Какой стек протоколов сегодня наиболее популярен почему. Сетевые протоколы и стандарты. IP-адрес. Формат. Составляющие. Маска подсети

Транспортный уровень (Transport Layer - TL) определяет правила транспортировки пакетов по сети. Транспортный уровень наблюдает за доставкой из конца в конец индивидуальных пакетов, он не учитывает никаких зависимостей между этими пакетами (даже принадлежащими к одному сообщению). Он обрабатывает каждый пакет как если бы каждая часть принадлежала отдельному сообщению, независимо от того, так это на самом деле или нет. Протоколы транспортного уровня гарантируют, что все сообщения прибывают в конечный пункт неповрежденными и пакеты располагаются в первоначальном порядке. На транспортном уровне осуществляется контроль нарушения информации и контроль ошибок, а также управление потоком по всему тракту "источник - пункт назначения".

Транспортный уровень выполняет следующие задачи:

  • Адресация точки сервиса . Компьютеры часто выполняют несколько программ в одно и то же время. По этой причине доставка "источник - пункт назначения" означает доставку не только от одного компьютера до следующего, но также и от заданного процесса (функционирующей программы) на одном компьютере к заданному процессу (функционирующей программе) на другом. Поэтому заголовок транспортного уровня должен включать тип адреса, называемый адрес сервисной точки (или адрес порта). Сетевой уровень доставляет каждый пакет на корректный адрес компьютера; транспортный уровень доставляет полное сообщение к корректному процессу на этом компьютере.
  • Сегментация и повторная сборка . Сообщение разделено на транспортируемые сегменты, каждый сегмент содержит порядковый номер. Эти номера дают возможность транспортному уровню после достижения пункта назначения правильно повторно собрать сообщение и заменять пакеты, которые были потеряны в передаче.
  • Управление подключением . Транспортный уровень может быть ориентирован на работу без установления соединения ( connectionless transfer) или ориентирован на подключение ( connection-oriented transfer) - дейтаграммный режим. Транспортный уровень без установления соединения (по предварительно установленному виртуальному соединению) обрабатывает каждый сегмент как независимый пакет и поставляет его транспортному уровню в машине пункта назначения. Ориентированный на подключение транспортный уровень сначала перед поставкой пакетов устанавливает соединение с транспортным уровнем в компьютере пункта назначения. После того как все данные переданы, подключение заканчивается.

    В режиме, не ориентированном на соединение, транспортный уровень используется для передачи одиночных дейтаграмм, не гарантируя их надежную доставку. Режим, ориентированный на соединение, применяется для надежной доставки данных.

  • Управление потоком . Подобно уровню звена передачи данных, транспортный уровень несет ответственность за управление потоком. Однако управление потоком на этом уровне выполняется от "конца концу".
  • Контроль ошибок . Подобно уровню звена передачи данных, транспортный уровень несет ответственность за контроль ошибок. Транспортный уровень передачи удостоверяется, что полное сообщение достигло транспортного уровня приема без ошибки (повреждения, потери или дублирования). Исправление ошибки обычно происходит с помощью повторной передачи.

Уровень сеанса (Session Layer SL) - сетевой контроллер диалога. Он устанавливает, поддерживает и синхронизирует взаимодействие между связывающимися системами.

При помощи сеансового уровня ( Session Layer ) организуется диалог между сторонами, фиксируется, какая из сторон является инициатором, какая из сторон активна и каким образом завершается диалог.

Задачи сеансового уровня следующие:

  • Управление диалогом . Сеансовый уровень дает возможность двум системам вступать в диалог. Он позволяет обмен сообщениями между двумя процессами. При этом возможны режимы: либо полудуплексный (один путь одновременно), либо дуплексный (два пути одновременно). Например, диалог между терминалом и универсальной ЭВМ может быть полудуплексным.
  • Синхронизация . Сеансовый уровень позволяет процессу добавлять контрольные точки (точки синхронизации) в поток данных. Например, если система посылает файл из 2 000 страниц, желательно вставить контрольные точки после каждых 100 страниц, чтобы гарантировать, что каждый модуль со 100 страницами получен и опознается независимо. В этом случае, если случается нарушение в течение передачи страницы 523, единственная страница, которую требуется и которая будет снова послана после системного восстановления - страница 501 (первая страница пятой сотни)

Уровень представления (Presentation Layer) занимается формой предоставления информации нижележащим уровням, например, перекодировкой или шифрованием информации.

Задачи уровня представления следующие:

  • Перекодировка информации . Процессы (функционирующие программы) в двух системах обычно меняют информацию в форме символьных строк, чисел и так далее. Информация, прежде чем быть переданной, должна быть изменена на потоки бит. Поскольку различные компьютеры используют различные системы кодирования, уровень представления несет ответственность за способность к взаимодействию между этими различными методами кодирования. Уровень представления в передатчике изменяет информацию от формы, зависящей от передатчика, в общую форму. Уровень представления в компьютере приема заменяет общий формат в формат его приемника.
  • Шифрование . Чтобы доставлять конфиденциальную информацию, система должна обеспечить секретность. Шифрование означает, что передатчик преобразовывает первоначальную информацию к другой форме и посылает результирующее сообщение по сети. Расшифровка должна быть полностью противоположна первоначальному процессу, чтобы преобразовать сообщение назад к его первоначальной форме.
  • Сжатие . Сжатие данных уменьшает число битов, содержавшихся в информации. Сжатие данных становится особенно важным в передаче мультимедиа, таких как текст, аудио и видео.

Прикладной уровень (Application Layer - AL) - это набор протоколов, которыми обмениваются удаленные узлы, реализующие одну и ту же задачу (программу). Прикладной уровень дает возможность пользователю (человеку либо программному обеспечению) обращаться к сети. Он обеспечивает интерфейсы пользователя и поддержку услуг - электронной почты, удаленного доступа и перевода средств, общедоступного управления базы данных и других типов распределенных информационных служб.

Примеры услуг, оказываемых прикладным уровнем:

  • Сетевой виртуальный терминал . Сетевой виртуальный терминал - программная версия физического терминала, он позволяет пользователю войти в удаленный хост. Чтобы сделать это, приложение создает программную имитацию терминала в удаленном хосте. Компьютер пользователя общается с программным терминалом, который, в свою очередь, общается с хостом, и наоборот. Удаленный хост определяет эту связь как связь с одним из его собственных терминалов и позволяет вход.
  • Передача файлов, доступ и управление . Это приложение позволяет пользователю обращаться к файлам в удаленном хосте, чтобы изменять или читать данные, извлекать файлы из удаленного компьютера для использования в местном компьютере и администрировать или управлять файлами на удаленном компьютере.
  • Услуги почты . Это приложение обеспечивает базу для передачи и хранения электронной почты.
  • Услуги каталога . Это приложение обеспечивает распределенные источники базы данных и доступ к глобальной информации о различных объектах и услугах.

Стек протоколов Интернета

Стек протоколов сети Интернет2 был разработан до модели OSI . Поэтому уровни в стеке протоколов Интернета не соответствуют аналогичным уровням в модели OSI . Стек протоколов Интернета состоит из пяти уровней: физического, звена передачи данных, сети, транспортного и прикладного. Первые четыре уровня обеспечивают физические стандарты, сетевой интерфейс , межсетевое взаимодействие и транспортные функции, которые соответствуют первым четырем уровням модели OSI . Три самых верхних уровня в модели OSI представлены в стеке протоколов Интернета единственным уровнем, называемым прикладным уровнем рис. 1.3.


Рис. 1.3.

ARP Address Resolution Protocol Протокол нахождения адреса
ATM Asynchronous Transfer Mode Режим асинхронной передачи
BGP Border Gateway Protocol Протокол пограничной маршрутизации
DNS Domain Name System Система доменных имен
Ethernet Ethernet Network Сеть Ethernet
FDDI Fiber Distributed Data Interface Волоконно-оптический распределенный интерфейс данных
HTTP Hyper Text Transfer Protocol Протокол передачи гипертекста
FTP File transfer Protocol Протокол передачи файлов
ICMP Internet Control Message Protocol Протокол управляющих сообщений
IGMP Internet Group Management Protocol Протокол управления группами (пользователей) в Интернете
IP Internet Protocol Межсетевой протокол
NFS Network File System Протокол сетевого доступа к файловым системам
OSPF Open Shortest Path First Открытый протокол предпочтения кратчайшего канала
PDH Plesiochronous Digital Hierarchy Плезиохронная цифровая иерархия
PPP Point-to- Point Protocol Протокол связи "точка-точка"

Интернет – глобальная система взаимосвязанных компьютерных, локальных и других сетей, которые взаимодействуют друг с другом посредством стека протоколов TCP/IP (рис. 1.).

Рисунок 1 – Обобщенная схема сети Интернет

Интернет обеспечивает обмен информацией между всеми компьютерами, подключенными к нему. Тип компьютера и используемая им операционная система значения не имеют.

Основные ячейки Интернета – локальные вычислительные сети (LAN – Local Area network). Если некоторая локальная сеть непосредственно подключена к Интернету, то каждая рабочая станция этой сети также может подключаться к нему. Существуют также компьютеры, самостоятельно подключенные к Интернету. Они называются хост-компьютерами (host – хозяин).

Каждый подключенный к сети компьютер имеет свой адрес, по которому его может найти абонент из любой точки света.

Важной особенностью сети Интернет является то, что она, объединяя различные сети, не создает при этом никакой иерархии - все компьютеры, подключенные к сети, равноправны.

Еще одной отличительной особенностью Интернета является высокая надежность. При выходе из строя части компьютеров и линий связи сеть будет продолжать функционировать. Такая надежность обеспечивается тем, что в Интернете нет единого центра управления. Если выходят из строя некоторые линии связи или компьютеры, то сообщения могут быть переданы по другим линиям связи, так как всегда имеется несколько путей передачи информации.

Интернет не является коммерческой организацией и никому не принадлежит. Пользователи Интернета имеются практически во всех странах мира.

Пользователи подключаются к сети через компьютеры специальных организаций, которые называются поставщиками услуг Интернета. Соединение с Интернетом может быть постоянным или временным. Поставщики услуг Интернета имеют множество линий для подключения пользователей и высокоскоростные линии для связи с остальной частью Интернета. Часто мелкие поставщики подключены к более крупным, которые, в свою очередь, подключены к другим поставщикам.

Организации, соединенные друг с другом самыми скоростными линиями связи, образуют базовую часть сети, или хребет Интернета Backbon [Бэкбон]. Если поставщик подключен непосредственно к хребту, то скорость передачи информации будет максимальной.

В действительности разница между пользователями и поставщиками услуг Интернета достаточно условна. Любой человек, подключивший свой компьютер или свою локальную вычислительную сеть к Интернету и установивший необходимые программы, может предоставлять услуги подключения к сети другим пользователям. Одиночный пользователь, в принципе, может подключиться скоростной линией непосредственно к хребту Интернета.

В общем случае, Интернет осуществляет обмен информацией между любыми двумя компьютерами, подключенными к сети. Компьютеры, подключенные к Интернету, часто называютузлами Интернета, или сайтами, от английского слова site, которое переводится как место, местонахождение. Узлы, установленные у поставщиков услуг Интернета, обеспечивают доступ пользователей к Интернету. Существуют также узлы, специализирующиеся на предоставлении информации. Например, многие фирмы создают узлы в Интернете, с помощью которых они распространяют информацию о своих товарах и услугах.

Как же осуществляется передача информации? В Интернете используются два основных понятия: адрес и протокол . Свой уникальный адрес имеет любой компьютер, подключенный к Интернету. Так же, как почтовый адрес однозначно определяет местонахождение человека, адрес в Интернете однозначно определяет местонахождение компьютера в сети. Адреса в Интернете являются важнейшей его частью, и ниже о них будет подробно рассказано.

Данные, пересылаемые с одного компьютера на другой с использованием Интернета, разбивается на пакеты. Они перемещаются между компьютерами, составляющими узлы сети. Пакеты одного сообщения могут пройти разными маршрутами. Каждый пакет имеет свою маркировку, что обеспечивает правильную сборку документа на компьютере, которому адресовано сообщение.

Что такое протокол? Как ранее было сказано, протокол - это правила взаимодействия. Например, дипломатический протокол предписывает, как поступать при встрече зарубежных гостей или при проведении приема. Так же сетевой протокол предписывает правила работы компьютерам, которые подключены к сети. Стандартные протоколы заставляют разные компьютеры "говорить на одном языке". Таким образом осуществляется возможность подключения к Интернету разнотипных компьютеров, работающих под управлением различных операционных систем.

Базовыми протоколами Интернета является стек протоколов TCP/IP. Прежде всего требуется уточнить, что, в техническом понимании TCP/IP - это не один сетевой протокол, а два протокола, лежащих на разных уровнях сетевой модели (это так называемый стек протоколов). Протокол TCP - протокол транспортного уровня. Он управляет тем, как происходит передача данных. Протокол IP - адресный. Он принадлежит сетевому уровню и определяет, куда происходит передача.

Протокол TCP. Согласно Протоколу TCP, отправляемые данные «нарезаются» на небольшие пакеты, после чего каждый пакет маркируется таким образом, чтобы в нем были данные, необходимые для правильной сборки документа на компьютере получателя.

Для понимания сути протокола TCP можно представить игру в шахматы по переписке, когда двое участников разыгрывают одновременно десяток партий. Каждый ход записывается на отдельной открытке с указанием номера партии и номера хода. В этом случае между двумя партнерами через один и тот же почтовый канал работает как бы десяток соединений (по одному на партию). Два компьютера, связанные между собой одним физическим соединением, могут точно так же поддерживать одновременно несколько TCP-соединений. Так, например, два промежуточных сетевых сервера могут одновременно по одной линии связи передавать друг другу в обе стороны множество ТСР-пакетов от многочисленных клиентов.

Когда мы работаем в Интернете, то по одной единственной телефонной линии можем одновременно принимать документы из Америки, Австралии и Европы. Пакеты каждого из документов поступают порознь, с разделением во времени, и по мере поступления собираются в разные документы.

Протокол IP. Теперь рассмотрим адресный протокол - IP (Internet Protocol). Его суть состоит в том, что у каждого участника Всемирной сети должен быть свой уникальный адрес (IP-адрес). Без этого нельзя говорить о точной доставке ТСР-пакетов на нужное рабочее место. Этот адрес выражается очень просто - четырьмя числами, например: 195.38.46.11. Структуру IP-адреса мы подробнее рассмотрим позже. Она организована так, что каждый компьютер, через который проходит какой-либо TCP-пакет, может по этим четырем числам определить, кому из ближайших «соседей» надо переслать пакет, чтобы он оказался «ближе» к получателю. В результате конечного числа перебросок ТСР-пакет достигает адресата.

Слово «ближе» взято в кавычки не случайно. В данном случае оценивается не географическая «близость». В расчет принимаются условия связи и пропускная способность линии. Два компьютера, находящиеся на разных континентах, но связанные высокопроизводительной линией космической связи, считаются более «близкими» друг к другу, чем два компьютера из соседних поселков, связанные простым телефонным проводом. Решением вопросов, что считать «ближе», а что «дальше», занимаются специальные средства - маршрутизаторы. Роль маршрутизаторов в сети обычно выполняют специализированные компьютеры, но это могут быть и специальные программы, работающие на узловых серверах сети.

Стек протоколов TCP/IP

Стек протоколов TCP/IP - набор сетевых протоколов передачи данных, используемых в сетях, включая сеть Интернет. Название TCP/IP происходит из двух наиважнейших протоколов семейства - Transmission Control Protocol (TCP) и Internet Protocol (IP), которые были разработаны и описаны первыми в данном стандарте.

Протоколы работают друг с другом в стеке (англ. stack , стопка) - это означает, что протокол, располагающийся на уровне выше, работает «поверх» нижнего, используя механизмы инкапсуляции. Например, протокол TCP работает поверх протокола IP.

Стек протоколов TCP/IP включает в себя четыре уровня:

  • прикладной уровень (application layer),
  • транспортный уровень (transport layer),
  • сетевой уровень (internet layer),
  • канальный уровень (link layer).

Протоколы этих уровней полностью реализуют функциональные возможности модели OSI (таблица 1). На стеке протоколов TCP/IP построено всё взаимодействие пользователей в IP-сетях. Стек является независимым от физической среды передачи данных.

Таблица 1 – Сравнение стека протоколов TCP/IP и эталонной модели OSI

Прикладной уровень

На прикладном уровне (Application layer) работает большинство сетевых приложений.

Эти программы имеют свои собственные протоколы обмена информацией, например, HTTP для WWW, FTP (передача файлов), SMTP (электронная почта), SSH (безопасное соединение с удалённой машиной), DNS (преобразование символьных имён в IP-адреса) и многие другие.

В массе своей эти протоколы работают поверх TCP или UDP и привязаны к определённому порту, например:

  • HTTP на TCP-порт 80 или 8080,
  • FTP на TCP-порт 20 (для передачи данных) и 21 (для управляющих команд),
  • запросы DNS на порт UDP (реже TCP) 53,

Транспортный уровень

Протоколы транспортного уровня (Transport layer) могут решать проблему негарантированной доставки сообщений («дошло ли сообщение до адресата?»), а также гарантировать правильную последовательность прихода данных. В стеке TCP/IP транспортные протоколы определяют, для какого именно приложения предназначены эти данные.

Протоколы автоматической маршрутизации, логически представленные на этом уровне (поскольку работают поверх IP), на самом деле являются частью протоколов сетевого уровня; например OSPF (IP идентификатор 89).

TCP (IP идентификатор 6) - «гарантированный» транспортный механизм с предварительным установлением соединения, предоставляющий приложению надёжный поток данных, дающий уверенность в безошибочности получаемых данных, перезапрашивающий данные в случае потери и устраняющий дублирование данных. TCP позволяет регулировать нагрузку на сеть, а также уменьшать время ожидания данных при передаче на большие расстояния. Более того, TCP гарантирует, что полученные данные были отправлены точно в такой же последовательности. В этом его главное отличие от UDP.

UDP (IP идентификатор 17) протокол передачи датаграмм без установления соединения. Также его называют протоколом «ненадёжной» передачи, в смысле невозможности удостовериться в доставке сообщения адресату, а также возможного перемешивания пакетов. В приложениях, требующих гарантированной передачи данных, используется протокол TCP.

UDP обычно используется в таких приложениях, как потоковое видео и компьютерные игры, где допускается потеря пакетов, а повторный запрос затруднён или не оправдан, либо в приложениях вида запрос-ответ (например, запросы к DNS), где создание соединения занимает больше ресурсов, чем повторная отправка.

И TCP, и UDP используют для определения протокола верхнего уровня число, называемое портом.

Сетевой уровень

Сетевой уровень (Internet layer) изначально разработан для передачи данных из одной (под)сети в другую. С развитием концепции глобальной сети в уровень были внесены дополнительные возможности по передаче из любой сети в любую сеть, независимо от протоколов нижнего уровня, а также возможность запрашивать данные от удалённой стороны, например в протоколе ICMP (используется для передачи диагностической информации IP-соединения) и IGMP (используется для управления multicast-потоками).

ICMP и IGMP расположены над IP и должны попасть на следующий - транспортный - уровень, но функционально являются протоколами сетевого уровня, и поэтому их невозможно вписать в модель OSI.

Пакеты сетевого протокола IP могут содержать код, указывающий, какой именно протокол следующего уровня нужно использовать, чтобы извлечь данные из пакета. Это число - уникальный IP-номер протокола . ICMP и IGMP имеют номера, соответственно, 1 и 2.

Канальный уровень

Канальный уровень (Link layer) описывает, каким образом передаются пакеты данных через физический уровень, включая кодирование (то есть специальные последовательности бит, определяющих начало и конец пакета данных). Ethernet, например, в полях заголовка пакета содержит указание того, какой машине или машинам в сети предназначен этот пакет.

Примеры протоколов канального уровня - Ethernet, Wi-Fi, Frame Relay, Token Ring, ATM и др.

Канальный уровень иногда разделяют на 2 подуровня - LLC и MAC.

Кроме того, канальный уровень описывает среду передачи данных (будь то коаксиальный кабель, витая пара, оптическое волокно или радиоканал), физические характеристики такой среды и принцип передачи данных (разделение каналов, модуляцию, амплитуду сигналов, частоту сигналов, способ синхронизации передачи, время ожидания ответа и максимальное расстояние).

Инкапсуляция

Инкапсуляция – упаковка, или вложение, пакетов высокого уровня (возможно, разного протокола) в пакеты одного протокола (нижнего уровня), включая адрес.

Например, когда приложению требуется послать сообщение с помощью TCP, то производится следующая последовательность действий (рис. 2):

Рисунок 2 – Процесс инкапсуляции

  • в первую очередь, приложение заполняет специальную структуру данных, в которой указывает информацию о получателе (сетевой протокол, IP-адрес, порт TCP);
  • передаёт сообщение, его длину и структуру с информацией о получателе обработчику протокола TCP (транспортный уровень);
  • обработчик TCP формирует сегмент, в котором в качестве данных выступает сообщение, а в заголовках находится TCP-порт получателя (а также другие данные);
  • обработчик TCP передаёт сформированный сегмент обработчику IP (сетевой уровень);
  • обработчик IP рассматривает переданный TCP сегмент как данные и предваряет их своим заголовком (в котором, в частности, находится IP-адрес получателя, взятый из той же структуры данных приложения, и номер верхнего протокола;
  • полученный пакет обработчик IP передаёт на канальный уровень, который опять-таки рассматривает данный пакет как «сырые» данные;
  • обработчик канального уровня, аналогично предыдущим обработчикам, добавляет в начало свой заголовок (в котором так же указывается номер протокола верхнего уровня, в нашем случае это 0x0800(IP)) и, в большинстве случаев, добавляет конечную контрольную сумму, тем самым формируя кадр;
  • далее полученный кадр передаётся на физический уровень, который осуществляет преобразование битов в электрические или оптические сигналы и посылает их в среду передачи.

На стороне получателя для распаковки данных и предоставления их приложению производится обратный процесс (снизу вверх), называемый декапсуляцией.

Похожая информация:



2015-2020 lektsii.org -

Стёком протоколов, или в просторечье TCP/IP называют сетевую архитектуру современных устройств, разработаных для пользования сетью. Stack - это стенка, в которой каждый составляющий кирпичик лежит поверх другого, зависит от него. Называть стек протоколов "стёком TCP/IP" начали благодаря двум основным протоколам, которые были реализованы - непосредственно IP, и TCP на его основе. Однако, они лишь основные и наиболее распостраненные. Если не сотни, то десятки других используются по сей день в разных целях.

Привычный нам веб (world wide web) основан на протоколе HTTP (hyper-text transfer protocol), который в своб очередь работает на основе TCP. Это классический пример использования стека протоколов. Есть еще протоколы электронной почты IMAP/POP и SMTP, протоколы удаленной оболочки SSH, удаленного рабочего стола RDP, баз данных MySQL, SSL/TLS, и тысячи других приложений со своими протоколами (..)

Чем же отличаются все эти протоколы? Все довольно просто. Помимо различных задач, поставленных при разработке (например, скорость, безопасность, устойчивость и прочие критерии), протоколы созданы с целью разграничения. Например, существуют протоколы прикладного уровня, разные у разных приложений: IRC, Skype, ICQ, Telegram и Jabber - несовместимы друг с другом. Они разработаны для выполнения конкретной задачи, и в данном случае возможность звонить по WhatsApp в ICQ просто не определена технически, так как приложения используют различный протокол. Но их протоколы основываются на одном и том же протоколе IP.

Протоколом можно называть запланированную, штатную последовательность действий в процессе, в котором существует несколько субъектов, в сети они называются пирами (напарниками), реже - клиент и сервер, подчеркивая особенности конкретного протокола. Простейший пример протокола для непонимающего до сих пор - рукопожатие при встрече. Оба знают как и когда, но вопрос зачем - это уже вопрос разработчиков, а не пользователей протокола. Кстати, рукопожатие (handshake) есть почти по всех протоколах, например, для обеспечения разграничения протоколов и защиты от "полетов не на том самолете".

Вот что такое TCP/IP на примере самых популярных протоколов. Здесь показана иерархия зависимости. Надо сказать что приложения лишь пользуются указанными протоколами, которые могут быть а могут и не быть реализованы внутри ОС.

Если уж совсем-совсем простым языком, это почтовая служба.

У каждого участника IP-совместимой сети есть свой собственный адрес, который выглядит примерно так: 162.123.058.209. Всего таких адресов для протокола IPv4 - 4,22 миллиарда.

Предположим, что один компьютер хочет связаться с другим и отправить ему посылку - "пакет". Он обратится к "почтовой службе" TCP/IP и отдаст ей свою посылку, указав адрес, по которому ее необходимо доставить. В отличие от адресов в реальном мире, одни и те же IP-адреса часто присваиваются разным компьютерам по очереди, а значит, "почтальон" не знает, где физически находится нужный компьютер, поэтому он отправляет посылку в ближайшее "почтовое отделение" - на сетевую плату компьютера. Возможно, там есть информация о том, где находится нужный компьютер, а возможно, такой информации там нет. Если ее нет, на все ближайшие "почтовые отделения" (коммутаторы) расылается запрос адреса. Этот шаг повторяется всеми "почтовыми отделениями", пока они не обнаружат нужный адрес, при этом они запоминают, сколько "почтовых отделений" до них прошел этот запрос и если он пройдет определенное (достаточно болшое) их количество, то его вернут назад с пометкой "адрес не найден". Первое "почтовое отделение" вскоре получит кучу ответов от других "отделений" с вариантами путей до адресата. Если ни одного достаточно короткого пути не найдется (обычно 64 пересылки, но не более 255), посылка вернется отправителю. Если найдется один или несколько путей, посылка будет передана по самому короткому из них, при этом "почтовые отделения" на некоторое время запомнят этот путь, позволяя быстро передавать последующие посылки, не спрашивая ни у кого адрес. После доставки, "почтальон" в обязательном порядке заставит получателя подписать "квитанцию" о том, что он получил посылку и отдаст эту "квитанцию" отправителю, как свидетельство о том, что посылка доставлена в целости - проверка доставки в TCP обязательна. Если отправитель не получит такую квитанцию через определенный промежуток времени или в квитанции будет написано, что посылка повредилась или потерялась при отправке, тогда он попытается снова отправить посылку.

TCP/IP - это набор протоколов.

Протокол - это правило. Например, когда с вами здороваются - вы здороваетесь в ответ (а не прощаетесь или нежелает счастья). Программисты скажут что мы используем протокол приветствия, например.

Что за TCP/IP (сейчас будет совсем просто, пусть коллег не бомбит):

Информация до вашего компа идет по проводам (радио или что еще - не суть важно). Если по проводам пустили ток - значит 1. Выключили - значит 0. Получается 10101010110000 и так далее. 8 ноликов и единиц (битов) это байт. Например 00001111. Это можно представить как число в двоичном виде. В десятичном виде байт - это число от 0 до 255. Эти числа сопоставляет с буквами. Например 0 это А, 1 это Б. (Это называется кодировка).

Ну так вот. Чтобы два компьютера могли эффективно передавать информацию по проводам - они должны подавать ток по каким то правилам - протоколам. Например, они должны условиться как часто можно менять ток, чтобы можно было отличить 0 от второго 0.

Это первый протокол.

Компьютерам как то понимать, что один из них перестал отдавать информацию (типа "я все сказал"). Для этого в начале последовательности данных 010100101 компьютеры могут слать несколько бит, длинну сообщения, которое они хотят передать. Например, первые 8 бит могут означать длину сообщения. То есть сначала в первых 8 битах передают закодированное число 100 и потом 100 байт. После этого принимающий компьютер будет ожидать следующие 8 бит и следующее сообщение.

Вот у нас еще один протокол, с его помощью можно передавать сообщения (компьютерные).

Компьютеров много, чтобы они могли понять кому надо отправить сообщение используют уникальные адреса компьютеров и протокол, позволяющий понять кому это сообщение адресовано. Например первые 8 бит будут означать адрес получателя, следующие 8 - длину сообщения. И потом сообщение. Мы только что засунули один протокол в другой. IP протокол отвечает за адресацию.

Связь не всегда надежная. Для надежной доставки сообщений (компьютерных) используют TCP. При выполнении протокола TCP компьютеры будут переспрашивает друг друга - правильное ли они сообщение получили. Есть еще UDP - это когда компы не переспрашивают то ли они получили. Зачем надо? Вот вы слушаете интернет радио. Если пару байт придет с ошибками - вы услышите например "пш" и дальше снова музыку. Не смертельно, да и не особо важно - для этого используют UDP. А вот если пару байт испортятся при загрузку сайта - вы получите хрень на мониторе и ничего не поймёте. Для сайтом используют TCP.

TCP/IP еще (UDP/IP) - это протоколы, вложенные друг в друга, на которых работает интернет. В конце концов эти протоколы позволяют передать компьютерное сообщение целым и точно по адресу.

Еще есть http протокол. Первая строчка - адрес сайта, последующие строчки - текст который вы шлете на сайт. Все строчки http - это текст. Который засовывают в TCP сообщение, которое адресуют с помощью IP и так далее.

Ответить

Стек NetBIOS/SMB

Фирмы Microsoft и IBM совместно работали над сетевыми средствами для персональных компьютеров, поэтому стек протоколов NetBIOS/SMB является их совместным детищем. Средства NetBIOS появились в 1984 году как сетевое расширение стандартных функций базовой системы ввода/вывода (BIOS) IBM PC для сетевой программы PC Network фирмы IBM, которая на прикладном уровне (рис. 3) использовала для реализации сетевых сервисов протокол SMB.

Рис. 3. Стек NetBIOS/SMB

Протокол NetBIOS работает на трех уровнях модели взаимодействия открытых систем: сетевом, транспортном и сеансовом . NetBIOS может обеспечить сервис более высокого уровня, чем протоколы IPX и SPX, однако не обладает способностью к маршрутизации. Таким образом, NetBIOS не является сетевым протоколом в строгом смысле этого слова. NetBIOS содержит много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням, однако с его помощью невозможна маршрутизация пакетов, так как в протоколе обмена кадрами NetBIOS не вводится такое понятие как сеть. Это ограничивает применение протокола NetBIOS локальными сетями, не разделенными на подсети. NetBIOS поддерживает как дейтаграммный обмен, так и обмен с установлением соединений.

Протокол SMB , соответствующий прикладному и представительному уровням модели OSI, регламентирует взаимодействие рабочей станции с сервером. В функции SMB входят следующие операции:

Управление сессиями. Создание и разрыв логического канала между рабочей станцией и сетевыми ресурсами файлового сервера.

Файловый доступ. Рабочая станция может обратиться к файл-серверу с запросами на создание и удаление каталогов, создание, открытие и закрытие файлов, чтение и запись в файлы, переименование и удаление файлов, поиск файлов, получение и установку файловых атрибутов, блокирование записей.

Сервис печати. Рабочая станция может ставить файлы в очередь для печати на сервере и получать информацию об очереди печати.

Сервис сообщений. SMB поддерживает простую передачу сообщений со следующими функциями: послать простое сообщение; послать широковещательное сообщение; послать начало блока сообщений; послать текст блока сообщений; послать конец блока сообщений; переслать имя пользователя; отменить пересылку; получить имя машины.

Из-за большого количества приложений, которые используют функции API, предоставляемые NetBIOS, во многих сетевых ОС эти функции реализованы в виде интерфейса к своим транспортным протоколам. В NetWare имеется программа, которая эмулирует функции NetBIOS на основе протокола IPX, существуют программные эмуляторы NetBIOS для Windows NT и стека TCP/IP.


Стек TCP/IP

Стек TCP/IP, называемый также стеком DoD и стеком Internet, является одним из наиболее популярных стеков коммуникационных протоколов. Стек был разработан по инициативе Министерства обороны США (Department of Defence, DoD) для связи экспериментальной сети ARPAnet с другими сателлитными сетями как набор общих протоколов для разнородной вычислительной среды. Сеть ARPA поддерживала разработчиков и исследователей в военных областях. В сети ARPA связь между двумя компьютерами осуществлялась с использованием протокола Internet Protocol (IP), который и по сей день является основным в стеке TCP/IP и фигурирует в названии стека.

Большой вклад в развитие стека TCP/IP внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Широкое распространение ОС UNIX привело и к широкому распространению протокола IP и других протоколов стека. На этом же стеке работает всемирная информационная сеть Internet, чье подразделение Internet Engineering Task Force (IETF) вносит основной вклад в совершенствование стандартов стека, публикуемых в форме спецификаций RFC.

Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

Структура протоколов TCP/IP приведена на рисунке 4. Протоколы TCP/IP делятся на 4 уровня.

Рис. 4. Стек TCP/IP

Самый нижний (уровень IV) - уровень межсетевых интерфейсов - соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных каналов это Ethernet, Token Ring, FDDI, для глобальных каналов - собственные протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP/PPP, которые устанавливают соединения типа "точка - точка" через последовательные каналы глобальных сетей, и протоколы территориальных сетей X.25 и ISDN. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня.

Следующий уровень (уровень III) - это уровень межсетевого взаимодействия, который занимается передачей дейтаграмм с использованием различных локальных сетей, территориальных сетей X.25, линий специальной связи и т. п. В качестве основного протокола сетевого уровня (в терминах модели OSI) в стеке используется протокол IP , который изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Протокол IP является дейтаграммным протоколом.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизатором и шлюзом, системой-источником и системой-приемником, то есть для организации обратной связи. С помощью специальных пакетов ICMP сообщается о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Следующий уровень (уровень II) называется основным. На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает устойчивое виртуальное соединение между удаленными прикладными процессами. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным методом, то есть без установления виртуального соединения, и поэтому требует меньших накладных расходов, чем TCP.

Верхний уровень (уровень I) называется прикладным. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и сервисов прикладного уровня: протокол копирования файлов FTP, протоколы удаленного управления telnet и ssh, почтовый протокол SMTP, гипертекстовые сервисы доступа к удаленной информации, такие как WWW и многие другие. Кратко остановимся на некоторых из протоколов стека, наиболее тесно связанных с тематикой данного курса.

Протокол SNMP (Simple Network Management Protocol) используется для организации сетевого управления. Проблема управления разделяется здесь на две задачи. Первая задача связана с передачей информации. Протоколы передачи управляющей информации определяют процедуру взаимодействия сервера с программой-клиентом, работающей на хосте администратора. Они определяют форматы сообщений, которыми обмениваются клиенты и серверы, а также форматы имен и адресов. Вторая задача связана с контролируемыми данными. Стандарты регламентируют, какие данные должны сохраняться и накапливаться в шлюзах, имена этих данных и синтаксис этих имен. В стандарте SNMP определена спецификация информационной базы данных управления сетью. Эта спецификация, известная как база данных MIB (Management Information Base), определяет те элементы данных, которые хост или шлюз должен сохранять, и допустимые операции над ними.

Протокол пересылки файлов FTP (File Transfer Protocol) реализует удаленный доступ к файлу. Для того, чтобы обеспечить надежную передачу, FTP использует в качестве транспорта протокол с установлением соединений - TCP. Кроме пересылки файлов протокол, FTP предлагает и другие услуги. Так пользователю предоставляется возможность интерактивной работы с удаленной машиной, например, он может распечатать содержимое ее каталогов, FTP позволяет пользователю указывать тип и формат запоминаемых данных. Наконец, FTP выполняет аутентификацию пользователей. Прежде, чем получить доступ к файлу, в соответствии с протоколом пользователи должны сообщить свое имя и пароль.

В стеке TCP/IP протокол FTP предлагает наиболее широкий набор услуг для работы с файлами, однако он является и самым сложным для программирования. Приложения, которым не требуются все возможности FTP, могут использовать другой, более экономичный протокол - простейший протокол пересылки файлов TFTP (Trivial File Transfer Protocol). Этот протокол реализует только передачу файлов, причем в качестве транспорта используется более простой, чем TCP, протокол без установления соединения - UDP.

Протокол telnet обеспечивает передачу потока байтов между процессами, а также между процессом и терминалом. Наиболее часто этот протокол используется для эмуляции терминала удаленной ЭВМ.

Стек TCP/IP был разработан по инициативе Министерства обороны США (DoD) более 20 лет назад для связи экспериментальной сети ARPANET с другими сетями как набор общих протоколов для разнородной вычислительной среды. Большой вклад в развитие стека TCP/IP, который получил свое название по популярным протоколам IP и TCP, внес университет Беркли, реализовав протоколы стека в своей версии ОС Unix. Популярность этой операционной системы привела к широкому распространению протоколов TCP, IP и других протоколов стека. Сегодня этот стек используется для связи компьютеров в Интернете, а также в огромном числе корпоративных сетей.

Поскольку стек TCP/IP изначально создавался для Интернета, он имеет много особенностей, дающих ему преимущество перед другими протоколами, когда речь заходит о построении сетей, включающих глобальные связи. В частности, очень полезным свойством, делающим возможным применение этого протокола в больших сетях, является его способность фрагментироватъ пакеты. Действительно, большая составная сеть часто состоит из сетей, построенных на совершенно разных принципах. В каждой из этих сетей может быть собственная величина максимальной длины единицы передаваемых данных (кадра). В таком случае переходе из одной сети, имеющей большую максимальную длину, в сеть с меньшей максимальной длиной может возникнуть необходимость деления передаваемого кадра на несколько частей. Протокол IP стека TCP/IP эффективно решает эту задачу.

Другой особенностью технологии TCP/IP является гибкая система адресации, позволяющая проще, чем другие протоколы аналогичного назначения включать в составную сеть сети разных технологий. Это свойство также способствует применению стека TCP/IP для построения больших гетерогенных сетей. В стеке TCP/IP очень экономно используются широковещательные рассылки. Это свойство совершенно необходимо при работе на медленных каналах связи, характерных для территориальных сетей.

Однако, как и всегда, за получаемые преимущества надо платить, и платой здесь оказываются высокие требования к ресурсам и сложность администрирования IP-сетей. Мощные функциональные возможности протоколов стека TCP/IP требуют для своей реализации больших вычислительных затрат. Гибкая система адресации и отказ от широковещательных рассылок приводят к наличию в IP-сети разнообразных централизованных служб типа DNS, DHCP и т. п. Каждая из этих служб направлена на облегчение администрирования сети, но в то же время сама требует пристального внимания со стороны администраторов.

В стеке TCP/IP определены 4 уровня.

Прикладной уровень стека TCP/IP соответствует трем верхним уровням модели OSI: прикладному, представления и сеансовому. Он объединяет службы, предо­ставляемые системой пользовательским приложениям. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и служб прикладного уровня. К ним относятся такие распространенные протоколы, как протокол передачи файлов (File Transfer Proocol, FTP), протокол эмуляции терминала (telnet), простой протокол передачи электронной почты (Simple Mail Transfer Protocol, SMTP), протокол передачи Ипертекста (HyperText Transfer Protocol, HTTP} и многие другие. Протоколы прикладного уровня развертываются на хостах.

Архитектура стека TCP/IP

Транспортный уровень стека TCP/IP может предоставлять вышележащему уровню два типа сервиса:

□ гарантированную доставку обеспечивает протокол управления передачей (Transmission Control Protocol, TCP);

□ доставку по возможности, или с максимальными усилиями, обеспечивает протокол пользовательских дейтаграмм (User Datagram Protocol, UDP).

Для того чтобы обеспечить надежную доставку данных протокол TCP предусматривает установление логического соединения, что позволяет ему нумеровать пакеты, подтверждать их прием квитанциями, в случае потери организовывать повторные передачи, распознавать и уничтожать дубликаты, доставлять прикладному уровню пакеты в том порядке, в котором они были отправлены. Этот протокол позволяет объектам на компьютере-отправителе и компьютере-получателе поддерживать обмен данными в дуплексном режиме. TCP дает возможность без ошибок доставить сформированный на одном из компьютеров поток байтов в любой другой компьютер, входящий в составную сеть. TCP делит поток байтов на фрагменты и передает их нижележащему уровню межсетевого взаимодействия. После того как эти фрагменты будут доставлены средствами уровня межсетевого взаимодействия в пункт назначения, протокол TCP снова соберет их в непрерывный поток байтов.

Второй протокол этого уровня - UDP - является простейшим дейтаграммным протоколом, который используется в том случае, когда задача надежного обмена данными либо вообще не ставится, либо решается средствами более высокого уровня - прикладным уровнем или пользовательскими приложениями.

В функции протоколов транспортного уровня TCP и UDP входит также исполнение роли связующего звена между прилегающими к ним прикладным уровнем и уровнем межсетевого взаимодействия. От прикладного протокола транспортный уровень принимает задание на передачу данных с тем или иным качеством, а после выполнения рапортует ему об этом. Нижележащий уровень межсетевого взаимодействия протоколы TCP и UDP рассматривают как своего рода инструмент, не очень надежный, но способный перемещать пакет в свободном и рискованном путешествии по составной сети.

Программные модули, реализующие протоколы TCP и UDP, подобно модулям протоколов прикладного уровня, устанавливаются на хостах.

Сетевой уровень , называемый также уровнем интернета , является стержнем всей архитектуры TCP/IP. Именно этот уровень, функции которого соответствуют сетевому уровню модели OSI, обеспечивает перемещение пакетов в пределах составной сети, образованной объединением множества сетей. Протоколы сетевого уровня поддерживают интерфейс с вышележащим транспортным уровнем, получая от него запросы на передачу данных по составной сети, а также с нижележащим уровнем сетевых интерфейсов, о функциях которого мы расскажем далее.

Основным протоколом сетевого уровня является межсетевой протокол (Internet Protocol, IP). В его задачу входит продвижение пакета между сетями - от одного маршрутизатора до другого до тех пор, пока пакет не попадет в сеть назначения. В отличие от протоколов прикладного и транспортного уровней протокол IP развертывается не только на хостах, но и на всех шлюзах. Протокол IP - это дейтаграммный протокол, работающий без установления соединений по принципу доставки с максимальными усилиями.

К сетевому уровню TCP/IP часто относят протоколы, выполняющие вспомогательные функции по отношению к IP. Это, прежде всего, протоколы маршрутизации RIP и OSPF, занимающиеся изучением топологии сети, определением маршрутов и составлением таблиц маршрутизации, на основании которых протокол IP перемещает пакеты в нужном направлении. По этой же причине к сетевому уровню могут быть отнесены еще два протокола: протокол межсетевых управляющих сообщений (Internet Control Message Protocol, ICMP), предназначенный для передачи маршрутизатором источнику информации об ошибках, возникших при передаче пакета, и протокол групповой адресации (Internet Group Management Protocol, IGMP), использующийся для направления пакета сразу по нескольким адресам.

Идеологическим отличием архитектуры стека TCP/IP от многоуровневой организации других стеков является интерпретация функций самого нижнего уровня - уровня сетевых интерфейсов .

Нижние уровни модели OSI (канальный и физический) реализуют большое количество функций доступа к среде передачи, формированию кадров и согласованию уровней электрических сигналов, кодированию и синхронизации и некоторые другие. Все эти весьма конкретные функции составляют суть таких протоколов обмена данными, как Ethernet, Token Ring, PPP, HDLC и многих других.

У нижнего уровня стека TCP/IP задача существенно проще - он отвечает только за организацию взаимодействия с технологиями сетей, входящих в составную сеть. TCP/IP рассматривает любую сеть, входящую в составную сеть, как средство транспортировки пакетов до следующего на пути маршрутизатора.

Задачу обеспечения интерфейса между технологией TCP/IP и любой другой технологией промежуточной сети упрощенно можно свести:

    к определению способа упаковки (инкапсуляции) IP-пакета в единицу передаваемых данных промежуточной сети;

    к определению способа преобразования сетевых адресов в адреса технологии данной промежуточной сети.

Такой подход делает составную сеть TCP/IP открытой для включения любой сети, какую бы внутреннюю технологию передачи данных эта сеть не использовала. Для каждой новой технологии должны быть разработаны собственные интерфейсные средства. Следовательно, функции этого уровня нельзя определить раз и навсегда.

Уровень сетевых интерфейсов в стеке TCP/IP не регламентируется. Он поддерживает все популярные технологии; для локальных сетей - это Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, для глобальных сетей - протоколы двухточечных соединений SLIP и РРР, технологии Х.25, Frame Relay, ATM.

Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP путем разработки соответствующего документа RFC, определяющего метод инкапсуляции IP-пакетов в ее кадры (например, спецификация RFC 1577, определяющая работу протокола IP через сети ATM, появилась в 1994 году вскоре после принятия основных стандартов ATM).

Каждый коммуникационный протокол оперирует некоторой единицей передаваемых данных. Названия этих единиц иногда закрепляются стандартом, а чаще просто определяются традицией. В стеке TCP/IP за многие годы его существования образовалась устоявшаяся терминология в этой области (рис. 4.15).

Потоком данных , или просто потоком, называют данные, поступающие от приложений на вход протоколов транспортного уровня - TCP и UDP.

Протокол TCP «нарезает» из потока данных сегменты.

Рис. 4.15. Названия PDU в TCP/IP

Единицу данных протокола UDP часто называют дейтаграммой , или датаграммой . Дейтаграмма - это общее название для единиц данных, которыми оперируют протоколы без установления соединений. К таким протоколам относится и протокол IP, поэтому его единицу данных также называют дейтаграммой. Однако очень часто используется и другой термин - пакет.

В стеке TCP/IP принято называть кадрами, или фреймами, единицы данных любых технологий, в которые упаковываются IP-пакеты для последующей переноски их через сети составной сети. При этом не имеет значения, какое название используется для этой единицы данных в технологии составляющей сети. Для TCP/IP фреймом является и кадр Ethernet, и ячейка ATM, и пакет Х.25, так как все они выступают в качестве контейнера, в котором IP-пакет переносится через составную сеть.