Единицы измерения информации. Создай свой блог сам

Для измерения длины есть такие единицы, как миллиметр, сантиметр, метр, километр. Известно, что масса измеряется в граммах, килограммах, центнерах и тоннах. Бег времени выражается в секундах, минутах, часах, днях, месяцах, годах, веках. Компьютер работает с информацией и для измерения ее объема также имеются соответствующие единицы измерения.

Мы уже знаем, что компьютер воспринимает всю информацию через нули и единички. Бит - это минимальная единица измерения информации, соответствующая одной двоичной цифре («0» или «1»).

Байт состоит из восьми бит. Используя один байт, можно закодировать один символ из 256 возможных (256 = 28). Таким образом, один байт равен одному символу, то есть 8 битам:

1 символ = 8 битам = 1 байту.

Изучение компьютерной грамотности предполагает рассмотрение и других, более крупных единиц измерения информации.

Таблица байтов: 1 байт = 8 бит

1 Кб (1 Килобайт) = 210 байт = 2*2*2*2*2*2*2*2*2*2 байт =

1024 байт (примерно 1 тысяча байт - 103 байт)

1 Мб (1 Мегабайт) = 220 байт = 1024 килобайт (примерно 1 миллион байт - 106байт)

1 Гб (1 Гигабайт) = 230 байт = 1024 мегабайт (примерно 1 миллиард байт - 109байт)

1 Тб (1 Терабайт) = 240 байт = 1024 гигабайт (примерно 1012 байт). Терабайт иногда называют тонна.

1 Пб (1 Петабайт) = 250 байт = 1024 терабайт (примерно 1015 байт).

1 Эксабайт = 260 байт = 1024 петабайт (примерно 1018 байт).

1 Зеттабайт = 270 байт = 1024 эксабайт (примерно 1021 байт).

1 Йоттабайт = 280 байт = 1024 зеттабайт (примерно 1024 байт).


В приведенной выше таблице степени двойки (2 10 , 2 20 , 2 30 и т.д.) являются точными значениями килобайт, мегабайт, гигабайт.

Возникает вопрос: есть ли продолжение у таблицы байтов? В математике есть понятие бесконечности, которое обозначается как перевернутая восьмерка: ∞.

Понятно, что в таблице байтов можно и дальше добавлять нули, а точнее, степени к числу 10 таким образом: 10 27 , 10 30 , 10 33 и так до бесконечности. Но зачем это надо? В принципе, пока хватает терабайт и петабайт. В будущем, возможно, уже мало будет и йоттабайта.

Напоследок парочка примеров по устройствам, на которые можно записать терабайты и гигабайты информации. Есть удобный «терабайтник» - внешний жесткий диск, который подключается через порт USB к компьютеру. На него можно записать терабайт информации. Особенно удобно для ноутбуков (где смена жесткого диска бывает проблематична) и для резервного копирования информации. Лучше заранее делать резервные копии информации, а не после того, как все пропало.

Упражнения по компьютерной грамотности:

1) Сколько байт (без кавычек) содержит фраза «Сегодня 7 июля 2011 г.»?

2) Сколько байт (килобайт) занимает одна страница текста, если в одной строке помещается 60 символов, а на странице - 40 строк? Каков объем одной книги, состоящей из 100 подобных страниц?

3) Терабайтник - это внешний жесткий диск, который подключается к компьютеру через разъем USB, и имеет емкость 1 террабайт. В инструкции по его применению написано, что на этот диск может поместиться 250 тыс. музыкальных файлов или 285 тыс. фотографий. Каковы по мнению производителей этого устройства размер одного музыкального файла и размер одной фотографии?

4) Сколько подобных музыкальных файлов может поместиться на одном CD-диске размером 700 мегабайт?

5) Сколько подобных фотографий может поместиться на флешке размером 4 гигабайта?

Решения:

1) «Сегодня » - с пробелом (но без кавычек) 8 байт «7 июля » - с двумя пробелами (без кавычек) 7 байт «2010 г.» - с пробелом и с точкой (без кавычек) 7 байт Итого: 8 + 7 + 7 = 22 байта «весит» фраза «Сегодня 7 июля 2010 г.»

2) В одной строке помещается 60 символов, значит, объём одной строки 60 байт. На странице 40 таких строк, в каждой из которых содержится по 60 байт, поэтому объём одной страницы текста 60 x 40 = 2400 байт = 2,4 Килобайта = 2,4 Кб

Объём одной книги 2400 x 100 = 240 000 байт = 240 Килобайт = 240 Кб

3) Размер одного музыкального файла, который по мнению производителей можно записать на «терабайтник»: 1 000 000 000 000: 250 000 = (сокращаем по три нуля в делимом и в делителе) 1000 000 000: 250 = 4 000 000 байт = 4 Мегабайта = 4 Мб

Размер одной фотографии, который по мнению производителей можно записать на «терабайтник»: 1 000 000 000 000: 285 000 = (сокращаем по три нуля в делимом и в делителе) 1 000 000 000: 285 = 3 508 771, 93 байта = (округляем) 3,5 Мегабайта = 3,5 Мб

4) На CD-диске размером 700 мегабайт может поместиться 700 Мб: 4 Мб = 175 музыкальных файлов, каждый из которых размером не более 4 Мб. Здесь мегабайты можно сразу делить на мегабайты, а вот при работе с разными объёмами байтов лучше сначала переводить все в байты, а потом выполнять с ними различные арифметические операции.

5) На флешке размером 4 гигабайта может поместиться 4 000 000 000: 3 508 771, 93 = (сокращаем по три нуля в делимом и в делителе) = 4 000 000: 3 508 = 1 139,99 фото = (округляем) 1 140 фото, каждое из которых размером не более 3,5 Мб.

Можно считать и приблизительно. Тогда: На флешке размером 4 гигабайта может поместиться 4 000 000 000: 3 500 000 = (сокращаем по пять нулей в делимом и в делителе) = 40 000: 35 = 1 142,86 фото = (округляем в сторону уменьшения) 1 140 фото, каждое из которых размером не более 3,5 Мб

Мы постоянно что-то измеряем — время, длину, скорость, массу. И для каждой величины есть своя единица измерения, а зачастую несколько. Метры и километры, килограммы и тонны, секунды и часы — все это нам знакомо. А как же измерить информацию? Для информации тоже придумали единицу измерения и назвали ее бит .

Бит — это минимальная единица измерения информации.

В одном бите содержится очень мало информации. Он может принимать только одно из двух значений (1 или 0, да или нет, истина или ложь). Измерять информацию в битах очень неудобно — числа получаются огромные. Ведь не измеряют же массу автомобиля в граммах.

Например, если представить объем флешки в 4Гб в битах мы получим 34 359 738 368 бит. Представьте, пришли вы в компьютерный магазин и просите продавца дать вам флешку объемом 34 359 738 368 бит. Вряд ли он вас поймет

Поэтому в информатике и в жизни используются производные от бита единицы измерения информации. Но у них у всех есть замечательное свойство — они являются степенями двойки с шагом 10.

Итак, возьмем число 2 и возведем его в нулевую степень. Получим 1 (любое число в нулевой степени равно 1). Это будет байт.

В одном байте 8 бит.

Теперь возведем 2 в 10-ю степень — получим 1024. Это килобайт (Кбайт).

В одном килобайте 1024 байт.

Если возвести 2 в 20 степень — получим мегабайт (Мбайт).

1Мбайт = 1024 Кбайт.

Название Символ Степень
байт Б 2 0
килобайт кБ 2 10
мегабайт МБ 2 20
гигабайт ГБ 2 30
терабайт ТБ 2 40
петабайт ПБ 2 50
эксабайт ЭБ 2 60
зеттабайт ЗБ 2 70
йоттабайт ЙБ 2 80

Понимание данной темы позволит успешно и к

В нашей жизни каждый из нас что-то измеряет. Например, в детстве, наши родители измеряли нам высоту нашего тела. Это ведь так увлекательно, когда узнаешь, что всего за один год ты вырос на целых 5 сантиметров! Для этих целей мы использовали линейку и дверной косяк, помечая на нём ежегодно зарубками высоту.

Каждое измерение требует своего прибора и своей единицы измерения.


Так, масса какого-либо тела измеряется весами в килограммах, время при помощи часов в секундах и т.д.

У начинающих , сам собой, возникает вопрос о том, в каких единицах измерять информацию?



Наименьшая единица измерения информации

Для измерения информации в информатике используют свою, особенную единицу измерения. Она получила название - «бит» и образована от словосочетания двух английских слов - «binary digit».


Для того чтобы была возможность измерить информацию необходимо, как вы помните, закодировать информацию в цифровые двоичные данные. Только так, мы сможем узнать размер набора цифровых данных, хранящемся в каком-либо файле.


Бит - наименьшая единица измерения информации.

Это определение означает, что не существует никакой другой единицы измерения информации, которая была бы меньше, по своему значению, чем один бит.


Один бит содержит в себе очень малую часть информации. Ведь он способен принимать только одно из двух определенных значений (1 или 0).




Поэтому, измерять информацию, используя лишь одни биты, крайне неудобно - числа выходят очень большими. Это тоже самое, если бы мы измеряли высоту своего тела в миллиметрах.


Например, для кодирования 1 символа в текст достаточно 8 бит. 8 бит называют байтом.



Крупные единицы измерения информации

В связи с этим, в информатике были придуманы более крупные единицы измерения информации, связь между которыми отражена ниже:




Существуют и более крупные единицы информации:

  • 1 Пб =1024 Тб Петабайт (Пбайт)
  • 1 Эб =1024 Пб Эксабайт (Эбайт)
  • 1 Зб =1024 Эб Зеттабайт (Збайт)
  • 1 Йб =1024 Зб Йоттабайт (Йбайт)

Приведем примеры для сравнения разных объёмов оцифрованной текстовой информации.


Один байт занимает символ, введённый нами с клавиатуры.


100 Кбайт занимает снимок в телефоне с низким разрешением.


1 Мбайт - небольшая художественная книга.


Три гигабайт всего лишь 1 час видеозаписи в хорошем качестве.


Информационный объём текстового сообщения

Как найти, к примеру, информационный объём сообщения «Информатика – главная наука современности ».
Для этого нужно сосчитать общее количество символов в сообщении (заключено в кавычках), учитывая пробелы между словами (пробел в компьютере тоже символ). Итого, получаем 41 символов или 41 байт.




Предлагаем узнать, сколько информации находится в книге из 100 страниц, если на каждой странице умещается 50 строк, а на каждой строке - 60 символов.
100⋅50⋅60=300 000 символов, что составляет 300 000 байт. Переведём всё в килобайты: 300 000 байт /1024=292,97 Кб. В мегабайтах это будет уже 292,97 Кб /1024=0,29 Мб.

Информационный объём мультимедийной информации

Гораздо больше информации включают в себя файлы графических изображений, а ещё больше - видеофайлы.


Мультимедийной информацией называют данные, которые содержат рисунки, фотографии, звук и видео.




К примеру, растровый рисунок, состоит из 1000 на 1000 пикселей.


Каждый пиксель может быть закодирован 24 битами или 3 байтами (так как 24/8=3) и занимает информационный объём равный 1000⋅1000⋅3=3 000 000 байт.


В килобайтах это уже будет 3 000 000 байт/1024= 2929,69 Кбайт. А в мегабайтах - 2929,69 Кбайт /1024=2,86 Мбайт.


В связи с этим, промышленность выпускает большие по объему носители цифровых данных.


Объём современных цифровых носителей (жёстких или твердотельных дисков), уже достигает объёма нескольких терабайт.

Для измерения длины есть такие единицы, как миллиметр, сантиметр, метр, километр. Известно, что масса измеряется в граммах, килограммах, центнерах и тоннах. Бег времени выражается в секундах, минутах, часах, днях, месяцах, годах, веках. Компьютер работает с информацией и для измерения ее объема также имеются соответствующие единицы измерения.

Мы уже знаем, что компьютер воспринимает всю информацию . Бит – это минимальная единица измерения информации, соответствующая одной двоичной цифре («0» или «1»).

Байт состоит из восьми бит. Используя один байт, можно закодировать один символ из 256 возможных (256 = 2 8). Таким образом, один байт равен одному символу, то есть 8 битам:

1 символ = 8 битам = 1 байту.

Изучение компьютерной грамотности предполагает рассмотрение и других, более крупных единиц измерения информации.

Таблица байтов:

1 байт = 8 бит

1 Кб (1 Килобайт ) = 2 10 байт = 2*2*2*2*2*2*2*2*2*2 байт =
= 1024 байт (примерно 1 тысяча байт – 10 3 байт)

1 Мб (1 Мегабайт ) = 2 20 байт = 1024 килобайт (примерно 1 миллион байт – 10 6 байт)

1 Гб (1 Гигабайт ) = 2 30 байт = 1024 мегабайт (примерно 1 миллиард байт – 10 9 байт)

1 Тб (1 Терабайт ) = 2 40 байт = 1024 гигабайт (примерно 10 12 байт). Терабайт иногда называют тонна .

1 Пб (1 Петабайт ) = 2 50 байт = 1024 терабайт (примерно 10 15 байт).

1 Эксабайт = 2 60 байт = 1024 петабайт (примерно 10 18 байт).

1 Зеттабайт = 2 70 байт = 1024 эксабайт (примерно 10 21 байт).

1 Йоттабайт = 2 80 байт = 1024 зеттабайт (примерно 10 24 байт).

В приведенной выше таблице степени двойки (2 10 , 2 20 , 2 30 и т.д.) являются точными значениями килобайт, мегабайт, гигабайт. А вот степени числа 10 (точнее, 10 3 , 10 6 , 10 9 и т.п.) будут уже приблизительными значениями, округленными в сторону уменьшения. Таким образом, 2 10 = 1024 байта представляет точное значение килобайта, а 10 3 = 1000 байт является приблизительным значением килобайта.

Такое приближение (или округление) вполне допустимо и является общепринятым.

Ниже приводится таблица байтов с английскими сокращениями (в левой колонке):

1 Kb ~ 10 3 b = 10*10*10 b= 1000 b – килобайт

1 Mb ~ 10 6 b = 10*10*10*10*10*10 b = 1 000 000 b – мегабайт

1 Gb ~ 10 9 b – гигабайт

1 Tb ~ 10 12 b – терабайт

1 Pb ~ 10 15 b – петабайт

1 Eb ~ 10 18 b – эксабайт

1 Zb ~ 10 21 b – зеттабайт

1 Yb ~ 10 24 b – йоттабайт

Выше в правой колонке приведены так называемые «десятичные приставки», которые используются не только с байтами, но и в других областях человеческой деятельности. Например, приставка «кило» в слове «килобайт» означает тысячу байт, также как в случае с километром она соответствует тысяче метров, а в примере с килограммом она равна тысяче грамм.

Возникает вопрос: есть ли продолжение у таблицы байтов? В математике есть понятие бесконечности, которое обозначается как перевернутая восьмерка: ∞.

Понятно, что в таблице байтов можно и дальше добавлять нули, а точнее, степени к числу 10 таким образом: 10 27 , 10 30 , 10 33 и так до бесконечности. Но зачем это надо? В принципе, пока хватает терабайт и петабайт. В будущем, возможно, уже мало будет и йоттабайта.

Напоследок парочка примеров по устройствам, на которые можно записать терабайты и гигабайты информации.

Есть удобный «терабайтник» – внешний жесткий диск, который подключается через порт USB к компьютеру. На него можно записать терабайт информации. Особенно удобно для ноутбуков (где смена жесткого диска бывает проблематична) и для резервного копирования информации. Лучше заранее делать резервные копии информации, а не после того, как все пропало.

Флешки бывают 1 Гб, 2 Гб, 4 Гб, 8 Гб, 16 Гб, 32 Гб, 64 Гб и даже 1 терабайт.

Могут вмещать 650 Мб, 700 Мб, 800 Мб и 900 Мб.

DVD-диски рассчитаны на большее количество информации: 4.7 Гб, 8.5 Гб, 9.4 Гб и 17 Гб.

Количество информации

Количество информации как мера уменьшения неопределенности знания.
(Содержательный подход к определению количества информации)

Процесс познания окружающего мира приводит к накоплению информации в форме знаний (фактов, научных теорий и т. д.). Получение новой информации приводит к расширению знаний или, как иногда говорят, к уменьшению неопределенности знания. Если некоторое сообщение приводит к уменьшению неопределенности нашего знания, то можно говорить, что такое сообщение содержит информацию.

Например, после сдачи зачета или выполнения контрольной работы вы мучаетесь неопределенностью, вы не знаете, какую оценку получили. Наконец, учитель объявляет результаты, и вы получаете одно из двух информационных сообщений: "зачет" или "незачет", а после контрольной работы одно из четырех информационных сообщений: "2", "3", "4" или "5".

Информационное сообщение об оценке за зачет приводит к уменьшению неопределенности вашего знания в два раза, так как получено одно из двух возможных информационных сообщений. Информационное сообщение об оценке за контрольную работу приводит к уменьшению неопределенности вашего знания в четыре раза, так как получено одно из четырех возможных информационных сообщений.

Ясно, что чем более неопределенна первоначальная ситуация (чем большее количество информационных сообщений возможно), тем больше мы получим новой информации при получении информационного сообщения (тем в большее количество раз уменьшится неопределенность знания).

Количество информации можно рассматривать как меру уменьшения неопределенности знания при получении информационных сообщений.

Рассмотренный выше подход к информации как мере уменьшения неопределенности знания позволяет количественно измерять информацию. Существует формула, которая связывает между собой количество возможных информационных сообщений N и количество информации I, которое несет полученное сообщение:

N = 2 i (1.1)

Бит . Для количественного выражения любой величины необходимо сначала определить единицу измерения. Так, для измерения длины в качестве единицы выбран метр, для измерения массы - килограмм и т. д. Аналогично, для определения количества информации необходимо ввести единицу измерения.

За единицу количества информации принимается такое количество информации, которое содержится в информационном сообщении, уменьшающем неопределенность знания в два раза. Такая единица названа битом .

Если вернуться к рассмотренному выше получению информационного сообщения о результатах зачета, то здесь неопределенность как раз уменьшается в два раза и, следовательно, количество информации, которое несет сообщение, равно 1 биту.

Производные единицы измерения количества информации. Минимальной единицей измерения количества информации является бит, а следующей по величине единицей - байт, причем:

1 байт = 8 битов = 2 3 битов.

В информатике система образования кратных единиц измерения несколько отличается от принятых в большинстве наук. Традиционные метрические системы единиц, например Международная система единиц СИ, в качестве множителей кратных единиц используют коэффициент 10 n , где n = 3, 6, 9 и т. д., что соответствует десятичным приставкам "Кило" (10 3), "Мега" (10 6), "Гига" (10 9) и т. д.

В компьютере информация кодируется с помощью двоичной знаковой системы, и поэтому в кратных единицах измерения количества информации используется коэффициент 2 n

Так, кратные байту единицы измерения количества информации вводятся следующим образом:

1 килобайт (Кбайт) = 2 10 байт = 1024 байт;

1 мегабайт (Мбайт) = 2 10 Кбайт = 1024 Кбайт;

1 гигабайт (Гбайт) = 2 10 Мбайт = 1024 Мбайт.

Контрольные вопросы

    1. Приведите примеры информационных сообщений, которые приводят к уменьшению неопределенности знания.
    2. Приведите примеры информационных сообщений, которые несут 1 бит информации.

Определение количества информации

Определение количества информационных сообщений. По формуле (1.1) можно легко определить количество возможных информационных сообщений, если известно количество информации. Например, на экзамене вы берете экзаменационный билет, и учитель сообщает, что зрительное информационное сообщение о его номере несет 5 битов информации. Если вы хотите определить количество экзаменационных билетов, то достаточно определить количество возможных информационных сообщений об их номерах по формуле (1.1):

Таким образом, количество экзаменационных билетов равно 32.

Определение количества информации. Наоборот, если известно возможное количество информационных сообщений N, то для определения количества информации, которое несет сообщение, необходимо решить уравнение относительно I.

Представьте себе, что вы управляете движением робота и можете задавать направление его движения с помощью информационных сообщений: "север", "северо-восток", "восток", "юго-восток", "юг", "юго-запад", "запад" и "северо-запад" (рис. 1.11). Какое количество информации будет получать робот после каждого сообщения?

Всего возможных информационных сообщений 8, поэтому формула (1.1) принимает вид уравнения относительно I:

Разложим стоящее в левой части уравнения число 8 на сомножители и представим его в степенной форме:

8 = 2 × 2 × 2 = 2 3 .

Наше уравнение:

Равенство левой и правой частей уравнения справедливо, если равны показатели степени числа 2. Таким образом, I = 3 бита, т. е. количество информации, которое несет роботу каждое информационное сообщение, равно 3 битам.

Алфавитный подход к определению количества информации

При алфавитном подходе к определению количества информации отвлекаются от содержания информации и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.

Информационная емкость знака . Представим себе, что необходимо передать информационное сообщение по каналу передачи информации от отправителя к получателю. Пусть сообщение кодируется с помощью знаковой системы, алфавит которой состоит из N знаков {1, ..., N}. В простейшем случае, когда длина кода сообщения составляет один знак, отправитель может послать одно из N возможных сообщений "1", "2", ..., "N", которое будет нести количество информации I (рис. 1.5).

Рис. 1.5. Передача информации

Формула (1.1) связывает между собой количество возможных информационных сообщений N и количество информации I, которое несет полученное сообщение. Тогда в рассматриваемой ситуации N - это количество знаков в алфавите знаковой системы, а I - количество информации, которое несет каждый знак:

С помощью этой формулы можно, например, определить количество информации, которое несет знак в двоичной знаковой системе:

N = 2 => 2 = 2 I => 2 1 = 2 I => I=1 бит.

Таким образом, в двоичной знаковой системе знак несет 1 бит информации. Интересно, что сама единица измерения количества информации "бит" (bit) получила свое название ОТ английского словосочетания "Binary digiT" - "двоичная цифра".

Информационная емкость знака двоичной знаковой системы составляет 1 бит.

Чем большее количество знаков содержит алфавит знаковой системы, тем большее количество информации несет один знак. В качестве примера определим количество информации, которое несет буква русского алфавита. В русский алфавит входят 33 буквы, однако на практике часто для передачи сообщений используются только 32 буквы (исключается буква "ё").

С помощью формулы (1.1) определим количество информации, которое несет буква русского алфавита:

N = 32 => 32 = 2 I => 2 5 = 2 I => I=5 битов.

Таким образом, буква русского алфавита несет 5 битов информации (при алфавитном подходе к измерению количества информации).

Количество информации, которое несет знак, зависит от вероятности его получения. Если получатель заранее точно знает, какой знак придет, то полученное количество информации будет равно 0. Наоборот, чем менее вероятно получение знака, тем больше его информационная емкость.

В русской письменной речи частота использования букв в тексте различна, так в среднем на 1000 знаков осмысленного текста приходится 200 букв "а" и в сто раз меньшее количество буквы "ф" (всего 2). Таким образом, с точки зрения теории информации, информационная емкость знаков русского алфавита различна (у буквы "а" она наименьшая, а у буквы "ф" - наибольшая).

Количество информации в сообщении. Сообщение состоит из последовательности знаков, каждый из которых несет определенное количество информации.

Если знаки несут одинаковое количество информации, то количество информации I c в сообщении можно подсчитать, умножив количество информации I з, которое несет один знак, на длину кода (количество знаков в сообщении) К:

I c = I з × K

Так, каждая цифра двоичного компьютерного кода несет информацию в 1 бит. Следовательно, две цифры несут информацию в 2 бита, три цифры - в 3 бита и т. д. Количество информации в битах равно количеству цифр двоичного компьютерного кода (табл. 1.1).

Таблица 1.1. Количество информации, которое несет двоич ный компьютерный код