Как составить симплекс таблицу. Симплексный метод решения задач линейного программирования


Наша симплекс-таблица представляет собой расширенную матрицу системы ограничений с некоторыми дополнительными столбцами и строками. Рассмотрим пример симплекс таблицы для следующей задачи:

Найти значения переменных x 1 ...x 5 , при которых функция:

Q = 5 x 1 + 7 x 2 + 2
принимает максимальное значение, при условии следующих ограничений:
2 x 1 + 4 x 2 + x 3 = 64 (1)
x 1 + 2 x 2 + x 4 = 70 (2)
- x 2 + x 5 = 18 (3)
x 1 , x 2 , x 3 , x 4 , x 5 ≥ 0

Симплекс таблица имеет следующий вид:

БП x 1 x 2 x 3 x 4 x 5 Решение Отношение
x 3 2 4 1 0 0 64
64 / 4 = 16
x 4 1 2 0 1 0 70
70 / 2 = 35
x 5 0 -1 0 0 1 18 --
Q 5 7 0 0 0 -2 --

Самая верхняя строка - чисто информационная, в ней указывается назначение столбцов. Столбец "БП" также информационный, каждая клетка этого столбца содержит имя переменной, являющейся в соответствующем уравнении системы ограничений. В нашем примере, в первом уравнении, переменная X 3 , во втором X 4 , в третьем X 5 .

Столбцы X 1...X 5 содержат коэффициенты при соответствующих переменных в уравнениях системы ограничений (каждому уравнению соответствует отдельная строка). В столбец "Решение" изначально записываются свободные члены соответствующих уравнений. Они же показывают значения для текущегого решения, отображаемого симплекс-таблицей, на некотором шаге (итерации) решения задачи.

Коэффициенты целевой функции отражаются в симплекс-таблице в строке "Q", свободный член, как и в случае с уравнениями системы ограничений, изначально записывается в столбец "Решение". Он же одновременно является значением целевой функции, но записанный с противоположным знаком (это удобно для симплекс-метода). В нашем примере показанная симплекс-таблица соответствует некоторому решению при котором переменные X 3 , X 4 , X 5 равны соответственно 64, 70, 18 (см. столбец "Решение"), а остальные перемнные равны нулю. Значение целевой функции "Q" при этом равно двум (что несложно проверить подставив значения переменных в выражение для целевой функции).

В нашем примере свободный член равен -2 (минус два) т.к. в записи целевой функции он записан вместе с переменными по одну сторону от знака равенства, а свободные члены в уравнениях системы ограничений по другую. Поэтому перед записью в таблицу его необходимо перенести вправо от знака равенства.

Строка "Q" в данном примере выделена желтым цветом, это значит, что по ней будет приниматься решение относительно выбора разрешающего столбца (иногда его называют направляющим). Разрешающий столбец соответствует переменной, которая будет введена в базис (в список) на следующей итерации решения задачи. Цель подобной замены базиса - улучшение значения целевой функции. Критерием выбора разрешающего столбца является максимальный положительный коэффициент в строке "Q", при решении задачи на максимум, или минимальный отрицательный, при решении задачи на минимум. Если после очередной итерации в строке не окажется положительных (при максимизации), или отрицательных (при минимизации) коэффициентов, то оптимальное решение достигнуто. В нашем примере разрешающий столбец выбран по коэффициенту 7 (максимальный положительный т.к. задача на максимум), он соответствует переменной X 2 , именно она будет введена в базис на следующей итерации. Числа стоящие в направляющем столбце окрашиваются красным цветом.

Красным цветом также окрашивается и разрешающая (направляющая) строка, она соответствует переменной которая будет выведена из базиса (списка) на следующей итерации. Для ее определения рассчитывается и заполняется столбец "Отношение". Его элементы представляют собой отношения элементов столбца "Решение" к соответсвующим элементам направляющего столбца (кроме строки "Q"). Выбор разрешающей строки производится по минимальному значению из всех отношений. Важно то, что данные отношения рассчитываются только для положительных элементов направляющего столбца. Если на некоторой итерации в направляющем столбце положительных коэффициентов не окажется, то целевая функция исходной задачи неограничена, задача не имеет решения.
В нашем примере направляющая строка выбрана по минимальному отношению 16, она соответствует X 3 , именно она будет выведена из базиса на следующей итерации (ее место займет X 2).

Для упрощения процесса решения исходные данные задачи линейного программирования при решении ее симплекс методом записываются в специальные симплекс-таблицы. Поэтому одна из модификаций симплекс метода получила название табличный симплекс метод. Задача линейного программирования в каноническом виде:

a 1,1 x 1 +a 1,2 x 2 +...a 1,n x n + x n+1 =b 1

Исходная таблица для задачи имеет следующий вид:

x 1 x 2 ... x n-1 x n b
F -a 0,1 -a 0,2 ... -a 0,n-1 -a 0,n -b 0
x n+1 a 1,1 a 1,2 ... a 1,n-1 a 1,n b 1
x n+2 a 2,1 a 2,2 ... a 2,n-1 a 2,n b 2
... ... ... ... ... ... ...
x n+m a m,1 a m,2 ... a m,n-1 a m,n b m

x 1 , x 2 , x n - исходные переменные, x n+1 , x n+2 , x n+m - дополнительные переменные. Все дополнительные переменные мы приняли как базисные , а исходные переменные как небазисные (дополнительные записаны в первый столбец симплекс-таблицы а исходные в первую строку). При каждой итерации элементы симплекс-таблицы пересчитывают по определенным .

Алгоритм симплекс-метода.

Подготовительный этап

Приводим задачу ЛП к каноническому виду

F=a 0,1 x 1 +a 0,2 x 2 +...a 0,n x n +b 0 → max

a 1,1 x 1 +a 1,2 x 2 +...a 1,n x n +x n+1 =b 1

a 2,1 x 1 +a 2,2 x 2 +...a 2,n x n +x n+2 =b 2

.......................................

a m,1 x 1 +a m,2 x 2 +...a m,n x n +x n+m =b m

В случае если в исходной задаче необходимо найти минимум - знаки коэффициентов целевой функции F меняются на противоположные a 0,n =-a 0,n . Знаки коэффициентов ограничивающих условий со знаком "≥" так же меняются на противоположные. В случае если условие содержит знак "≤" - коэффициенты запишутся без изменений.

Шаг 0. Составляем симплексную таблицу, соответствующую исходной задаче

x 1 x 2 ... x n-1 x n b
F -a 0,1 -a 0,2 ... -a 0,n-1 -a 0,n -b 0
x n+1 a 1,1 a 1,2 ... a 1,n-1 a 1,n b 1
x n+2 a 2,1 a 2,2 ... a 2,n-1 a 2,n b 2
... ... ... ... ... ... ...
x n+m a m,1 a m,2 ... a m,n-1 a m,n b m

Шаг 1. Проверка на допустимость.

Проверяем на положительность элементы столбца b (свободные члены), если среди них нет отрицательных то найдено допустимое решение (решение соответствующее одной из вершин многогранника условий) и мы переходим к шагу 2. Если в столбце свободных членов имеются отрицательные элементы то выбираем среди них максимальный по модулю - он задает ведущую строку k. В этой строке так же находим максимальный по модулю отрицательный элемент a k,l - он задает ведущий столбец - l и является ведущим элементом. Переменная, соответствующая ведущей строке исключается из базиса, переменная соответствующая ведущему столбцу включается в базис. Пересчитываем симплекс-таблицу согласно .

Если же среди свободных членов есть отрицательные элементы - а в соответствующей строке - нет то условия задачи несовместны и решений у нее нет.

Если после перерасчета в столбце свободных членов остались отрицаетельные элементы, то переходим к первому шагу, если таких нет, то ко второму.

Шаг 2. Проверка на оптимальность.

На предыдущем этапе найдено допустимое решение. Проверим его на оптимальность Если среди элементов симплексной таблицы, находщихся в строке F (не беря в расчет элемент b 0 - текущее значение целевой функции) нет отрицательных, то найдено оптимальное решение.

Если в строке F есть отрицательные элементы то решение требует улучшения. Выбираем среди отрицательных элементов строки F максимальный по модулю (исключая значение функции b 0)

a 0,l =min{a 0,i }

l - столбец в котором он находится будет ведущим. Для того, что бы найти ведущую строку, находим отношение соответсвующего свободного члена и элемента из ведущего столбца, при условии, что они неотрицательны.

b k /a k,l =min {b i /a i,l } при a i,l >0, b i >0

k - cтрока, для которой это отношение минимально - ведущая. Элемент a k,l - ведущий (разрешающий). Переменная, соответствующая ведущей строке (x k) исключается из базиса, переменная соответствующая ведущему столбцу (x l) включается в базис.

Пересчитываем симплекс-таблицу по . Если в новой таблице после перерасчета в строке F остались отрицательные элементы переходим к шагу 2

Если невозможно найти ведущую строку, так как нет положительных элементов в ведущем столбце, то функция в области допустимых решений задачи не ограничена - алгоритм завершает работу.

Если в строке F и в столбце свободных членов все элементы положительные, то найдено оптимальное решение.

Правила преобразований симплексной таблицы.

При составлении новой симплекс-таблицы в ней происходят следующие изменения:

  • Вместо базисной переменной x k записываем x l ; вместо небазисной переменной x l записываем x k .
  • ведущий элемент заменяется на обратную величину a k,l "= 1/a k,l
  • все элементы ведущего столбца (кроме a k,l) умножаются на -1/a k,l
  • все элементы ведущей строки (кроме a k,l) умножаются на 1/a k,l
  • оставшиеся элементы симплекс-таблицы преобразуются по формуле a i,j "= a i,j - a i,l x a k,j / a k,l

Схему преобразования элементов симплекс-таблицы (кроме ведущей строки и ведущего столбца) называют схемой ”прямоугольника”.

Преобразуемый элемент a i,j и соответствующие ему три сомножителя как раз и являются вершинами ”прямоугольника”.


. Алгоритм симплекс-метода

Пример 5.1. Решить следующую задачу линейного программирования симплекс-методом:

Решение:

I итерация:

х3 , х4 , х5 , х6 х1 ,х2 . Выразим базисные переменные через свободные:

Приведем целевую функциюк следующему виду:

На основе полученной задачи сформируем исходную симплекс-таблицу:

Таблица 5.3

Исходная симплекс-таблица

Оценочные отношения

Согласно определению базисного решения свободные переменные равны нулю, а значения базисных переменных – соответствующим значениям свободных чисел, т.е.:

3 этап: проверка совместности системы ограничений ЗЛП.

На данной итерации (в таблице 5.3) признак несовместности системы ограничений (признак 1) не выявлен (т.е. нет строки с отрицательным свободным числом (кроме строки целевой функции), в которой не было бы хотя бы одного отрицательного элемента (т.е. отрицательного коэффициента при свободной переменной)).

На данной итерации (в таблице 5.3) признак неограниченности целевой функции (признак 2) не выявлен (т.е. нет колонки с отрицательным элементом в строке целевой функции (кроме колонки свободных чисел), в которой не было бы хотя бы одного положительного элемента).

Так как найденное базисное решение не содержит отрицательных компонент, то оно является допустимым.

6 этап: проверка оптимальности.

Найденное базисное решение не является оптимальным, так как согласно признаку оптимальности (признак 4) в строке целевой функции не должно быть отрицательных элементов (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, согласно алгоритму симплекс-метода переходим к 8 этапу.

Так как найденное базисное решение допустимое, то поиск разрешающей колонки будем производить по следующей схеме: определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.3, таких колонок две: колонка «х1 » и колонка «х2 ». Из таких колонок выбирается та, которая содержит наименьший элемент в строке целевой функции. Она и будет разрешающей. Колонка «х2 » содержит наименьший элемент (–3) в сравнении с колонкой «х1

Для определения разрешающей строки находим положительные оценочные отношения свободных чисел к элементам разрешающей колонки, строка, которой соответствует наименьшее положительное оценочное отношение, принимается в качестве разрешенной.

Таблица 5.4

Исходная симплекс-таблица

В таблице 5.4 наименьшее положительное оценочное отношение соответствует строке «х5 », следовательно, она будет разрешающей.

Элемент, расположенный на пересечение разрешающей колонки и разрешающей строки, принимается в качестве разрешающего. В нашем примере – это элемент , который расположен на пересечении строки «х5 » и колонки «х2 ».

Разрешающий элемент показывает одну базисную и одну свободную переменные, которые необходимо поменять местами в симплекс-таблице, для перехода к новому «улучшенному» базисному решению. В данном случае это переменные х5 и х2 , в новой симплекс-таблице (таблице 5.5) их меняем местами.

9.1. Преобразование разрешающего элемента.

Разрешающий элемент таблицы 5.4 преобразовывается следующим образом:

Полученный результат вписываем в аналогичную клетку таблицы 5.5.

9.2. Преобразование разрешающей строки.

Элементы разрешающей строки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей строки приведены в таблице 5.5.

9.3. Преобразование разрешающей колонки.

Элементы разрешающей колонки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, а результат берется с обратным знаком. Полученные результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей колонки приведены в таблице 5.5.

9.4. Преобразование остальных элементов симплекс-таблицы.

Преобразование остальных элементов симплекс-таблицы (т.е. элементов не расположенных в разрешающей строке и разрешающей колонке) осуществляется по правилу «прямоугольника».

К примеру, рассмотрим преобразование элемента, расположенного на пересечении строки «х3 » и колонки «», условно обозначим его «х3 ». В таблице 5.4 мысленно вычерчиваем прямоугольник, одна вершина которого располагается в клетке, значение которой преобразуем (т.е. в клетке «х3 »), а другая (диагональная вершина) – в клетке с разрешающим элементом. Две другие вершины (второй диагонали) определяются однозначно. Тогда преобразованное значение клетки «х3 » будет равно прежнему значению данной клетки минус дробь, в знаменателе которой разрешающий элемент (из таблицы 5.4), а в числителе произведение двух других неиспользованных вершин, т.е.:

«х3 »: .

Аналогично преобразуются значения других клеток:

«х3 х1 »: ;

«х4 »: ;

«х4 х1 »: ;

«х6 »: ;

«х6 х1 »: ;

«»: ;

«х1 »: .

В результате данных преобразований получили новую симплекс- таблицу (таблица 5.5).

II итерация:

1 этап: составление симплекс-таблицы.

Таблица 5.5

Симплекс-таблица II итерации

Оценочные

отношения

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение (таблица 5.5):

Как видно, при данном базисном решении значение целевой функции =15, что больше чем при предыдущем базисном решении.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.5 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.5 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 не оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.5) содержится отрицательный элемент: –2 (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, переходим к 8 этапу.

8 этап: определение разрешающего элемента.

8.1. Определение разрешающей колонки.

Найденное базисное решение допустимое, определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.5, такой колонкой является только одна колонка: «х1 ». Следовательно, ее принимаем в качестве разрешенной.

8.2. Определение разрешающей строки.

Согласно полученным значениям положительных оценочных отношений в таблице 5.6, минимальным является отношение, соответствующее строке «х3 ». Следовательно, ее принимаем в качестве разрешенной.

Таблица 5.6

Симплекс-таблица II итерации

Оценочные

отношения

3/1=3 – min

9 этап: преобразование симплекс-таблицы.

Преобразования симплекс-таблицы (таблицы 5.6) выполняются аналогично, как и в предыдущей итерации. Результаты преобразований элементов симплекс-таблицы приведены в таблице 5.7.

III итерация

По результатам симплекс-преобразований предыдущей итерации составляем новую симплекс-таблицу:

Таблица 5.7

Симплекс-таблица III итерации

Оценочные

отношения

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение (таблица 5.7):

3 этап: проверка совместности системы ограничений.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.7 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.7 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 3 допустимое, так как не содержит отрицательных компонент.

6 этап: проверка оптимальности найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 не оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.7) содержится отрицательный элемент: –3 (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, переходим к 8 этапу.

8 этап: определение разрешающего элемента.

8.1. Определение разрешающей колонки.

Найденное базисное решение допустимое, определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.7, такой колонкой является только одна колонка: «х5 ». Следовательно, ее принимаем в качестве разрешенной.

8.2. Определение разрешающей строки.

Согласно полученным значениям положительных оценочных отношений в таблице 5.8, минимальным является отношение, соответствующее строке «х4 ». Следовательно, ее принимаем в качестве разрешенной.

Таблица 5.8

Симплекс-таблица III итерации

Оценочные

отношения

5/5=1 – min

9 этап: преобразование симплекс-таблицы.

Преобразования симплекс-таблицы (таблицы 5.8) выполняются аналогично, как и в предыдущей итерации. Результаты преобразований элементов симплекс-таблицы приведены в таблице 5.9.

IV итерация

1 этап: построение новой симплекс-таблицы.

По результатам симплекс-преобразований предыдущей итерации составляем новую симплекс-таблицу:

Таблица 5.9

Симплекс-таблица IV итерации

Оценочные

отношения

–(–3/5)=3/5

–(1/5)=–1/5

–(9/5)=–9/5

–(–3/5)=3/5

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение, согласно таблице 5.9 решение следующее:

3 этап: проверка совместности системы ограничений.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.9 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.9 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 3 допустимое, так как не содержит отрицательных компонент.

6 этап: проверка оптимальности найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.9) нет отрицательных элементов (свободное число данной строки при рассмотрении данного признака не учитывается).

7 этап: проверка альтернативности решения.

Найденное решение является единственным, так как в строке целевой функции (таблица 5.9) нет нулевых элементов (свободное число данной строки при рассмотрении данного признака не учитывается).

Ответ: оптимальное значение целевой функции рассматриваемой задачи =24, которое достигается при.

Пример 5.2. Решить вышеприведенную задачу линейного программирования при условии, что целевая функция минимизируется:

Решение:

I итерация:

1 этап: формирование исходной симплекс-таблицы.

Исходная задача линейного программирования задана в стандартной форме. Приведем ее к каноническому виду путем введения в каждое из ограничений-неравенств дополнительной неотрицательной переменной, т.е.

В полученной системе уравнений примем в качестве разрешенных (базисных) переменные х3 , х4 , х5 , х6 , тогда свободными переменными будут х1 ,х2 . Выразим базисные переменные через свободные.

Если в условии задачи есть ограничения со знаком ≥, то их можно привести к виду ∑a ji b j , умножив обе части неравенства на -1. Введем m дополнительных переменных x n+j ≥0(j =1,m ) и преобразуем ограничения к виду равенств

(2)

Предположим, что все исходные переменные задачи x 1 , x 2 ,..., x n – небазисные. Тогда дополнительные переменные будут базисными, и частное решение системы ограничений имеет вид

x 1 = x 2 = ... = x n = 0, x n+ j = b j , j =1,m . (3)

Так как при этом значение функции цели F 0 = 0 , можно представить F(x) следующим образом:

F(x)=∑c i x i +F 0 =0 (4)

Начальная симплекс-таблица (симплекс-табл. 1) составляется на основании уравнений (2) и (4). Если перед дополнительными переменными x n+j стоит знак «+», как в (2), то все коэффициенты перед переменными x i и свободный член b j заносятся в симплекс-таблицу без изменения. Коэффициенты функции цели при ее максимизации заносятся в нижнюю строку симплекс-таблицы с противоположными знаками. Свободные члены в симплекс-таблице определяют решение задачи.

Алгоритм решения задачи следующий:

1-й шаг. Просматриваются элементы столбца свободных членов. Если все они положительные, то допустимое базисное решение найдено и следует перейти к шагу 5 алгоритма, соответствующему нахождению оптимального решения. Если в начальной симплекс-таблице есть отрицательные свободные члены, то решение не является допустимым и следует перейти к шагу 2.

2-й шаг. Для нахождения допустимого решения осуществляется , при этом нужно решать, какую из небазисных переменных включить в базис и какую переменную вывести из базиса.

Таблица 1.

x n
базисные переменные Свободные члены в ограничениях Небазисные переменные
x 1 x 2 ... x l ...
x n+1 b 1 a 11 a 12 ... a 1l ... a 1n
x n+2 b 2 a 21 a 22 ... a 2l ... a 2n
. . . . . . . .
. . . . . . . .
. . . . . . . .
x n+r b2 a r1 a r2 ... a rl ... a rn
. . . . . . . .
. . . . . . . .
. . . . . . . .
x n+m b m a m1 a m2 ... a ml ... a mn
F(x) max F 0 -c 1 -c 2 ... -c 1 ... -c n

Для этого выбирают любой из отрицательных элементов столбца свободных членов (пусть это будет b 2 ведущим, или разрешающим. Если в строке с отрицательным свободным членом нет отрицательных элементов, то система ограничений несовместна и задача не имеет решения.

Одновременно из БП исключается та переменная, которая первой изменит знак при увеличении выбранной НП x l . Это будет x n+r , индекс r которой определяется из условия

т.е. та переменная, которой соответствует наименьшее отношение свободного члена к элементу выбранного ведущего столбца. Это отношение называется симплексным отношением. Следует рассматривать только положительные симплексные отношения.

Строка, соответствующая переменной x n+r , называется ведущей, или разрешающей. Элемент симплекс-таблицы a rl , стоящий на пересечении ведущей строки и ведущего столбца, называется ведущим, или разрешающим элементом. Нахождением ведущего элемента заканчивается работа с каждой очередной симплекс-таблицей.

3-й шаг. Рассчитывается новая симплекс-таблица, элементы которой пересчитываются из элементов симплекс-таблицы предыдущего шага и помечаются штрихом, т.е. b" j , a" ji , c" i , F" 0 . Пересчет элементов производится по следующим формулам:

Сначала в новой симплекс-таблице заполнятся строка и столбец, которые в предыдущей симплекс-таблице были ведущими. Выражение (5) означает, что элемент a" rl на месте ведущего равен обратной величине элемента предыдущей симплекс-таблицы. Элементы строки a ri делятся на ведущий элемент, а элементы столбца a jl также делятся на ведущий элемент, но берутся с противоположным знаком. Элементы b" r и c" l рассчитываются по тому же принципу.

Остальные формулы легко записать с помощью .

Прямоугольник строится по старой симплекс-таблице таким образом, что одну из его диагоналей образует пересчитываемый (a ji) и ведущий (a rl) элементы (рис. 1). Вторая диагональ определяется однозначно. Для нахождения нового элемента a" ji из элемента a ji вычитается (на это указывает знак « – » у клетки) произведение элементов противоположной диагонали, деленное на ведущий элемент. Аналогично пересчитываются элементы b" j , (j≠r) и c" i , (i≠l).

4-й шаг. Анализ новой симплекс-таблицы начинается с 1-го шага алгоритма. Действие продолжается, пока не будет найдено допустимое базисное решение, т.е. все элементы столбца свободных членов должны быть положительными.

5-й шаг. Считаем, что допустимое базисное решение найдено. Просматриваем коэффициенты строки функции цели F(x) . Признаком оптимальности симплекс-таблицы является неотрицательность коэффициентов при небазисных переменных в F-строке.

Рис. 1. Правило прямоугольника

Если среди коэффициентов F-строки имеются отрицательные (за исключением свободного члена), то нужно переходить к другому базисному решению. При максимизации функции цели в базис включается та из небазисных переменных (например x l), столбцу которой соответствует максимальное абсолютное значение отрицательного коэффициента c l в нижней строке симплекс-таблицы. Это позволяет выбрать ту переменную, увеличение которой приводит к улучшению функции цели. Столбец, соответствующий переменной x l , называется ведущим. Одновременно из базиса исключается та переменная x n+r , индекс r которой определяется минимальным симплексным отношением:

Строка, соответствующая x n+r , называется ведущей , а элемент симплекс-таблицы a rl , стоящий на пересечении ведущей строки и ведущего столбца, называется ведущим элементом.

6-й шаг. по правилам, изложенным на 3-м шаге. Процедура продолжается до тех пор, пока не будет найдено оптимальное решение или сделан вывод, что оно не существует.

Если в процессе оптимизации решения в ведущем столбце все элементы неположительные, то ведущую строку выбрать невозможно. В этом случае функция в области допустимых решений задачи не ограничена сверху и F max ->&∞.

Если же на очередном шаге поиска экстремума одна из базисных переменных становится равной нулю, то соответствующее базисное решение называется вырожденным. При этом возникает так называемое зацикливание, характеризующееся тем, что с определенной частотой начинает повторяться одинаковая комбинация БП (значение функции F при этом сохраняется) и невозможно перейти к новому допустимому базисному решению. Зацикливание является одним из основных недостатков симплекс-метода, но встречается сравнительно редко. На практике в таких случаях обычно отказываются от ввода в базис той переменной, столбцу которой соответствует максимальное абсолютное значение отрицательного коэффициента в функции цели, и производят случайный выбор нового базисного решения.

Пример 1. Решить задачу

max{F(x) = -2x 1 + 5x 2 | 2x 1 + x 2 ≤7; x 1 + 4x 2 ≥8; x 2 ≤4; x 1,2 ≥0}

Симплексным методом и дать геометрическую интерпретацию процесса решения.

Графическая интерпретация решения задачи представлена на рис. 2. Максимальное значение функции цели достигается в вершине ОДЗП с координатами . Решим задачу с помощью симплекс-таблиц. Умножим второе ограничение на (-1) и введём дополнительные переменные, чтобы неравенства привести к виду равенств, тогда

Исходные переменные x 1 и x 2 принимаем в качестве небазисных, а дополнительные x 3 , x 4 и x 5 считаем базисными и составляем симплекс-таблицу(симплекс-табл. 2). Решение, соответствующее симплекс-табл. 2, не является допустимым; ведущий элемент обведен контуром и выбран в соответствии с шагом 2 приведенного ранее алгоритма. Следующая симплекс-табл. 3 определяет допустимое базисное решение, ему соответствует вершина ОДЗП на рис. 2 Ведущий элемент обведен контуром и выбран в соответствии с 5-м шагом алгоритма решения задачи. Табл. 4 соответствует оптимальному решению задачи, следовательно: x 1 = x 5 = 0; x 2 = 4; x 3 = 3; x 4 = 8; F max = 20.

Рис. 2. Графическое решение задачи

ИСПОЛЬЗОВАНИЕ ТАБЛИЧНОГО СИМПЛЕКС-МЕТОДА ДЛЯ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ДЛЯ ОПТИМИЗАЦИИ ЭКОНОМИЧЕСКИХ ЗАДАЧ

ВВЕДЕНИЕ

Цель данного курсового проекта - составить план производства требуемых изделий, обеспечивающий максимальную прибыль от их реализации, свести данную задачу к задаче линейного программирования, решить её симплекс - методом и составить программу для решения задачи этим методом на ЭВМ.

1. КРАТКИЙ ОБЗОР АЛГОРИТМОВ РЕШЕНИЯ ЗАДАЧ ДАННОГО ТИПА

1.1 Математическое программирование

Математическое программирование занимается изучение экстремальных задач и поиском методов их решения. Задачи математического программирования формулируются следующим образом: найти экстремум некоторой функции многих переменных f (x 1 , x 2 , ... , x n) при ограничениях g i (x 1 , x 2 , ... , x n) * b i , где g i - функция, описывающая ограничения, * - один из следующих знаков £ , = , ³ , а b i - действительное число, i = 1, ... , m. f называется функцией цели (целевая функция).

Линейное программирование - это раздел математического программирования, в котором рассматриваются методы решения экстремальных задач с линейным функционалом и линейными ограничениями, которым должны удовлетворять искомые переменные.

Задачу линейного программирования можно сформулировать так. Найти max

при условии: a 11 x 1 + a 12 x 2 + . . . + a 1n x n £ b 1 ;

a 21 x 1 + a 22 x 2 + . . . + a 2n x n £ b 2 ;

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

a m1 x 1 + a m2 x 2 + . . . + a mn x n £ b m ;

x 1 ³ 0, x 2 ³ 0, . . . , x n ³ 0 .

Эти ограничения называются условиями неотрицательности. Если все ограничения заданы в виде строгих равенств, то данная форма называется канонической.

В матричной форме задачу линейного программирования записывают следующим образом. Найти max c T x

при условии

где А - матрица ограничений размером (m´n), b (m ´ 1) - вектор-столбец свободных членов, x (n ´ 1) - вектор переменных, с Т = - вектор-строка коэффициентов целевой функции.

Решение х 0 называется оптимальным, если для него выполняется условие с Т х 0 ³ с Т х, для всех х Î R(x).

Поскольку min f(x) эквивалентен max [ - f(x) ] , то задачу линейного программирования всегда можно свести к эквивалентной задаче максимизации.

Для решения задач данного типа применяются методы:

1) графический;

2) табличный (прямой, простой) симплекс - метод;

3) метод искусственного базиса;

4) модифицированный симплекс - метод;

5) двойственный симплекс - метод.

1.2 Табличный симплекс - метод

Для его применения необходимо, чтобы знаки в ограничениях были вида “ меньше либо равно ”, а компоненты вектора b - положительны.

Алгоритм решения сводится к следующему:

Приведение системы ограничений к каноническому виду путём введения дополнительных переменных для приведения неравенств к равенствам.

Если в исходной системе ограничений присутствовали знаки “ равно ”или “ больше либо равно ”, то в указанные ограничения добавляются

искусственные переменные, которые так же вводятся и в целевую функцию со знаками, определяемыми типом оптимума.

Формируется симплекс-таблица.

Рассчитываются симплекс-разности.

Принимается решение об окончании либо продолжении счёта.

При необходимости выполняются итерации.

На каждой итерации определяется вектор, вводимый в базис, и вектор, выводимый из базиса. Таблица пересчитывается по методу Жордана-Гаусса или каким-нибудь другим способом.

1.3 Метод искусственного базиса

Данный метод решения применяется при наличии в ограничении знаков “ равно ”, “ больше либо равно ”, “ меньше либо равно ” и является модификацией табличного метода. Решение системы производится путём ввода искусственных переменных со знаком, зависящим от типа оптимума, т.е. для исключения из базиса этих переменных последние вводятся в целевую функцию с большими отрицательными коэффициентами m , а в задачи минимизации - с положительными m . Таким образом из исходной получается новая m - задача.

Если в оптимальном решении m - задачи нет искусственных переменных, это решение есть оптимальное решение исходной задачи. Если же в оптимальном решении m - задачи хоть одна из искусственных переменных будет отлична от нуля, то система ограничений исходной задачи несовместна и исходная задача неразрешима.

1.4 Модифицированный симплекс - метод

В основу данной разновидности симплекс-метода положены такие особенности линейной алгебры, которые позволяют в ходе решения задачи работать с частью матрицы ограничений. Иногда метод называют методом обратной матрицы.

В процессе работы алгоритма происходит спонтанное обращение матрицы ограничений по частям, соответствующим текущим базисным векторам. Указанная способность делает весьма привлекательной машинную реализацию вычислений вследствие экономии памяти под промежуточные переменные и значительного сокращения времени счёта. Хорош для ситуаций, когда число переменных n значительно превышает число ограничений m.

В целом, метод отражает традиционные черты общего подхода к решению задач линейного программирования, включающего в себя канонизацию условий задачи, расчёт симплекс-разностей, проверку условий оптимальности, принятие решений о коррекции базиса и исключение Жордана-Гаусса.

Особенности заключаются в наличии двух таблиц - основной и вспомагательной, порядке их заполнения и некоторой специфичности расчётных формул.

Для производства двух видов изделий А и В используется три типа технологического оборудования. На производство единицы изделия А идёт времени, часов: оборудованием 1-го типа - а 1 , оборудованием 2-го типа - а 2 , оборудованием 3-го типа - а 3 .На производство единицы изделия В идёт времени, часов: оборудованием 1-го типа - b 1 , оборудованием 2-го типа - b 2 , оборудованием 3-го типа - b 3 .

На изготовление всех изделий администрацияпредприятия может предоставить оборудование 1-го типа не более, чем на t 1 ,оборудование 2-го типа не более, чем на t 2 , оборудование 3-го типа не более, чем на t 3 часов.

Прибыль от реализации единицы готового изделия А составляет a рублей, а изделия В - b рублей.

Составить план производства изделий А и В, обеспечивающий максимальную прибыль от их реализации. Решить задачу простым симплекс-методом. Дать геометрическое истолкование задачи, используя для этого её формулировку с ограничениями-неравенствами.

а 1 = 1 b 1 = 5 t 1 = 10 a = 2

а 2 = 3 b 2 = 2 t 2 = 12 b = 3

а 3 = 2 b 3 = 4 t 3 = 10

3. РАЗРАБОТКА И ОПИСАНИЕ АЛГОРИТМА РЕШЕНИЯ ЗАДАЧИ

3.1 Построение математической модели задачи

Построение математической модели осуществляется в три этапа:

1. Определение переменных, для которых будет составляться математическая модель.

Так как требуется определить план производства изделий А и В, то переменными модели будут:

x 1 - объём производства изделия А, в единицах;

x 2 - объём производства изделия В, в единицах.

2. Формирование целевой функции.

Так как прибыль от реализации единицы готовых изделий А и В известна, то общий доход от их реализации составляет 2x 1 + 3x 2 (рублей). Обозначив общий доход через F, можно дать следующую математическую формулировку целевой функции: определить допустимые значения переменных x 1 и x 2 , максимизирующих целевую функцию F = 2x 1 + 3x 2 .

3. Формирование системы ограничений.

При определении плана производства продукции должны быть учтены ограничения на время, которое администрация предприятия сможет предоставить на изготовления всех изделий. Это приводит к следующим трём ограничениям:

x 1 + 5x 2 £10;3x 1 + 2x 2 £ 12 ; 2x 1 + 4x 2 £ 10 .

Так как объёмы производства продукции не могут принимать отрицательные значения, то появляются ограничения неотрицательности:

x 1 ³ 0 ; x 2 ³ 0 .

Таким образом, математическая модель задачи представлена в виде: определить план x 1 , x 2 , обеспечивающий максимальное значение функции:

max F = max (2x 1 + 3x 2)

при наличии ограничений:

x 1 + 5x 2 £10;

3x 1 + 2x 2 £ 12 ;

2x 1 + 4x 2 £ 10 .

x 1 ³ 0 ; x 2 ³ 0 .

3.2 Решение задачи вручную

Табличный метод ещё называется метод последовательного улучшения оценки. Решение задачи осуществляется поэтапно.

1. Приведение задачи к форме:

x 1 + 5x 2 £10;

3x 1 + 2x 2 £ 12 ;

2x 1 + 4x 2 £ 10 .

x 1 ³ 0 ; x 2 ³ 0 .

2. Канонизируем систему ограничений:

x 1 + 5x 2 + x 3 =10;

3x 1 + 2x 2 + x 4 = 12 ;

2x 1 + 4x 2 + x 5 = 10 .

x 1 ³ 0 ; x 2 ³ 0 .

A 1 A 2 A 3 A 4 A 5 A 0

3. Заполняется исходная симплекс-таблица и рассчитываются симплекс-разности по формулам:

- текущее значение целевой функции - расчёт симплекс-разностей, где j = 1..6 .