Для чего предназначен протокол ip. Протокол IP

Протоколы TCP/IP основа работы глобальной сети Интернет. Если быть более точным, то TCP/IP это список или стек протоколов, а по сути, набор правил по которым происходит обмен информации (реализуется модель коммутации пакетов).

В этой статье разберем принципы работы стека протоколов TCP/IP и попробуем понять принципы их работы.

Примечание: Зачастую, обревиатурой TCP/IP называют всю сеть, работающую на основе этих двух протоколов, TCP и IP.

В модель такой сети кроме основных протоколов TCP (транспортный уровень) и IP (протокол сетевого уровня) входят протоколы прикладного и сетевого уровней (смотри фото). Но вернемся непосредственно к протоколам TCP и IP.

Что такое протоколы TCP/IP

TCP — Transfer Control Protocol . Протокол управления передачей. Он служит для обеспечения и установление надежного соединения между двумя устройствами и надежную передачу данных. При этом протокол TCP контролирует оптимальный размер передаваемого пакета данных, осуществляя новую посылку при сбое передачи.

IP — Internet Protocol. Интернет протокол или адресный протокол — основа всей архитектуры передачи данных. Протокол IP служит для доставки сетевого пакета данных по нужному адресу. При этом информация разбивается на пакеты, которые независимо передвигаются по сети до нужного адресата.

Форматы протоколов TCP/IP

Формат IP протокола

Существуют два формата для IP адресов IP протокола.

Формат IPv4. Это 32-битовое двоичное число. Удобная форма записи IP-адреса (IPv4) это запись в виде четырёх групп десятичных чисел (от 0 до 255), разделённых точками. Например: 193.178.0.1.

Формат IPv6. Это 128-битовое двоичное число. Как правило, адреса формата IPv6 записываются в виде уже восьми групп. В каждой группе по четыре шестнадцатеричные цифры разделенные двоеточием. Пример адреса IPv6 2001:0db8:85a3:08d3:1319:8a2e:0370:7889.

Как работают протоколы TCP/IP

Если удобно представьте передаче пакетов данных в сети, как отправку письма по почте.

Если неудобно, представьте два компьютера соединенных сетью. Причем сеть соединения может быть любой как локальной, так и глобальной. Разницы в принципе передачи данных нет. Компьютер в сети также можно считать хостом или узлом.

Протокол IP

Каждый компьютер в сети имеют свой уникальный адрес. В глобальной сети Интернет, компьютер имеет этот адрес, который называется IP-адрес (Internet Protocol Address).

По аналогии с почтой, IP- адрес это номер дома. Но номера дома для получения письма недостаточно.

Передаваемая по сети информация передается не компьютером, как таковым, а приложениями, установленными на него. Такими приложениями являются сервер почты, веб-сервер, FTP и т.п. Для идентификации пакета передаваемой информации, каждое приложение прикрепляется к определенному порту. Например: веб-сервер слушает порт 80, FTP слушает порт 21, почтовый SMTP сервер слушает порт 25, сервер POP3 читает почту почтовых ящиков на порте 110.

Таким образом, в адресном пакете в протоколе TCP/IP, в адресатах появляется еще одна строка: порт. Аналог с почтой — порт это номер квартиры отправителя и адресата.

Пример:

Source address (Адрес отправителя):

IP: 82.146.47.66

Destination address (Адресполучателя):

IP: 195.34.31.236

Стоит запомнить: IP адрес + номер порта — называется «сокет». В примере выше: с сокета 82.146.47.66:2049 пакет отправляется на сокет 195.34.31.236: 53.

Протокол TCP

Протокол TCP это протокол следующего после протокола IP уровня. Предназначен этот протокол для контроля передачи информации и ее целостности.

Например, Передаваемая информация разбивается на отдельные пакеты. Пакеты доставят получателю независимо. В процессе передачи один из пакетов не передался. Протокол TCP обеспечивает повторные передачи, до получения этого пакета получателем.

Транспортный протокол TCP скрывает от протоколов высшего уровня (физического, канального, сетевого IP все проблемы и детали передачи данных).

Протокол IP (Internet Protocol) является основным протоколом для всего набора TCP/IP и используется для управления рассылкой TCP/IP-пакетов по сети Internet.

Функционируя на сетевом уровне модели OSI, протокол IP относится к протоколам без установления соединения. Перед IP не ставится задача надежной доставки сообщений от отправителя к получателю.

IP – протокол выполняет несколько задач, среди которых основные: адресация, упаковка, фрагментация и маршрутизация.

Адресация. Протокол IP отвечает за доставку TCP/IP – пакетов до их конечного назначения и адрес назначения не меняется в процессе прохождения пакета по маршруту.

Упаковка . Протокол IP несет ответственность за упаковку данных протоколов транспортного уровня в структуры, называемые дейтаграммами , предназначенные для транспортировки передаваемой информации. Во время путешествия пакета маршрутизаторы создают дейтаграмме новый заголовок для каждого транзитного участка. Прежде чем попасть в место конечного назначения, пакет может пройти через различные сети, использующие разные протоколы, каждый из которых требует наличия собственного заголовка. Но, с другой стороны, IP – «конверт» остается без изменений в течение всего путешествия, за исключением нескольких битов, которые модифицируются в процессе следования (уместна аналогия с нанесением почтовых штемпелей на конверт).

Фрагментация. Размер IP – дейтаграмм, используемых для передачи данных транспортного уровня, зависит от применяемого протокола канального уровня. Сети Ethernet, например, могут переносить дейтаграммы размером до 1500 байт, а Token Ring способны поддерживать максимальный размер пакетов, равный 17914 байт. Система, передающая дейтаграммы, ограничивает размер пакета величиной максимально передаваемого блока (MTU – maximum transfer unit) конкретной сети, которая представляет собой наибольший размер кадра, транспортировку которого может осуществлять протокол канального уровня.

На пути следования к месту назначения пакеты могут проходить через сети с различными MTU.

Фрагментация реализуется, если разрешённая длина пакета нижнего уровня недостаточна для размещения первичного пакета, при этом осуществляется «нарезка» пакетов, затем маршрутизатор направляет каждый фрагмент дальше, но уже в изолированном пакете с собственным IP заголовком, аналогично при возврате на первичный уровень пакет должен быть дефрагментирован.

В зависимости от количества и характеристик сетей, встречающихся на трассе дейтаграммы, она может неоднократно подвергаться дроблению, прежде чем достигнет пункта назначения.

Фрагментация нежелательна, но это – необходимое зло.


Если даже только один из фрагментов дейтаграммы будет потерян или поврежден, потребуется повторная передача всей дейтаграммы .

Не существует способа повторной передачи только отдельного фрагмента, т.к. система – отправитель совершенно не в курсе процесса фрагментации, произведенной промежуточными маршрутизаторами. Протокол IP системы – получателя не пересылает входящую информацию вверх, протоколу транспортного уровня до тех пор, пока не получены все фрагменты дейтаграммы, и она не собрана полностью.

Маршрутизация . Так как протокол IP отвечает за доставку пакетов по месту конечного назначения, он определяет и путь, по которому направится пакет, но вся информация о пути, по которому должен пройти пакет, определяется по состоянию сети в момент прохождения пакета. Эта процедура называется маршрутизацией в отличие от коммутации (физической или виртуальной), используемой для предварительного установления маршрута следования отправляемых данных.

В комплексных сетях возможен выбор из множества вариантов маршрута, который может быть пройден пакетом на пути от источника к цели.

Маршрутизаторы постоянно оценивают имеющиеся для пакета варианты маршрута через сеть и могут определить самый оптимальный из них.

Протокол ICMP - Internet Control Message Protocol – протокол контроля сообщений в сети Internet.

Протокол ICMP выполняет сразу две роли в стеке TCP/IP, а именно: обеспечивает выработку управляющих сообщений об ошибках, например, информирует систему-источник о том, что переданные данные не достигли места назначения, а также переносит сообщения-запросы и сообщения-ответы для диагностических программ.

Так как сеть TCP/IP распределяет рутинные операции по маршрутизации между многими системами, не существует способа, с помощью которого любая из оконечных систем, вовлеченных в передачу пакета, могла бы иметь информацию о том, что же происходило на пути следования пакета. Протокол IP не устанавливает соединения, поэтому никаких подтверждающих сообщений на этом уровне отправителю не поступает. При использовании протокола Транспортного уровня, ориентированного на соединение, например, TCP, система-получатель подтверждает передачу, но только тех пакетов, которые она получает. Если же в процессе передачи происходит что-либо, не позволяющее пакету прибыть по месту назначения, протоколы TCP или IP не имеют никакой возможности известить отправителя о том, почему и как это случилось. Сообщения об ошибках протокола ICMP разработаны для компенсации этого недостатка. Когда промежуточная система, например, маршрутизатор, испытывает трудности с обработкой пакета, она обычно просто отбрасывает его, оставляя для протоколов более высоких уровней работу по отслеживанию отсутствующих пакетов и организации повторной передачи. Сообщения протокола ICMP позволяют маршрутизатору информировать отправителя о конкретной причине возникшей проблемы. Системы-получатели также могут посылать ICMP-сообщения, когда сталкиваются с тем, что пакет успешно прибывает, но его невозможно обработать.

Вместе с тем, ICMP-сообщения об ошибках являются только информационными. Система, получающая их, никак не отвечает и не обязана предпринимать никаких действий в плане исправления ситуации. Пользователю или администратору придется самим решать проблему, приводящую к неполадкам.

TCP/IP-системы могут совершенно свободно посылать ICMP-сообщения об ошибках, кроме некоторых специфических ситуаций:

· TCP/IP-системы не вырабатывают ICMP-сообщения об ошибках в ответ на другие ICMP-сообщения об ошибках. Без подобной оговорки две системы могут обмениваться ICMP-сообщениями об ошибках в обоих направлениях до бесконечности.

· В случае фрагментированной дейтаграммы система генерирует ICMP- сообщение об ошибке только для первого фрагмента.

· TCP/IP-системы никогда не посылают ICMP-сообщения об ошибках в ответ на широковещательные или групповые сообщения.

В современном мире информация распространяется за считанные секунды. Вот только что появилась новость, а через секунду она уже доступна на каком-либо сайте в сети интернет. Интернет считается одной из самых полезных разработок человеческого разума. Чтобы пользоваться всеми благами, которые предоставляет интернет, необходимо подключиться к этой сети.

Мало кто знает, что простой процесс посещения веб-страничек подразумевает незаметную для пользователя, сложную систему действий. Каждый переход по ссылке активирует сотни различных вычислительных операций в сердце компьютера. В их числе передачи запросов, прием ответов и многое другое. За каждое действие в сети отвечают так называемые протоколы TCP/IP. Что они собой представляют?

Любой протокол интернета TCP/IP работает на своем уровне. Иными словами, каждый занимается своим делом. Все семейство TCP/IP протоколов одновременно выполняет колоссальную работу. А пользователь в это время видит только яркие картинки и длинные строки текста.

Понятие стека протоколов

Стек протоколов TCP/IP - это организованный набор основных сетевых протоколов, который иерархическим способом разделен на четыре уровня и представляет собой систему транспортного распределения пакетов по компьютерной сети.

TCP/IP - это наиболее известный стек сетевых протоколов, который используется на данный момент. Принципы стека TCP/IP применяются как в локальных, так и в глобальных сетях.

Принципы использования адресов в стеке протоколов

Стек сетевых протоколов TCP/IP описывает пути и направления отправки пакетов. Это основная задача всего стека, выполняющаяся на четырех уровнях, которые взаимодействуют между собой протоколированным алгоритмом. Для правильной отправки пакета и его доставки ровно в ту точку, которая его запросила, была введена и стандартизирована адресация IP. Этому послужило наличие следующих задач:

  • Адреса различного типа, должны быть согласованы. Например преобразование домена сайта в IP адрес сервера и обратно, или преобразование имени узла в адрес и обратно. Таки образом становится возможен доступ к точке не только с помощью IP адреса, но и по интуитивному названию.
  • Адреса должны быть уникальны. Это вызвано тем, что в некоторых частных случаях пакет должен попасть только в одну конкретную точку.
  • Необходимость конфигурирования локальных вычислительных сетей.

В малых сетях, где используется несколько десятков узлов, все эти задачи выполняются элементарно, с помощью простейших решений: составление таблицы с описанием принадлежности машины и соответствующего ей IP адреса, или можно вручную раздать всем сетевым адаптерам IP адреса. Однако для крупных сетей на тысячу или две тысячи машин задача ручной выдачи адресов не кажется такой выполнимой.

Именно поэтому для сетей TCP/IP был изобретен специальный подход, который и стал отличительной чертой стека протоколов. Было введено понятие - масштабируемость.

Уровни стека протоколов TCP/IP

Здесь существует определенная иерархия. Стек протоколов TCP/IP предусматривает четыре уровня, каждый из которых обрабатывает свой набор протоколов:

Прикладной уровень : создан для обеспечения работы пользователя с сетью На этом уровне обрабатывается все то, что видит и делает пользователь. Уровень позволяет пользователю получить доступ к различным сетевым службам, например: доступ к базам данных, возможность прочитать список файлов и открыть их, отправить электронное сообщение или открыть веб-страницу. Вместе с пользовательскими данными и действиям, на этом уровне передается служебная информация.

Транспортный уровень: это механизм передачи пакетов в чистом виде. На этом уровне совершенно не имеет значения ни содержимое пакета, ни его принадлежность к какому бы то ни было действию. На этом уровне имеет значение только адрес узла отправки пакета и адрес узла, на который пакет должен быть доставлен. Как правило, размер фрагментов, передаваемых с использованием разных протоколов, может изменяться, потому на этом уровне блоки информации могут дробиться на выходе и собираться в единое целое в точке назначения. Этим обусловлена возможная потеря данных, если в момент передачи очередного фрагмента произойдет кратковременный разрыв соединения.

Транспортный уровень включает в себя много протоколов, которые делятся на классы, от простейших, которые просто передают данные, до сложных, которые оснащены функционалом подтверждения приема, или повторного запроса недополученного блока данных.

Данный уровень, предоставляет вышестоящему (прикладному) два типа сервиса:

  • Осуществляет гарантированную доставку, с помощью протокола ТСР.
  • Осуществляет доставку по возможности по протоколу UDP.

Чтобы обеспечить гарантированную доставку, согласно протоколу TCP устанавливается соединение, которое позволяет выставлять на пакетах нумерацию на выходе и подтверждать их прием на входе. Нумерация пакетов и подтверждение приема - это так называемая служебная информация. Этот протокол поддерживает передачу в режиме "Дуплекс". Кроме того, благодаря продуманному регламенту протокола, он считается очень надежным.

Протокол UDP предназначен для моментов, когда невозможно настроить передачу по протоколу TCP, либо приходится экономить на сегменте сетевой передачи данных. Также протокол UDP может взаимодействовать с протоколами более высокого уровня, для повышения надежности передачи пакетов.

Сетевой уровень или "уровень интернета": базовый уровень для всей модели TCP/IP. Основной функционал этого уровня идентичен одноименному уровню модели OSI и описывает перемещение пакетов в составной сети, состоящей из нескольких, более мелких подсетей. Он связывает соседние уровни протокола TCP/IP.

Сетевой уровень является связующим между вышестоящим транспортным уровнем и нижестоящим уровнем сетевых интерфейсов. Сетевой уровень использует протоколы, которые получают запрос от транспортного уровня, и посредством регламентированной адресации передают обработанный запрос на протокол сетевых интерфейсов, указывая, по какому адресу направить данные.

На этом уровне используются следующие сетевые протоколы TCP/IP: ICMP, IP, RIP, OSPF. Основным, и наиболее популярным на сетевом уровне, конечно же является протокол IP (Internet Protocol). Основной его задачей является передача пакетов от одного роутера к другому до тех пор, пока единица данных не попадет на сетевой интерфейс узла назначения. Протокол IP разворачивается не только на хостах, но и на сетевом оборудовании: маршрутизаторах и управляемых коммутаторах. Протокол IP работает по принципу негарантированной доставки с максимальными усилиями. Т. е., для отправки пакета нет необходимости заранее устанавливать соединение. Такой вариант приводит к экономии трафика и времени на движении лишних служебных пакетов. Пакет направляется в сторону назначения, и вполне возможно, что узел останется недоступным. В таком случае возвращается сообщение об ошибке.

Уровень сетевых интерфейсов: отвечает за то, чтобы подсети с разными технологиями могли взаимодействовать друг с другом и передавать информацию в том же режиме. Реализовано это двумя простыми шагами:

  • Кодирование пакета в единицу данных промежуточной сети.
  • Преобразование информации о месте назначения в стандарты необходимой подсети и отправка единицы данных.

Этот подход позволяет постоянно расширять количество поддерживаемых технологий построения сетей. Как только появляется новая технология, она сразу попадает в стек проколов TCP/IP и позволяет сетям со старыми технологиями передавать данные в сети, построенные с применением более современных стандартов и способов.

Единицы передаваемых данных

За время существования такого явления, как протоколы TCP/IP, установились стандартные термины по части единиц передаваемых данных. Данные при передаче могут дробиться по-разному, в зависимости от технологий, используемых сетью назначения.

Чтобы иметь представление о том, что и в какой момент времени происходит с данными, нужно было придумать следующую терминологию:

  • Поток данных - данные, которые поступают на транспортный уровень от протоколов вышестоящего прикладного уровня.
  • Сегмент - фрагмент данных, на которые дробится поток по стандартам протокола TCP.
  • Датаграмма (особо безграмотные произносят как "Дейтаграмма") - единицы данных, которые получаются путем дробления потока с помощью протоколов, работающих без установления соединения (UDP).
  • Пакет - единица данных, производимая посредством протокола IP.
  • Протоколы TCP/IP упаковывают IP-пакеты в передаваемые по составным сетям блоки данных, которые называются кадрами или фреймами .

Типы адресов стека протоколов TCP/IP

Любой протокол передачи данных TCP/IP для идентификации узлов использует один из следующих типов адресов:

  • Локальные (аппаратные) адреса.
  • Сетевые адреса (IP адреса).
  • Доменные имена.

Локальные адреса (MAC-адреса) - используются в большинстве технологий локальных вычислительных сетей, для идентификации сетевых интерфейсов. Под словом локальный, говоря о TCP/IP, следует понимать интерфейс, который действует не в составной сети, а в пределах отдельно взятой подсети. Например, подсеть интерфейса, подключенного к интернет - будет локальной, а сеть интернет - составной. Локальная сеть может быть построена на любой технологии, и независимо от этого, с точки зрения составной сети машина, находящаяся в отдельно выделенной подсети, будет называться локальной. Таким образом, когда пакет попадает в локальную сеть, дальше его IP адрес ассоциируется с локальным адресом, и пакет направляется уже на MAC-адрес сетевого интерфейса.

Сетевые адреса (IP-адреса). В технологии TCP/IP предусмотрена собственная глобальная адресация узлов, для решения простой задачи - объединения сетей с разной технологией в одну большую структуру передачи данных. IP-адресация совершенно не зависит от технологии, которая используется в локальной сети, однако IP адрес позволяет сетевому интерфейсу представлять машину в составной сети.

В итоге была разработана система, при которой узлам назначается IP адрес и маска подсети. Маска подсети показывает, какое количество бит отводится под номер сети, а какое количество под номер узла. IP адрес состоит из 32 бит, разделенных на блоки по 8 бит.

При передаче пакета ему назначается информация о номере сети и номере узла, в который пакет должен быть направлен. Сначала маршрутизатор направляет пакет в нужную подсеть, а потом выбирается узел, который его ждет. Этот процесс осуществляется протоколом разрешения адресов (ARP).

Доменные адреса в сетях TCP/IP управляются специально разработанной системой доменных имен (DNS). Для этого существуют серверы, которые сопоставляют доменное имя, представленное в виде строки текста, с IP адресом, и отправляет пакет уже в соответствии с глобальной адресацией. Между именем компьютера и IP адресом не предусмотрено соответствий, поэтому, чтобы преобразовать доменное имя в IP адрес, передающему устройству необходимо обратиться к таблице маршрутизации, которая создается на DNS сервере. Например, мы пишем в браузере адрес сайта, DNS сервер сопоставляет его с IP адресом сервера, на котором сайт расположен, и браузер считывает информацию, получая ответ.

Кроме сети интернет, есть возможность выдавать компьютерам доменные имена. Таким образом, упрощается процесс работы в локальной сети. Пропадает необходимость запоминать все IP-адреса. Вместо них можно придумать каждому компьютеру любое имя и использовать его.

IP-адрес. Формат. Составляющие. Маска подсети

IP адрес - 32-битное число, которое в традиционном представлении записывается в виде чисел, от 1 до 255, разделенных между собой точками.

Вид IP адреса в различных форматах записи:

  • Десятичный вид IP адреса: 192.168.0.10.
  • Двоичный вид того же IP адреса: 11000000.10101000.00000000.00001010.
  • Запись адреса в шестнадцатеричной системе счисления: C0.A8.00.0A.

Между ID сети и номером точки в записи нет разделительного знака, но компьютер способен их разделять. Для этого существует три способа:

  1. Фиксированная граница. При этом способе весь адрес условно делится на две части фиксированной длины побайтно. Таким образом, если под номер сети отдать один байт, тогда мы получим 2 8 сетей по 2 24 узлов. Если границу сдвинуть еще на байт вправо, тогда сетей станет больше - 2 16 , а узлов станет меньше - 2 16 . На сегодняшний день подход считается устаревшим и не используется.
  2. Маска подсети. Маска идет в паре с IP адресом. Маска имеет последовательность значений "1" в тех разрядах, которые отведены под номер сети, и определенное количество нулей в тех местах IP адреса, которые отведены на номер узла. Граница между единицами и нулями в маске - это граница между идентификатором сети и ID узла в IP-адресе.
  3. Метод классов адресов. Компромиссный метод. При его использовании размеры сетей не могут быть выбраны пользователем, однако есть пять классов - А, В, С, D, Е. Три класса - А, В и С - предназначены для различных сетей, а D и Е - зарезервированы для сетей специального назначения. В классовой системе каждый класс имеет свою границу номера сети и ID узла.

Классы IP адресов

К классу А относятся сети, в которых сеть идентифицируется по первому байту, а три оставшихся являются номером узла. Все IP адреса, которые имеют в своем диапазоне значение первого байта от 1 до 126 - это сети класса А. Количественно сетей класса А получается совсем мало, зато в каждой из них может быть до 2 24 точек.

Класс В - сети, в которых два высших бита равны 10. В них под номер сети и идентификатор точки отводится по 16 бит. В результате получается, что количество сетей класса В в большую сторону отличается от количества сетей класса А количественно, но они имеют меньшее количество узлов - до 65 536 (2 16) шт.

В сетях класса С - совсем мало узлов - 2 8 в каждой, но количество сетей огромно, благодаря тому, что идентификатор сети в таких структурах занимает целых три байта.

Сети класса D - уже относятся к особым сетям. Он начинается с последовательности 1110 и называется групповым адресом (Multicast adress). Интерфейсы, имеющие адреса класса А, В и С, могут входить в группу и получать вдобавок к индивидуальному еще и групповой адрес.

Адреса класса Е - в резерве на будущее. Такие адреса начинаются с последовательности 11110. Скорее всего, эти адреса будут применяться в качестве групповых, когда наступит нехватка IP адресов в глобальной сети.

Настройка протокола TCP/IP

Настройка протокола TCP/IP доступна на всех операционных системах. Это - Linux, CentOS, Mac OS X, Free BSD, Windows 7. Протокол TCP/IP требует только наличия сетевого адаптера. Разумеется, серверные операционные системы способны на большее. Очень широко, с помощью серверных служб, настраивается протокол TCP/IP. IP адреса в в обычных настольных компьютерах задаются в настройках сетевых подключений. Там настраивается сетевой адрес, шлюз - IP адрес точки, имеющий выход в глобальную сеть, и адреса точек, на которых располагается DNS сервер.

Протокол интернета TCP/IP может настраиваться в ручном режиме. Хотя не всегда в этом есть необходимость. Можно получать параметры протокола TCP/IP с динамически-раздающего адреса сервера в автоматическом режиме. Такой способ используют в больших корпоративных сетях. На DHCP сервер можно сопоставить локальный адрес к сетевому, и как только в сети появится машина с заданным IP адресом, сервер сразу даст ему заранее подготовленный IP адрес. Этот процесс называется резервирование.

TCP/IP Протокол разрешения адресов

Единственный способ установить связь между MAC-адресом и IP адресом - ведение таблицы. При наличии таблицы маршрутизации каждый сетевой интерфейс осведомлен о своих адресах (локальном и сетевом), однако встает вопрос, как правильно организовать обмен пакетами между узлами, применяя протокол TCP/IP 4.

Для чего был придуман протокол разрешения адресов (ARP)? Для того, чтобы связывать семейство TCP/IP протоколов и других систем адресации. На каждом узле создается таблица соответствия ARP, которая заполняется путем опроса всей сети. Происходит это после каждого выключения компьютера.

ARP таблица

Так выглядит пример составленной ARP таблицы.

IP - Internet Protocol

Набор протоколов TCP/IP разделен на уровни гораздо проще, чем предусмотрено моделью OSI. TCP и UDP - это транспортные протоколы, соответствующие уровню 4 OSI. Они используют IP, протокол уровня 3 OSI (сетевого уровня). Кроме этих трех протоколов, в наборе протоколов TCP/IP есть еще два базовых протокола, расширяющих IP: ICMP и IGMP. Функциональные возможности этих протоколов должны быть реализованы в уровне, содержащем IP.

Internet Protocol соединяет два узла. Каждый узел идентифицируется 32-битным адресом, называемым IP-адресом . При отправке сообщения IP-протокол получает его от протоколов верхнего уровня, TCP или UDP, и добавляет IP-заголовок, содержащий информацию о хосте-адресате.

Чтобы понять протокол IP, самый лучший способ - детально исследовать IP-заголовок. Содержащаяся в нем информация приведена в таблице:

Структура IP-заголовка
Поле Длина Описание
Версия IP 4 бита Версия протокола IP, создавшего заголовок. Текущая версия протокола IP - 4.
Длина IP-заголовка 4 бита Длина заголовка. Минимальное значение - 5 в единицах по 32 бита, или 4 байта. Следовательно, минимальная длина заголовка равна 20 байтам.
Тип обслуживания 1 байт Поле типа обслуживания позволяет отправлять сообщения с нормальной или высокой производительностью, нормальной или увеличенной задержкой, нормальной или высокой надежностью. Это поле полезно при отправке в сеть дейтаграмм. Несколько разновидностей сетей используют эту информацию, чтобы выделить приоритет определенного трафика. Кроме того, сообщения управления сетью по сравнению с обычными сообщениями имеют повышенные приоритет и надежность.
Общая длина 2 байта В этих двух байтах задается общая длина сообщения - заголовка и данных- в октетах. Максимальный размер IP-пакета равен 65 535 байтов, но для большинства сетей такой размер непрактичен. Самый большой размер, который может быть принят всеми хостами, равен 576 байтам. Длинные сообщения могут разделяться на фрагменты - такой процесс называется фрагментацией .
Идентификация 2 байта Если сообщение разбито на фрагменты, поле идентификации помогает собрать фрагменты сообщения. Все фрагменты одного сообщения имеют один и тот же идентификационный номер.
Флаги 3 бита Эти флаги указывают, фрагментировано ли сообщение и является ли текущий пакет последним фрагментом сообщения.
Смещение фрагмента 13 битов В этих 13 битах задается смещение фрагментированного сообщения. Фрагменты могут поступать не в том порядке, в каком они были отправлены, поэтому смещение необходимо, чтобы восстановить исходные данные. Первый фрагмент сообщения имеет длину О, а в остальных фрагментах дается смещение, по которому следует поместить фрагмент. Единица смещения равна 8 байтам, так что значение смещения 64 означает, что второй фрагмент нужно присоединить к сообщению после 512 байтов первого пакета.
Время жизни 1 байт Значение "время жизни" (TTL) задает число секунд, которое сообщение может существовать, прежде чем будет отброшено. В этом значении необязательно указывается число секунд, поскольку каждый маршрутизатор, пересекаемый сообщением, должен уменьшить значение TTL на 1, даже если он затратил на обработку сообщения меньше одной секунды. Поэтому на практике в этом значении задается число допустимых "прыжков".
Протокол 1 байт В этом байте указывается протокол, используемый на следующем уровне стека протоколов для этого сообщения. Номера протоколов определены в доступной оперативной базе данных Internet Assigned Number Authority (IANA) .
Контрольная сумма заголовка 2 байта Это контрольная сумма одного заголовка. Поскольку заголовок изменяется с каждым отправленным сообщением, контрольная сумма также изменяется.
Адрес источника 4 байта В этом поле указывается 32-битный IP-адрес отправителя.
Адрес назначения 4 байта Это 32-битный IP-адрес, по которому отправлено сообщение.
Опции переменная Здесь могут появляться необязательные поля. Например, можно указать, что это сообщение секретно или совершенно секретно. Также предусмотрена возможность будущих расширений.
Дополнение переменная Это поле содержит переменное число нулей, такое, чтобы заголовок заканчивался на 32-битной границе.

Internet Protocol (IP) определен в RFC 791. Документы RFC (Request for Comments) содержат техническую информацию о многих важных интернет-технологиях.

IP-адрес

Каждый узел в сети TCP/IP может быть идентифицирован 32-битным IP-адресом. Обычно IP-адрес представляется четырьмя десятичными значениями в таком виде: 192.168.0.1. Каждое из этих чисел представляет собой один байт IP-адреса и может находиться в пределах от 0 до 255.

IP-адрес содержит две части: сетевую часть и часть хоста. В зависимости от класса сети сетевая часть состоит из одного, двух или трех байтов:

Первый бит адреса сети класса А должен быть 0, поэтому первый байт для сети класса А имеет двоичные значения в пределах от 00000001 (1) до 01111110 (126). Остальные три байта служат для идентификации узлов в сети, позволяя соединить в сети класса А более 16 млн. устройств.

Заметим, что в приведенной таблице адреса с числом 127 в первом байте пропущены, поскольку это зарезервированный диапазон адресов. Адрес 127.0.0.1 - это всегда адрес локального хоста, а 127.0.0.0 - адрес локальной обратной связи. Обратная связь используется для тестирования стека сетевых протоколов на одной машине, без прохода через сетевую интерфейсную плату.

В IP-адресе для сети класса В первые два бита всегда имеют значение 10, что дает диапазон от 10000000 (128) до 10111111 (191). Второй байт продолжает идентификацию сети значением от 0 до 255, оставляя два последних байта для идентификации узлов сети, всего до 65 534 устройств.

Сети класса С отличаются IP-адресом, в котором в первых трех битах установлено значение 110, разрешая значения в диапазоне от 11000000 (192) до 11011111 (223). В сети этого типа лишь один байт оставлен для идентификации узлов, поэтому к ней можно подсоединить только 254 устройства.

Число устройств, которое можно подсоединить к сети каждого из этих классов с особыми IP-адресами, обратно пропорционально числу возможных сетей этого типа. Например, сеть класса А, допуская 16 млн. хостов, оставляет только часть первого байта для идентификации сети. В результате во всем мире может существовать лишь 126 сетей класса А. Только крупные компании, подобные AT & Т, IBM, Xerox и HP, имеют такой сетевой адрес. Когда компания запрашивает IP-сеть в органе, ведающем сетями, обычно она получает сеть класса С.

Если компания пожелает, чтобы больше хостов напрямую были подключены к Интернету, можно найти еще одну сеть класса С. Если для каждого хоста в сети не требуется прямого доступа к Интернету, можно использовать частный IP-адрес, и тогда применяется другая опция.

Сетевые адреса классов А, В и С оставляют свободными адреса, имеющие в первом байте значения от 224 до 255.

Агентство IANA выделяет номера сетей и публикует их перечень на странице http://www.iana.org/assignments/ipv4-adclress-space . Почти во всех странах есть региональные регистрационные ведомства, выдающие по запросам номера сетей. Региональные ведомства получают диапазон сетей от IANA.

Чтобы избежать исчерпания IP-адресов, хосты, не соединенные напрямую с Интернетом, могут использовать адреса из диапазонов частных адресов. Частные адреса уникальны не глобально, а только локально, внутри сети. Во всех классах сетей резервируются определенные диапазоны, которые могут использоваться как частные адреса хостами, не требующими непосредственного двустороннего доступа к Интернету. Такие хосты вполне могут обращаться к Интернету через шлюз, который не посылает во внешнюю сеть частный IP-адрес.

Подсети

Для соединения двух узлов в разных сетях требуется маршрутизатор. Номер хоста определяется 24 битами IP-адреса класса А, в то время как для сети класса С доступно лишь 8 битов. Маршрутизатор разделяет номер хоста на номер подсети и номер хоста в подсети. Включение дополнительных маршрутизаторов сократит объемы широковещательной передачи в сети, а это может сократить нагрузку в сети.

Новые маршрутизаторы главным образом включаются, чтобы улучшить возможность соединения между группами компьютеров в разных зданиях, городах и т. д. Рассмотрим пример разделения сети класса С с адресом 194.180.44 на подсети.

Такая сеть может фильтровать адреса с помощью маски подсети (subnet mask) 255.255.255.224. Первые три байта (состоящие из всех единиц) представляют собой маску для сети класса С. Последний байт - это десятичное значение двоичного представления 11100000, в котором первые три бита адреса хоста указывают подсеть, а последние пять битов представляют адрес хоста в конкретной подсети. Три бита подсети представляют 128, 64 и 32, и, таким образом, поддерживаются адреса подсетей, показанные ниже:

IPv6

Протокол, предшествовавший Internet Protocol, был разработан Управлением перспективных исследовательских работ Министерства обороны США (DARPA) в 1960-х годах, а набор протоколов TCP/IP получил признание лишь в 1980 г. Поскольку IP базировался на существовавших сетевых протоколах DARPA, он получил номер версии 4 и теперь известен как IPv4. В те времена, когда человечество в большинстве своем представляло себе мобильный телефон как трубку, которую можно снимать со стены и переносить к дивану, число хостов, поддерживаемых IP, казалось более чем достаточным.

Однако сегодня все хотят подключить к Интернету холодильники и газонокосилки, и IETF разработало новую версию IP - IPv6. Наиболее важное изменение этой версии по сравнению с IPv4 заключается в использовании для адресации не 32, а 128 битов, что позволит всем Tablet PC, Pocket PC, мобильным телефонам, телевизорам, автомобилям, газонокосилкам, кофеваркам и мусорным контейнерам стать полноправными хостами Интернета. :)

Кроме возможности назначить адрес почти каждому атому в Солнечной системе, в IPv6 появляется еще несколько полезных изменений:

    Возможности расширенной адресации . Чтобы определить диапазон адресов групповой рассылки, в адреса IPv6 может включаться маршрутная информация о группах. Кроме того, появляется альтернативный адрес для отправки сообщения любому хосту или любой группе хостов.

    Упрощение формата заголовка . Некоторые поля заголовка IPv4 удаляются, другие становятся необязательными. Однако полная длина заголовка IPv6 больше, чем в IPv4 из-за 128-битных адресов источника и назначения.

    Улучшенная поддержка расширяемости . В будущем добавлять расширения к протоколу IPv6 станет легче. Ограничения на длину для опций удалено.

    Маркирование потока . Для конкретных потоков трафика добавляется новая возможность. Поток - это последовательность пакетов, перемещающаяся от источника к назначению. В новом протоколе приложения могут предлагать аудио- и видеовозможности в реальном времени по различным потокам. Каждый поток может запрашивать обработку в реальном времени или особо качественную обработку у маршрутизаторов, через которые он распространяется.

    Аутентификация и секретность . Добавляются расширения IPv6, поддерживающие аутентификацию, секретность и конфиденциальность отправляемых данных.

Номера портов

Для идентификации узлов сети протокол IP использует IP-адреса, а транспортный уровень (уровень 4) использует конечные точки для идентификации приложения. Чтобы указать конечную точку приложения, протоколы TCP и UDP вместе с IP-адресом используют номер порта.

Сервер должен предоставить известную конечную точку, с которой мог бы соединиться клиент, хотя номер порта может создаваться для клиента динамически. Номера портов TCP и UDP имеют длину 16 битов, их можно подразделить на три категории:

    Системные (известные) номера портов

    Пользовательские (зарегистрированные) номера портов

    Динамические, или частные, порты

Системные номера портов находятся в диапазоне от 0 до 1023. Эти номера должны использоваться только системными, привилегированными процессами. Широко известные протоколы пользуются номерами портов, установленными по умолчанию из этого диапазона.

Пользовательские номера портов находятся в диапазоне от 1024 до 49151. Ваше серверное приложение обычно будет занимать один из этих портов, и вы, если захотите сделать его известным сообществу пользователей Интернета, сможете зарегистрировать номер порта в IANA.

Динамические номера портов принимают значения из диапазона от 49 152 до 65 535. Если не требуется знать номер порта до запуска приложения, подойдет порт в этом диапазоне. Клиентские приложения, которые соединяются с серверами, могут использовать такой порт.

Запустив утилиту netstat с опцией -а, мы увидим перечень всех используемых в данный момент портов и указание о состоянии соединения - находится ли соединение в состоянии прослушивания или соединение уже было установлено:

В файле services из каталога \system32\drivers\etc перечислены многие предопределенные пользовательские и системные номера портов. Если порт содержится в перечне этого файла, то утилита netstat вместо номера порта отобразит имя протокола.

В этой статье будут рассказаны основы модели TCP/IP. Для лучшего понимания описаны основные протоколы и службы. Главное - не торопиться и стараться понимать каждую вещь поэтапно. Все они взаимосвязаны и без понимания одной, трудно будет понять другую. Здесь скомпонована весьма поверхностная информация, так что эту статью смело можно назвать «стеком протоколов TCP/IP для чайников». Однако, многие вещи здесь не так трудны для понимания, как может показаться на первый взгляд.

TCP/IP

Стек TCP/IP - сетевая модель передачи данных в сети, она определяет порядок взаимодействия устройств. Данные поступают на канальный уровень и обрабатываются поочередно каждым уровнем выше. Стек представлен в виде абстракции, которая объясняет принципы обработки и приема данных.

Стек протоколов сети TCP/IP имеет 4 уровня:

  1. Канальный (Link).
  2. Сетевой (Internet).
  3. Транспортный (Transport).
  4. Прикладной (Application).

Прикладной уровень

Прикладной уровень обеспечивает возможность взаимодействия между приложением и другими уровнями стека протоколов, анализирует и преобразовывает поступающую информацию в формат, подходящий для программного обеспечения. Является ближайшим к пользователю и взаимодействует с ним напрямую.

  • HTTP;
  • SMTP;

Каждый протокол определяет собственный порядок и принципы работы с данными.

HTTP (HyperText Transfer Protocol) предназначен для передачи данных. По нему отправляются, например, документы в формате HTML, которые служат основой веб-страницы. Упрощенно схема работы представляется как «клиент - сервер». Клиент отправляет запрос, сервер его принимает, должным образом обрабатывает и возвращает конечный результат.

Служит стандартом передачи файлов в сети. Клиент посылает запрос на некий файл, сервер ищет этот файл в своей базе и при успешном обнаружении отправляет его как ответ.

Используется для передачи электронной почты. SMTP-операция включает в себя три последовательных шага:

  1. Определение адреса отправителя. Это необходимо для возвращения писем.
  2. Определение получателя. Этот шаг может повторяться некоторое количество раз при указании нескольких адресатов.
  3. Определение содержимого сообщения и отправка. В качестве служебной информации передаются данные о типе сообщения. Если сервер подтверждает готовность принять пакет, то совершается сама транзакция.

Заголовок (Header)

В заголовке содержатся служебные данные. Важно понимать, что они предназначаются только для конкретного уровня. Это значит, что как только пакет отправится к получателю, то будет обработан там по такой же модели, но в обратном порядке. Вложенный заголовок будет нести специальную информацию, которая может быть обработана только определенным образом.

Например, заголовок, вложенный на транспортном уровне, на другой стороне может быть обработан только транспортным уровнем. Другие просто его проигнорируют.

Транспортный уровень

На транспортном уровне полученная информация обрабатывается как единый блок, вне зависимости от содержимого. Полученные сообщения делятся на сегменты, к ним добавляется заголовок, и все это отправляется ниже.

Протоколы передачи данных:

Самый распространенный протокол. Он отвечает за гарантированную передачу данных. При отправке пакетов контролируется их контрольная сумма, процесс транзакции. Это значит, что информация дойдет «в целости и сохранности» независимо от условий.

UDP (User Datagram Protocol) - второй по популярности протокол. Он также отвечает за передачу данных. Отличительное свойство кроется в его простоте. Пакеты просто отправляются, не создавая особенной связи.

TCP или UDP?

У каждого из этих протоколов есть своя область применения. Она логически обусловлена особенностями работы.

Основное преимущество UDP заключается в скорости передачи. TCP является сложным протоколом с множеством проверок, в то время как UDP представляется более упрощенным, а значит, и более быстрым.

Недостаток кроется в простоте. Ввиду отсутствия проверок не гарантируется целостность данных. Таким образом, информация просто отправляется, а все проверки и подобные манипуляции остаются за приложением.

UDP используется, например, для просмотра видео. Для видеофайла не критична потеря небольшого количества сегментов, в то время как скорость загрузки - важнейший фактор.

Однако если необходимо отправить пароли или реквизиты банковской карты, то необходимость использования TCP очевидна. Потеря даже самой мизерной части данных может повлечь за собой катастрофические последствия. Скорость в этом случае не так важна, как безопасность.

Сетевой уровень

Сетевой уровень из полученной информации образует пакеты и добавляет заголовок. Наиболее важной частью данных являются IP и MAC-адреса отправителей и получателей.

IP-адрес (Internet Protocol address) - логический адрес устройства. Содержит информацию о местоположении устройства в сети. Пример записи: .

MAC-адрес (Media Access Control address) - физический адрес устройства. Используется для идентификации. Присваивается сетевому оборудованию на этапе изготовления. Представлен как шестибайтный номер. Например: .

Сетевой уровень отвечает за:

  • Определение маршрутов доставки.
  • Передачу пакетов между сетями.
  • Присвоение уникальных адресов.

Маршрутизаторы - устройства сетевого уровня. Они прокладывают путь между компьютером и сервером на основе полученных данных.

Самый популярный протокол этого уровня - IP.

IP (Internet Protocol) - интернет-протокол, предназначенный для адресации в сети. Используется для построения маршрутов, по которым происходит обмен пакетами. Не обладает никакими средствами проверки и подтверждения целостности. Для обеспечения гарантий доставки используется TCP, который использует IP в качестве транспортного протокола. Понимание принципов этой транзакции во многом объясняет основу того, как работает стек протоколов TCP/IP.

Виды IP-адресов

В сетях используются два вида IP-адресов:

  1. Публичные.
  2. Приватные.

Публичные (Public) используются в Интернете. Главное правило - абсолютная уникальность. Пример их использования - маршрутизаторы, каждый из которых имеет свой IP-адрес для взаимодействия с сетью Интернет. Такой адрес называется публичным.

Приватные (Private) не используются в Интернете. В глобальной сети такие адреса не являются уникальными. Пример - локальная сеть. Каждому устройству присваивается уникальный в пределах данной сети IP-адрес.

Взаимодействие с сетью Интернет ведется через маршрутизатор, который, как уже было сказано выше, имеет свой публичный IP-адрес. Таким образом, все компьютеры, подключенные к маршрутизатору, представляются в сети Интернет от имени одного публичного IP-адреса.

IPv4

Самая распространенная версия интернет-протокола. Предшествует IPv6. Формат записи - четыре восьмибитных числа, разделенные точками. Через знак дроби указывается маска подсети. Длина адреса - 32 бита. В подавляющем большинстве случаев, когда речь идет об IP-адресе, имеется в виду именно IPv4.

Формат записи: .

IPv6

Эта версия предназначается для решения проблем предыдущей версией. Длина адреса - 128 бит.

Основная проблема, которую решает IPv6 - это исчерпание адресов IPv4. Предпосылки начали проявляться уже в начале 80-х годов. Несмотря на то, что эта проблема вступила в острую стадию уже в 2007-2009 годах, внедрение IPv6 очень медленно «набирает обороты».

Главное преимущество IPv6 - более быстрое интернет-соединение. Это происходит из-за того, что для этой версии протокола не требуется трансляции адресов. Выполняется простая маршрутизация. Это является менее затратным и, следовательно, доступ к интернет-ресурсам предоставляется быстрее, чем в IPv4.

Пример записи: .

Существует три типа IPv6-адресов:

  1. Unicast.
  2. Anycast.
  3. Multicast.

Unicast - тип одноадресных IPv6. При отправке пакет достигает только интерфейса, расположенного на соответствующем адресе.

Anycast относится к групповым IPv6-адресам. Отправленный пакет попадет в ближайший сетевой интерфейс. Используется только маршрутизаторами.

Multicast являются многоадресными. Это значит, что отправленный пакет достигнет всех интерфейсов, находящихся группе мультивещания. В отличие от broadcast, который является «вещанием для всех», multicast вещает лишь определенной группе.

Маска подсети

Маска подсети выявляет из IP-адреса подсеть и номер хоста.

Например, IP-адрес имеет маску . В таком случае формат записи будет выглядеть так . Число «24» - это количество бит в маске. Восемь бит равняется одному октету, который также может называться байтом.

Если подробнее, то маску подсети можно представить в двоичной системе счисления таким образом: . В ней имеется четыре октета, и запись состоит из «1» и «0». Если сложить количество единиц, то получим в сумме «24». К счастью, считать по единице не обязательно, ведь в одном октете - 8 значений. Видим, что три из них заполнены единицами, складываем и получаем «24».

Если говорить именно о маске подсети, то в двоичном представлении она имеет в одном октете либо единицы, либо нули. При этом последовательность такова, что сначала идут байты с единицами, а только потом с нулями.

Рассмотрим небольшой пример. Есть IP-адрес и маска подсети . Считаем и записываем: . Теперь сопоставляем маску с IP-адресом. Те октеты маски, в которых все значения равны единице (255) оставляют соответствующие им октеты в IP-адресе без изменения. Если же в значении нули (0), то октеты в IP-адресе также становятся нулями. Таким образом, в значении адреса подсети получаем .

Подсеть и хост

Подсеть отвечает за логическое разделение. По сути, это устройства, использующие одну локальную сеть. Определяется диапазоном IP-адресов.

Хост - это адрес сетевого интерфейса (сетевой карты). Определяется из IP-адреса с помощью маски. Например: . Так как первые три октета - подсеть, то остается . Это и есть номер хоста.

Диапазон адресов хоста - от 0 до 255. Хост под номером «0» является, собственно, адресом самой подсети. А хост под номером «255» является широковещательным.

Адресация

Для адресации в стеке протоколов TCP/IP используются три типа адресов:

  1. Локальные.
  2. Сетевые.
  3. Доменные имена.

Локальными называются MAC-адреса. Они используются для адресации в таких технологиях локальной сети как, например, Ethernet. В контексте TCP/IP слово «локальные» означает, что они действуют лишь в пределах подсети.

Сетевым адресом в стеке протоколов TCP/IP является IP-адрес. При отправке файла из его заголовка считывается адрес получателя. С его помощью маршрутизатор узнает номер хоста и подсеть и, основываясь на этой информации, прокладывает маршрут к конечному узлу.

Доменные имена - это удобочитаемые адреса веб-сайтов в Интернете. Веб-сервера в сети Интернет доступны по публичному IP-адресу. Он успешно обрабатывается компьютерами, однако для людей представляется слишком неудобным. Для того чтобы избежать подобных сложностей, используются доменные имена, которые состоят из областей, называемых «доменами». Они располагаются в порядке строгой иерархии, от верхнего уровня к нижнему.

Домен первого уровня представляет конкретную информацию. Общие (.org, .net) не ограничены какими-либо строгими границами. Обратная ситуация - с локальными (.us, .ru). Они, как правило, привязаны территориально.

Домены низших уровней - это все остальное. Он может быть любого размера и содержать любое количество значений.

Например, "www.test.quiz.sg" - корректное доменное имя, где «sg» - локальный домен первого (верхнего) уровня, «quiz.sg» - домен второго уровня, «test.quiz.sg» - домен третьего уровня. Доменные имена также могут называться DNS-именами.

DNS (Domain Name System) устанавливает соответствие между доменными именами и публичным IP-адресом. При наборе доменного имени в строке браузера DNS обнаружит соответствующий IP-адрес и сообщит устройству. Устройство обработает этот и вернет его в виде веб-страницы.

Канальный уровень

На канальном уровне определяется взаимосвязь между устройством и физической средой передачи, добавляется заголовок. Отвечает за кодировку данных и подготовку фреймов для передачи по физической среде. На этом уровне работают сетевые коммутаторы.

Самые распространенные протоколы:

  1. Ethernet.
  2. WLAN.

Ethernet - наиболее распространенная технология проводных локальных сетей.

WLAN - локальная сеть на основе беспроводных технологий. Взаимодействие устройств происходит без физических кабельных соединений. Пример самого распространенного метода - Wi-Fi.

Настройка TCP/IP для использования статического IPv4-адреса

Статический IPv4-адрес назначается напрямую в настройках устройства или автоматически при подключении к сети и является постоянным.

Для настройки стека протоколов TCP/IP на использование постоянного IPv4-адреса необходимо ввести в консоль команду ipconfig/all и найти следующие данные.

Настройка TCP/IP для использования динамического IPv4-адреса

Динамический IPv4-адрес используется какое-то время, сдается в аренду, после чего меняется. Присваивается устройству автоматически при подключении к сети.

Чтобы настроить стек протоколов TCP/IP на использование непостоянного IP-адреса необходимо зайти в свойства нужного соединения, открыть свойства IPv4 и поставить отметки так, как указано.

Способы передачи данных

Данные передаются через физическую среду тремя способами:

  • Simplex.
  • Half-duplex.
  • Full Duplex.

Simplex - это односторонняя связь. Передача ведется только одним устройством, в то время как другое только принимает сигнал. Можно сказать, что информация транслируется только в одном направлении.

Примеры симплексной связи:

  • Телевещание.
  • Сигнал от спутников GPS.

Half-duplex - это двусторонняя связь. Однако только один узел может передавать сигнал в определенный момент времени. При такой связи два устройства не могут одновременно использовать один канал. Полноценная двусторонняя связь может быть невозможна физически или приводить к коллизиям. Говорится, что они конфликтуют за среду передачи. Этот режим применяется при использовании коаксиального кабеля.

Пример полудуплексной связи - общение по рации на одной частоте.

Full Duplex - полноценная двусторонняя связь. Устройства могут одновременно транслировать сигнал и производить прием. Они не конфликтуют за среду передачи. Этот режим применяется при использовании технологии Fast Ethernet и соединении с помощью витой пары.

Пример - общение по телефону через мобильную сеть.

TCP/IP vs OSI

Модель OSI определяет принципы передачи данных. Уровни стека протоколов TCP/IP прямо соответствуют этой модели. В отличие от четырехуровневого TCP/IP имеет 7 уровней:

  1. Физический (Physical).
  2. Канальный (Data Link).
  3. Сетевой (Network).
  4. Транспортный (Transport).
  5. Сеансовый (Session).
  6. Представительский (Presentation).
  7. Прикладной (Application).

В данный момент не стоит сильно углубляться в эту модель, но необходимо хотя бы поверхностное понимание.

Прикладной уровень в модели TCP/IP соответствует трем верхним уровням OSI. Все они работают с приложениями, поэтому можно отчетливо проследить логику такого объединения. Такая обобщенная структура стека протоколов TCP/IP способствует облегченному пониманию абстракции.

Транспортный уровень остается без изменений. Выполняет одинаковые функции.

Сетевой уровень также не изменен. Выполняет ровно те же задачи.

Канальный уровень в TCP/IP соответствует двум последним уровням OSI. Канальный уровень устанавливает протоколы передачи данных через физическую среду.

Физический представляет собой собственно физическую связь - электрические сигналы, коннекторы и т.п. В стеке протоколов TCP/IP было решено объединить эти два уровня в один, так как они оба работают с физической средой.