для достижения оптиума. Величина этого приращения зависит от абсолютной величины коэффициента и от величины наименьшего симплексного отношения . То есть разрешающим столбцом будет столбец, у которого максимально это произведение.

Пример: линейное программирование:

Найдем максимум функции

при ограничениях

Решение: составим жорданову таблицу.

Поскольку в ней свободные члены положительны, план является опорным. Однако он не оптимален, так как коэффициенты z-строки отрицательны. Выбираем из них тот, у которого наибольшее произведение абсолютной величины и наименьшее симплексное отношение. Третий столбец считаем разрешающим, так как он имеет наибольшую абсолютную величину 8 и симплексные отношения: соответственно ( , поэтому элемент 1 в третьим столбце будет разрешающим). Делаем шаг модифицированных жордановых исключений и приходим к следующей таблице.

Судя по коэффициентам z-строки, в полученной таблице оптимальное решение не достигнуто. Берём второй столбец с отрицательным коэффициентом в z-строке за разрешающий (разрешающей строкой может быть только первая). С найденным элементом 5 делаем следующий шаг.

В z-строке все коэффициенты положительны, план, получаемый приравниванием верхних переменных нулю, а боковых – свободным членам, оптимален. Выписываем из таблицы значения основных неизвестных: Максимальное значение функционала считаем в последней клетке таблицы:

В окончательной таблице все определители неотрицательны. Это говорит о том, что при значениях неизвестных функционал достигает максимума


Обычно предполагается, что на множестве планов задачи нет точек, в которых знаменатель целевой функции равен нулю. Без ограничения общности, можно считать, что .

В задаче дробно-линейного программирования экстремум целевой функции достигается в вершине многогранника решений. Это сходство с линейным программированием позволяет решать дробно-линейные задачи методом Штифеля.

Вычисления оформляются в виде жордановых таблиц. При этом для функционала отводятся две нижние строки: в первую из них записываем коэффициенты числителя, а во вторую – знаменателя. Исходной задаче соответствует таблица 1:

x 1 x 2 x j x n
y 1 a 11 a 12 a 1 j a 1 n a 1
………………………………………
y i a i 1 a i 2 a ij a in a i
………………………………………
y m a m 1 a m 2 a mj a mn a m
z 1 p 1 p 2 p j p n
z 2 q 1 q 2 q j q n

Через y i обозначаются разности между правыми и левыми частями системы ограничений:

y i = a i a i 1 x 1 – a i 2 x 2 – a i 3 x 3 – … – a in x n ³ 0.

Свободными переменными мы будем называть переменные, расположенные в верхней заглавной строке жордановой таблицы. Придавая свободным переменным нулевые значения, мы получим исходное базисное решение: . Данный вектор не может являться опорным планом, т.к. знаменатель целевого функционала на нем равен нулю (z 2 = 0). Поэтому среди свободных членов системы ограничений a 1 ,…, a m обязательно есть отрицательные числа (иначе базисное решение было бы опорным планом).

Шагами модифицированных жордановых исключений, точно так же, как при решении задачи линейного программирования (см. ), отыскиваем первоначальный план задачи. В результате k шагов мы приходим к таблице 2:

y 1 x j x n
x 1 b 11 b 1 j b 1 n b 1
.… ………………………………………
y i b i 1 b ij b in b i
…. …………………………………….
y m b m 1 b mj b mn b m
z 1 f 1 f j f n F
z 2 g 1 g j g n G

В таблице 2 все свободные члены b i неотрицательны, что обеспечивает неотрицательность базисных переменных x 1 ,…, y m . Кроме того (в силу положительности знаменателя целевой функции z 2 на множестве опорных планов). Первоначальным опорным планом является вектор с координатами . Значение целевой функции на первоначальном опорном плане равно .

Заметим, что если на одном из шагов жордановых исключений какой-либо из свободных членов b i окажется отрицательным, а все остальные элементы i -й строки будут неотрицательными, то задача не будет иметь решения из-за отсутствия планов.

Проследим за тем, как меняется целевая функция при переходе от одного опорного плана задачи к другому. Оказывается, знак разности между новым и старым значениями функции совпадает со знаком определителя . Если. Т.к. многогранник решений содержит лишь конечное число опорных планов, то за конечное число шагов мы придем к оптимальному опорному плану.

Этому процессу может помешать только неограниченность многогранника решений. В этом случае целевая функция может иметь так называемый асимптотический экстремум (в данном случае – максимум). Асимптотическим максимумом задачи дробно-линейного программирования называется точная верхняя грань целевой функции на множестве планов, которая не достигается ни на одном из планов. В том случае, когда задача имеет асимптотический максимум, в области планов всегда можно найти такой план (не опорный), на котором целевая функция принимает значение сколь угодно близкое к асимптотическому максимуму.

Метод Штифеля позволяет находить не только максимум, но и асимптотический максимум задачи дробно-линейного программирования. Рассмотрим более подробно переход от плана к плану и выясним. Выбирая разрешающий элемент в j -м столбце, мы должны руководствоваться принципом минимального симплексного отношения. Т.е. разрешающий элемент в j -м столбце должен попасть в ту строку, для которой симплексное отношение положительно и минимально.

Т.к. после нахождения первоначального опорного плана все правые части b i стали неотрицательными, то разрешающим элементом j -го столбца может быть один из его положительных элементов (). Если на каждом шаге этапа поиска оптимального опорного плана в выбранном разрешающем столбце присутствует (хотя бы один) положительный элемент , то такая задача имеет максимум (возможно, что не один).

Однако, если на одном из шагов некоторая оценка меньше нуля, и при этом все элементы j -го столбца . Тогда в данном столбце, руководствуясь принципом минимального симплексного отношения, разрешающий элемент выбирать нельзя. Увеличивая значения свободной переменной x j от 0 и до (см. Табл. 2), мы все время остаемся в области планов. Это связано с тем, что увеличение переменной x j не вызывает изменения знака на минус ни у одной из базисных переменных.

Обозначим через М предел, к которому, монотонно возрастая, стремится целевая функция при : . Это число является асимптотическим максимумом.


| 2 |

    При условии отсутствия “0-строк” (ограничений-равенств) и “сво­бодных” перемен­ных (т.е. переменных, на которые не наложено требование неотри­цатель­ности).

2. В случае присутствия ограничений-равенств и “свободных” переменных поступают следующим образом.

    Выбирают разрешающий элемент в “0-строке” и делают шаг модифицированного жорданова исключения, после чего вычеркивают этот разрешающий столбец. Данную последовательность действий продолжают до тех пор, пока в симплексной таблице остается хотя бы одна “0-строка” (при этом таблица сокращается).

    Если же присутствуют и свободные переменные, то необходимо данные переменные сделать базисными. И после того, как свободная переменная станет базисной, в процессе определения разрешающего элемента при поиске опорного и оптимального планов данная строка не учитывается (но преобразуется).

Вырожденность в задачах линейного программирования

Рассматривая симплекс-метод, мы предполагали, что задача линейного программирования является невырожденной, т.е. каждый опорный план содержит ровно
положительных компонент, где
– число ограничений в задаче. В вырожденном опорном плане число положительных компонент оказывается меньше числа ограничений: некоторые базисные переменные, соответствующие данному опорному плану, принимают нулевые значения. Используя геометрическую интерпретацию для простейшего случая, когда
(число небазисных переменных равно 2), легко отличить вырожденную задачу от невырожденной. В вырожденной задаче в одной вершине многогранника условий пересекается более двух прямых, описываемых уравнениями вида
. Это значит, что одна или несколько сторон многоугольника условий стягиваются в точку.

Аналогично при
в вы­рож­денной задаче в одной вершине пересекается более 3-х плоскостей
.

В предположении о невырож­ден­ности задачи находилось только одно значение
, по кото­рому определялся индекс выводимого из базиса вектора условий (выводимой из числа базисных переменной). В вырожденной задаче
может достигаться на нескольких индек­сах сразу (для нескольких строк). В этом случае в находимом опорном плане несколько базисных переменных будут нулевыми.

Если задача линейного програм­ми­рования оказывается вырожденной, то при плохом выборе вектора условий, выводимого из базиса, может возникнуть бесконечное движение по базисам одного и того же опорного плана. Так называемое, явление зацик­ливания. Хотя в практических задачах линейного программирования зацикливание явление крайне редкое, возможность его не исключена.

Один из приемов борьбы с вырожденностью состоит в преобразовании задачи путем “незначительного” изменения вектора правых частей системы ограничений на величины , таким образом, чтобы задача стала невырож­денной, и, в то же время, чтобы это изменение не повлияло реально на оптимальный план задачи.

Чаще реализуемые алгоритмы включают в себя некоторые простые правила, снижающие вероятность возникновения зацикливания или его преодоления.

Пусть переменную необходимо сделать базисной. Рассмотрим мно­жество индексов, состоящее из тех, для которых достигается
. Множество индексов, для которых выполняется данное условие обозначим через. Еслисостоит из одного элемента, то из базиса исключается вектор условий(переменнаяделается небазисной).

Если состоит более чем из одного элемента, то составляется множество, которое состоит из
, на которых достигается
. Еслисостоит из одного индекса, то из базиса выводится переменная. В противном случае составляется множествои т.д.

Практически правилом надо пользоваться, если зацикливание уже обнаружено.

Рассмотрим решение ЗЛП симплекс-методом и изложим ее применительно к задаче максимизации.

1. По условию задачи составляется ее математическая модель.

2. Составленная модель преобразовывается к канонической форме. При этом может выделиться базис с начальным опорным планом.

3. Каноническая модель задачи записывается в форме симплекс-таблицы так, чтобы все свободные члены были неотрицательными. Если начальный опорный план выделен, то переходят к пункту 5.

Симплекс таблица: вписывается система ограничительных уравнений и целевая функция в виде выражений, разрешенных относительно начального базиса. Строку, в которую вписаны коэффициенты целевой функции F, называют F-строкой или строкой целевой функции.

4. Находят начальный опорный план, производя симплексные преобразования с положительными разрешающими элементами, отвечающими минимальным симплексным отношениям, и не принимая во внимание знаки элементов F-строки. Если в ходе преоб­разований встретится 0-строка, все элементы которой, кроме свободного члена, нули, то система ограничительных уравнений задачи несовместна. Если же встретится 0-строка, в которой, кроме свободного члена, других положительных элементов нет, то система ограничительных уравнений не имеет неотрицательных решений.

Приведение системы (2.55), (2.56) к новому базису будем называть симплексным преобразованием. Если симплексное преобра­зование рассматривать как формальную алгебраическую операцию, то можно заметить, что в результате этой операции происходит перераспределение ролей между двумя переменными, входящими в некоторую систему линейных функций: одна переменная из зависимых переходит в независимые, а другая наоборот - из независимых в зависимые. Такая операция известна в алгебре под названием шага жорданова исключения.

5. Найденный начальный опорный план исследуется на оптимальность:

а) если в F-строке нет отрицательных элементов (не считая свободного члена), то план оптимален. Если при этом нет и нулевых, то оптимальный план единственный; если же есть хотя бы один нулевой, то оптимальных планов бесконечное множество;

б) если в F-строке есть хотя бы один отрицательный элемент, которому соответствует столбец неположительных элементов, то <

в) если в F-строке есть хотя бы один отрицательный элемент, а в его столбце есть хотя бы один положительный, то можно перейти к новому опорному плану, более близкому к оптимальному. Для этого указанный столбец надо назначить разрешающим, по минимальному симплексному отношению найти разрешающую строку и выполнить симплексное преобразование. Полученный опорный план вновь исследовать на оптимальность. Описанный процесс повторяется до получения оптимального плана либо до установления неразрешимости задачи.

Столбец коэффициентов при переменной, включаемой в базис, называют разрешающим. Таким образом, выбирая переменную, вводимую в базис (или выбирая разрешающий столбец) по отрицательному элементу F-строки, мы обеспечиваем возрастание функции F.

Немного сложней определяется переменная, подлежащая исключению из базиса. Для этого составляют отношения свободных членов к положительным элементам разрешающего столбца (такие отношения называют симплексными) и находят среди них наименьшее, которое и определяет строку (разрешающую), содержащую исключаемую переменную. Выбор переменной, исключаемой из базиса (или выбор разрешающей строки), по минимальному симплексному отношению гарантирует, как уже установлено, положительность базисных компонент в новом опорном плане.

В пункте 3 алгоритма предполагается, что все элементы столбца свободных членов неотрицательны. Это требование не обязательно, но если оно выполнено, то все последующие симплексные преобразования производятся только с положительными разрешающими элементами, что удобно при расчетах. Если в столбце свободных членов есть отрицательные числа, то разрешающий элемент выбирают следующим образом:

1) просматривают строку, отвечающую какому-либо отрицательному свободному члену, например t-строку, и выбирают в ней какой-либо отрицательный элемент, а соответствующий ему столбец принимают за разрешающий (предполагаем, что ограничения задачи совместны);

2) составляют отношения элементов столбца свободных членов к соответствующим элементам разрешающего столбца, имеющим одинаковые знаки (симплексные отношения);

3) из симплексных отношений выбирают наименьшее. Оно и определит разрешающую строку. Пусть ею будет, например, р -строка;

4) на пересечении разрешающих столбца и строки находят разрешающий элемент. Если разрешающим оказался элемент y-строки, то после симплексного преобразования свободный член этой строки станет положительным. В противном случае на следующем шаге вновь обращаются к t-строке. Если задача разрешима, то через некоторое число шагов в столбце свободных членов не останется отрицательных элементов.

Нахождение исходного опорного плана, канонический вид ЗЛП

Идея последовательного улучшения решения легла в основу универсального метода решения задач линейного программирования - симплексного метода или метода последовательного улучшения плана.

Геометрический смысл симплексного метода состоит в последовательном переходе от одной вершины многогранника ограничений (называемой первоначальной) к соседней, в которой линейная функция принимает лучшее (по крайней мере, не худшее) значение по отношению к цели задачи; до тех пор, пока не будет найдено оптимальное решение - вершина, где достигается оптимальное значение функции цели (если задача имеет конечный оптимум).

Впервые симплексный метод был предложен американским ученым Дж. Данцигом в 1949 г., однако еще в 1939 г. идеи метода были разработаны российским ученым Л.В. Канторовичем.

Симплексный метод, позволяющий решить любую задачу линейного программирования, универсален. В настоящее время он используется для компьютерных расчетов, однако несложные примеры с применением симплексного метода можно решать и вручную.

Для реализации симплексного метода - последовательного улучшения решения - необходимо освоить три основных элемента:

Способ определения какого-либо первоначального допустимого базисного решения задачи;

Правило перехода к лучшему (точнее, не худшему) решению;

Критерий проверки оптимальности найденного решения.

Для использования симплексного метода задача линейного программирования должна быть приведена к каноническому виду, т.е. система ограничений должна быть представлена в виде уравнений.

В литературе достаточно подробно описываются: нахождение начального опорного плана (первоначального допустимого базисного решения), тоже - методом искусственного базиса, нахождение оптимального опорного плана, решение задач с помощью симплексных таблиц.

58. Основная теорема симплекс метода.

???????????????????????????????????????????????????????????????????????

59. Альтернативный оптимум в ЗЛП, вырожденность в ЗЛП.

Вырожденность в задачах линейного программирования

Рассматривая симплекс-метод, мы предполагали, что задача линейного программирования является невырожденной, т.е. каждый опорный план содержит ровно m положительных компонент, где m - число ограничений в задаче. В вырожденном опорном плане число положительных компонент оказывается меньше числа ограничений: некоторые базисные переменные, соответствующие данному опорному плану, принимают нулевые значения. Используя геометрическую интерпретацию для простейшего случая, когда n - m = 2 (число небазисных переменных равно 2), легко отличить вырожденную задачу от невырожденной. В вырожденной задаче в одной вершине многогранника условий пересекается более двух прямых, описываемых уравнениями вида xi = 0. Это значит, что одна или несколько сторон многоугольника условий стягиваются в точку. Аналогично при n - m = 3 в вырожденной задаче в одной вершине пересекается более 3-х плоскостей xi = 0. В предположении о невырожденности задачи

находилось только одно значение, по которому определялся индекс выводимого из базиса вектора условий (выводимой из числа базисных переменной). В

вырожденной задаче может достигаться на нескольких индексах сразу (для нескольких строк). В этом случае в находимом опорном плане несколько базисных переменных будут нулевыми. Если задача линейного программирования оказывается вырожденной, то при плохом выборе вектора условий, выводимого из базиса, может возникнуть бесконечное движение по базисам одного и того же опорного плана. Это - так называемое явление зацикливания. Хотя в практических задачах линейного программирования зацикливание явлеется довольно редким, возможность его не исключена. Один из приемов борьбы с вырожденностью состоит в преобразовании задачи путем "незначительного" изменения вектора правых частей системы ограничений на величины таким образом, чтобы задача стала невырожденной, и, в то же время, чтобы это изменение не повлияло реально на оптимальный план задачи. Чаще реализуемые алгоритмы включают в себя некоторые простые правила, снижающие вероятность возникновения зацикливания или его преодоления. Пусть переменную xj необходимо сделать базисной. Рассмотрим

множество индексов E0, состоящее из тех i, для которых достигается. Множество индексов i, для которых выполняется данное условие обозначим через E0,. Если E0, состоит из одного элемента, то из базиса исключается вектор условий Ai (переменная xi делается небазисной). Если E0 состоит более чем из одного элемента, то составляется множество E1, которое состоит из , на которых достигается . Если E1 состоит из одного индекса k, то из базиса выводится переменная xk. В противном случае составляется множество E2 и т.д. Практически правилом надо пользоваться, если зацикливание уже обнаружено.

Альтернативный оптимум в ЗЛП???????????????????????????

60. Метод искусственного базиса. М-задача. Теорема о связи между решениями исходной задачи и М-задачи.

Метод искусственного базиса.

Метод искусственного базиса используется для нахождения допустимого базисного решения задачи линейного программирования, когда в условии присутствуют ограничения типа равенств. Рассмотрим задачу:

max{F(x)=∑cixi|∑ajixi=bj, j=1,m; xi≥0}.

В ограничения и в функцию цели вводят так называемые «искусственные переменные» Rj следующим образом:

∑ajix+Rj=bj, j=1,m;F(x)=∑cixi-M∑Rj

При введении искусственных переменных в методе искусственного базиса в функцию цели им приписывается достаточно большой коэффициент M, который имеет смысл штрафа за введение искусственных переменных. В случае минимизации искусственные переменные прибавляются к функции цели с коэффициентом M. Введение искусственных переменных допустимо в том случае, если в процессе решения задачи они последовательно обращаются в нуль.

Симплекс-таблица, которая составляется в процессе решения, используя метод искусственного базиса, называется расширенной. Она отличается от обычной тем, что содержит две строки для функции цели: одна – для составляющей F = ∑cixi, а другая – для составляющей M ∑Rj Рассмотрим процедуру решения задачи на конкретном примере.

Пример 1. Найти максимум функции F(x) = -x1 + 2x2 - x3 при ограничениях:

x1≥0, x2≥0, x3≥0 .

Применим метод искусственного базиса. Введем искусственные переменные в ограничения задачи

2x1 + 3x2 + x3 + R1 = 3;

x1 + 3x3 + R2 = 2 ;

Функция цели F(x)-M ∑Rj= -x1 + 2x2 - x3 - M(R1+R2).

Выразим сумму R1 + R2 из системы ограничений: R1 + R2 = 5 - 3x1 - 3x2 - 4x3, тогда F(x) = -x1 + 2x2 - x3 - M(5 - 3x1 - 3x2 - 4x3) .

При составлении первой симплекс-таблицы (табл. 1) будем полагать, что исходные переменные x1, x2 , x3 являются небазисными, а введенные искусственные переменные – базисными. В задачах максимизации знак коэффициентов при небазисных переменных в F- и M-строках изменяется на противоположный. Знак постоянной величины в M-строке не изменяется. Оптимизация проводится сначала по M-строке. Выбор ведущих столбца и строки, все симплексные преобразования при испльзовании метода искусственного базиса осуществляются как в обычном симплекс-методе.

Максимальный по абсолютному значению отрицательный коэффициент (-4) определяет ведущий столбец и переменную x3, которая перейдет в базис. Минимальное симплексное отношение (2/3) соответствует второй строке таблицы, следовательно, переменная R2 должна быть из базиса исключена. Ведущий элемент обведен контуром.

В методе искусственного базиса искусственные переменные, исключенные из базиса, в него больше не возвращаются, поэтому столбцы элементов таких переменных опускаются. Табл. 2. сократилась на 1 столбец. Осуществляя пересчет этой таблицы, переходим к табл. 3., в которой строка M обнулилась, ее можно убрать. После исключения из базиса всех искусственных переменных получаем допустимое базисное решение исходной задачи, которое в рассматриваемом примере является оптимальным:

x1=0; x2=7/9; Fmax=8/9.

Если при устранении M-строки решение не является оптимальным, то процедура оптимизации продолжается и выполняется обычным симплекс-методом. Рассмотрим пример, в котором присутствуют ограничения всех типов:≤,=,≥

Условие задачи

Найти оптимальные величины производства продукции видов А, Б и В. Затраты сырья на единицу продукции: А – 5, Б – 2, В – 4. Объем сырья – 2000 единиц. Затраты оборудования на единицу продукции: А – 4, Б – 5, В – 4. Объем оборудования – 1000 единиц. Прибыль от реализации единицы продукции: А – 10, Б – 8, В – 12. Критерий – максимум прибыли предприятия. Производство продукции А должно быть не менее 100 ед. Производство продукции Б должно быть не менее 50 ед.

Решение задачи симплекс М методом

1) Определение оптимального плана производства

Пусть x1, x2, x3 - количество произведенной продукции вида А, Б, В, соответственно. Тогда математическая модель задачи имеет вид:

F = 10·x1 + 8·x2 + 12·x3 –>max

Вводим дополнительные переменные x4 ≥ 0, x5 ≥ 0, x6 ≥ 0, x7 ≥ 0, чтобы неравенства преобразовать в равенства.

Чтобы выбрать начальный базис, вводим искусственные переменные x8 ≥ 0, x9 ≥ 0 и очень большое число M (M –> ∞). Решаем М методом.

F = 10·x1 + 8·x2 + 12·x3 + 0·x4 + 0·x5 + 0·x6 + 0·x7– M·x8– M·x9 –>max

В качестве базиса возьмем x4 = 2000; x5 = 1000; x8 = 100; x9 = 50.

Данные заносим в симплекс таблицу

Симплекс таблица № 1

Целевая функция:

0 · 2000 + 0 · 1000 + (– M) · 100 + (– M) · 50 = – 150M

Вычисляем оценки по формуле:

Δ1 = 0 · 5 + 0 · 4 + (– M) · 1 + (– M) · 0 – 10 = – M – 10

Δ2 = 0 · 2 + 0 · 5 + (– M) · 0 + (– M) · 1 – 8 = – M – 8

Δ3 = 0 · 4 + 0 · 4 + (– M) · 0 + (– M) · 0 – 12 = – 12

Δ4 = 0 · 1 + 0 · 0 + (– M) · 0 + (– M) · 0 – 0 = 0

Δ5 = 0 · 0 + 0 · 1 + (– M) · 0 + (– M) · 0 – 0 = 0

Δ6 = 0 · 0 + 0 · 0 + (– M) · (–1) + (– M) · 0 – 0 = M

Δ7 = 0 · 0 + 0 · 0 + (– M) · 0 + (– M) · (–1) – 0 = M

Δ2 = 0 · 0 + 12 · 0 + 10 · 0 + 8 · 1 – 8 = 0

Δ3 = 0 · 0 + 12 · 1 + 10 · 0 + 8 · 0 – 12 = 0

Δ4 = 0 · 1 + 12 · 0 + 10 · 0 + 8 · 0 – 0 = 0

Δ5 = 0 · (–1) + 12 · 1/4 + 10 · 0 + 8 · 0 – 0 = 3

Δ6 = 0 · 1 + 12 · 1 + 10 · (–1) + 8 · 0 – 0 = 2

Δ7 = 0 · (–3) + 12 · 5/4 + 10 · 0 + 8 · (–1) – 0 = 7

Поскольку отрицательных оценок нет, то план оптимален.

Решение задачи: x1 = 100; x2 = 50; x3 = 175/2 = 87.5; x4 = 1050; x5 = 0; x6 = 0; x7 = 0; Fmax = 2450

Ответ: x1 = 100; x2 = 50; x3 = 175/2 = 87.5; x4 = 1050; x5 = 0; x6 = 0; x7 = 0; Fmax = 2450То есть необходимо произвести x1 = 100 единиц продукции вида А, x2 = 50 единиц продукции вида Б и x3 = 87,5 единиц продукции вида В. Максимальная прибыль при этом составит Fmax = 2450 единиц.

Теорема о связи между решениями исходной задачи и М-задачи.

???????????????????????

Рассмотрим симплекс -метод для решения задач линейного программирования (ЛП). Он основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает.

Алгоритм симплекс-метода следующий:

  1. Исходную задачу переводим в канонический вид путем введения дополнительных переменных. Для неравенства вида ≤ дополнительные переменные вводят со знаком (+ ), если же вида ≥ то со знаком (— ). В целевую функцию дополнительные переменные вводят с соответствующими знаками с коэффициентом, равным 0 , т.к. целевая функция не должна при этом менять свой экономический смысл.
  2. Выписываются вектора P i из коэффициентов при переменных и столбца свободных членов. Этим действием определяется количество единичных векторов. Правило – единичных векторов должно быть столько, сколько неравенств в системе ограничений.
  3. После этого исходные данные вводятся в симплекс-таблицу. В базис вносятся единичные вектора, и исключая их из базиса, находят оптимальное решение . Коэффициенты целевой функции записывают с противоположным знаком.
  4. Признак оптимальности для задачи ЛП – решение оптимально, если в f – строке все коэффициенты положительны. Правило нахождения разрешающего столбца – просматривается f – строка и среди ее отрицательных элементов выбирается наименьшее. Вектор P i его содержащий становится разрешающим. Правило выбора разрешающего элемента – составляются отношения положительных элементов разрешающего столбца к элементам вектора Р 0 и то число, которое дает наименьшее отношение становится разрешающим элементом, относительно которого будет произведен пересчет симплекс-таблицы. Строка, содержащая этот элемент называется разрешающей строкой. Если в разрешающем столбце нет положительных элементов, то задача не имеет решения. После определения разрешающего элемента переходят к пересчету новой симплекс – таблицы.
  5. Правила заполнения новой симплекс – таблицы. На месте разрешающего элемента проставляют единицу, а другие элементы полагают равными 0 . Разрешающий вектор вносят в базис, из которого исключают соответствующий нулевой вектор, а остальные базисные вектора записывают без изменений. Элементы разрешающей строки делят на разрешающий элемент, а остальные элементы пересчитывают по правилу прямоугольников.
  6. Так поступают до тех пор, пока в f – строке все элементы не станут положительными.

Рассмотрим решение задачи с использованием рассмотренного выше алгоритма.
Дано:

Приводим задачу к каноническому виду:

Составляем вектора:

Заполняем симплекс – таблицу:

:
Пересчитаем первый элемент вектора Р 0 , для чего составляем прямоугольник из чисел: и получаем: .

Аналогичные расчеты выполним для всех остальных элементов симплекс – таблицы:

В полученном плане f – строка содержит один отрицательный элемент – (-5/3), вектора P 1 . Он содержит в своем столбце единственный положительный элемент, который и будет разрешающим элементом. Сделаем пересчет таблицы относительно этого элемента:

Отсутствие отрицательных элементов в f – строке означает, что найден оптимальный план :
F* = 36/5, Х = (12/5, 14/5, 8, 0, 0).

  • Ашманов С. А. Линейное программирование, М: Наука, 1998г.,
  • Вентцель Е.С. Исследование операций, М: Советское радио, 2001г.,
  • Кузнецов Ю.Н., Кузубов В.И., Волошенко А.Б. Математическое программирование, М: Высшая школа, 1986г.

Решение линейного программирования на заказ

Заказать любые задания по этой дисциплине можно у нас на сайте. Прикрепить файлы и указать сроки можно на

Один из методов решения оптимизационных задач (как правило связанных с нахождением минимума или максимума ) линейного программирования называется . Симплекс-метод включает в себя целую группу алгоритмов и способов решения задач линейного программирования. Один из таких способов, предусматривающий запись исходных данных и их пересчет в специальной таблице, носит наименование табличного симплекс-метода .

Рассмотрим алгоритм табличного симплекс-метода на примере решения производственной задачи , которая сводится к нахождению производственного плана обеспечивающего максимальную прибыль.

Исходные данные задачи на симплекс-метод

Предприятие выпускает 4 вида изделий, обрабатывая их на 3-х станках.

Нормы времени (мин./шт.) на обработку изделий на станках, заданы матрицей A:

Фонд времени работы станков (мин.) задан в матрице B:

Прибыль от продажи каждой единицы изделия (руб./шт.) задана матрицей C:

Цель производственной задачи

Составить такой план производства, при котором прибыль предприятия будет максимальной.

Решение задачи табличным симплекс-методом

(1) Обозначим X1, X2, X3, X4 планируемое количество изделий каждого вида. Тогда искомый план: (X1, X2, X3, X4 )

(2) Запишем ограничения плана в виде системы уравнений:

(3) Тогда целевая прибыль:

То есть прибыль от выполнения производственного плана должна быть максимальной.

(4) Для решения получившейся задачи на условный экстремум, заменим систему неравенств системой линейных уравнений путем ввода в нее дополнительных неотрицательных переменных (X5, X6, X7 ).

(5) Примем следующий опорный план :

X1 = 0, X2 = 0, X3 = 0, X4 = 0, X5 = 252, X6 = 144, X7 = 80

(6) Занесем данные в симплекс-таблицу :

В последнюю строку заносим коэффициенты при целевой функции и само ее значение с обратным знаком;

(7) Выбираем в последней строке наибольшее (по модулю ) отрицательное число.

Вычислим b = Н / Элементы_выбранного_столбца

Среди вычисленных значений b выбираем наименьшее .

Пересечение выбранных столбца и строки даст нам разрешающий элемент. Меняем базис на переменную соответствующую разрешающему элементу (X5 на X1 ).

  • Сам разрешающий элемент обращается в 1.
  • Для элементов разрешающей строки – a ij (*) = a ij / РЭ (то есть каждый элемент делим на значение разрешающего элемента и получаем новые данные ).
  • Для элементов разрешающего столбца – они просто обнуляются.
  • Остальные элементы таблицы пересчитываем по правилу прямоугольника.

a ij (*) = a ij – (A * B / РЭ)

Как видите, мы берем текущую пересчитываемую ячейку и ячейку с разрешающим элементом. Они образуют противоположные углы прямоугольника. Далее перемножаем значения из ячеек 2-х других углов этого прямоугольника. Это произведение (A * B ) делим на разрешающий элемент (РЭ ). И вычитаем из текущей пересчитываемой ячейки (a ij ) то, что получилось. Получаем новое значение - a ij (*) .

(9) Вновь проверяем последнюю строку (c ) на наличие отрицательных чисел . Если их нет – оптимальный план найден, переходим к последнему этапу решения задачи. Если есть – план еще не оптимален, и симплекс-таблицу вновь нужно пересчитать.

Так как у нас в последней строке снова имеются отрицательные числа, начинаем новую итерацию вычислений.

(10) Так как в последней строке нет отрицательных элементов, это означает, что нами найден оптимальный план производства! А именно: выпускать мы будем те изделия, которые перешли в колонку «Базис» - X1 и X2. Прибыль от производства каждой единицы продукции нам известна (матрица C ). Осталось перемножить найденные объемы выпуска изделий 1 и 2 с прибылью на 1 шт., получим итоговую (максимальную! ) прибыль при данном плане производства.

ОТВЕТ:

X1 = 32 шт., X2 = 20 шт., X3 = 0 шт., X4 = 0 шт.

P = 48 * 32 + 33 * 20 = 2 196 руб.

Галяутдинов Р.Р.


© Копирование материала допустимо только при указании прямой гиперссылки на