Зеркальный raid массив. Что такое RAID

Наверняка большинство пользователей компьютера знают о том, что для долговременного сохранения информации в компьютерных системах используются специальные устройства, называемые жесткими дисками. От их надежности порой зависит очень много, ведь потеря данных в некоторых случаях может иметь катастрофические последствия.

Скорости работы дисков так же имеет большое значение для производительности компьютера, поскольку именно HDD во многих ситуациях являются самой медленной частью системы, тормозящей ее работу. Последние годы развитие жестких дисков в основном сводится к увеличению их емкости, без серьезных изменений в скорости работы. Конечно существуют так называемые твердотельные накопители SSD, однако они довольно дороги и имеют ограниченный ресурс.

Такая ситуация никого не устраивает, поэтому еще в 1987 году была разработана технология Redundant Array of Independent Disks, что в переводе на русский язык звучит как «Избыточный массив независимых дисков», а в сокращенном виде RAID-массив. С ее помощью можно улучшить результаты работы имеющихся в наличие накопителей.

Что такое RAID-массив - это технология виртуализации, объединяющая нескольких независимых жестких дисков в единую логическую структуру для повышения надежности и/или скорости их работы. Увеличение быстродействия дисковой подсистемы по сравнению с одиночным диском происходит благодаря параллельным операциям чтения/записи, а применение избыточности информации повышает надежность ее хранения.

Есть еще один момент в технологии RAID, который нужно понимать. Она страхует только от физического выхода из строя накопителей и не защищает информацию от случайного удаления, вирусов, сбоев в работе контролера, bad-блоков и тому подобного.

Жесткие диски в нашем компьютере играют очень важную роль. На них хранится вся информация. Не хочется терять все в одночасье из-за отказа харда. А они, как известно, тоже имеют свой лимит наработки на отказ. Наверняка, многие из вас слышали о неких RAID-массивах. Делают их для ускорения работы компьютера и для безопасности данных. Давайте поподробнее поговорим об этом.

Что такое RAID, и для чего он нужен

RAID - дисковый массив из нескольких жестких дисков. Практически RAID-массив представляет собой систему, насчитывающую от двух жестких дисков, подключенных к материнской плате, поддерживающей возможность создания массивов (или же к raid-контроллеру). Что такое RAID-контроллер? Устройство, управляющее вашим массивом и сопутствующими работе процессами. Обычно их используют на серверных машинах. Рядовым пользователям такая игрушка малополезна - недёшево и малоэффективно, учитывая объемы информации, обрабатываемые рядовым компьютером. При создании RAID-массива аппаратно начинка вашего компьютера не изменится. Программно вся работа с рейдом проводится в bios-е, то есть ничего трудоемкого.

SCSI RAID: отличие от классического массива

SCSI - это интерфейс, физический тип подключения устройства. Он отличается от привычных нам интерфейсов IDE или SATA, в первую очередь, другим алгоритмом работы, что обеспечивает более высокую скорость, и завышенной, относительно последних, ценой. Распространение получил на масштабных серверных машинах, среди рядовых компьютеров устанавливается редко.

Установка RAID-массива

  1. Находим материнскую плату с поддержкой рейд-массивов или SCSI RAID.
  2. Берем два абсолютно одинаковых диска, подключаем.
  3. Заходим в bios (зависит от модели мат. платы).
  4. Параметр SATA Configuration, выставляем RAID.
  5. В процессе загрузки компьютера нажимаем Ctrl + I.
  6. Настраиваем рейд.

Готово! Важно: при создании RAID-массивов вся информация с дисков удаляется!

Виды массивов

  • RAID 0 - дисковый массив для повышения производительности.
  • RAID 1 - "зеркальный" дисковый массив.
  • RAID 2 - массивы, которые используют код Хемминга.
  • RAID 3 и 4 - массивы дисков с чередованием и выделенным диском чётности.
  • RAID 5 - диски с чередованием и невыделенным диском чётности.
  • RAID 6 - диски с чередованием и 2-мя независимыми чётностями.
  • Существуют еще рейды 10, 50, 60. Но это слишком сложные конструкции.

Подробнее остановимся на двух самых популярных версия рейд-массивов. Это, соответственно, RAID 0 и RAID 1. Для чего нужен RAID 0? Все не так сложно. Принцип работы массива заключается в параллельной работе разных физических устройств, выдаваемых системе за одно. То есть, это напрямую повышает скорость работы системы, просто представьте: в вашем raid 0 массиве участвуют два диска. Вы записываете данные объемом 10 гигабайт. Если бы у вас не был создан массив, то пришлось бы записывать их на конкретный диск, второй же при этом обязательно простаивал. В случае с рейд 0 массивом ваши данные побайтово делятся на несколько потоков, и также записываются на носитель рандомно. То есть, один фильм может храниться на двух физических устройствах одновременно, причем на одном будет лишь 30% от его "веса". Минус RAID 0 в отсутствии отказоустойчивости. Более того, если из строя выходит один диск, то данные со второго вам тоже не удастся восстановить.

Теперь поговорим про RAID 1. В случае с этим массивом вам придется использовать несколько дополнительных дисков для "зеркального копирования". Если у вас участвует лишь два диска в массиве, то выглядит это так: вы работаете с диском номер 1, а компьютер дублирует все ваши действия для диска 2. В случае отказа устройства все ваши данные будут в целости и сохранности находиться на дублирующем диске. Безопасно, несомненно. Минусом рейд 1 можно назвать потерю производительности.

Для чего нужен RAID-массив, вы теперь знаете, осталось лишь определиться с тем, что вам больше подходит. Сохранность данных или прирост производительности? Личное дело каждого!

Сегодня мы поговорим о RAID-массивах . Разберемся, что это такое, зачем это нам надо, какое оно бывает и как все это великолепие использовать на практике.

Итак, по порядку: что такое RAID-массив или просто RAID ? Расшифровывается эта аббревиатура как "Redundant Array of Independent Disks" или "избыточный (резервный) массив независимых дисков". Говоря по-простому, RAID-массив это совокупность физических дисков, объединенных в один логический.

Обычно бывает наоборот - в системный блок установлен один физический диск, который мы разбиваем на несколько логических. Здесь обратная ситуация - несколько жестких дисков сначала объединяются в один, а потом операционной системой воспринимаются как один. Т.е. ОС свято уверена, что у нее физически только один диск.

RAID-массивы бывают аппаратные и программные.

Аппаратные RAID-массивы создаются до загрузки ОС посредством специальных утилит, зашитых в RAID-контроллер - нечто вроде BIOS. В результате создания такого RAID-массива уже на стадии инсталляции ОС, дистрибутив "видит" один диск.

Программные RAID-массивы создаются средствами ОС. Т.е. во время загрузки операционная система "понимает", что у нее несколько физических дисков и только после старта ОС, посредством программного обеспечения диски объединяются в массивы. Естественно сама операционная система располагается не на RAID-массиве , поскольку устанавливается до его создания.

"Зачем все это нужно?" - спросите Вы? Отвечаю: для повышения скорости чтения/записи данных и/или повышения отказоустойчивости и безопасности.

"Каким образом RAID-массив может увеличить скорость или обезопасить данные?" - для ответа на этот вопрос рассмотрим основные типы RAID-массивов , как они формируются и что это дает в результате.

RAID-0 . Называемый так же "Stripe" или "Лента". Два или более жестких дисков объединяются в один путем последовательного слияния и суммирования объемов. Т.е. если мы возьмем два диска объемом 500Гб и создадим из них RAID-0 , операционной системой это будет восприниматься как один диск объемом в терабайт. При этом скорость чтения/записи у этого массива будет вдвое больше, нежели у одного диска, поскольку, например, если база данных расположена таким образом физически на двух дисках, один пользователь может производить чтения данных с одного диска, а другой пользователь производить запись на другой диск одновременно. В то время как в случае расположения базы на одном диске, сам жесткий диск задачи чтения/записи разных пользователей будет выполнять последовательно. RAID-0 позволит выполнять чтение/запись параллельно. Как следствие - чем больше дисков в массиве RAID-0 , тем быстрее работает сам массив. Зависимость прямопропорциональная - скорость возрастается в N раз, где N - количество дисков в массиве.
У массива RAID-0 есть только один недостаток, который перекрывает все плюсы от его использования - полное отсутствие отказоустойчивости. В случае смерти одного из физических дисков массива, умирает весь массив. Есть старая шутка на эту тему: "Что обозначает "0" в названии RAID-0 ? - объем восстанавливаемой информации после смерти массива!"

RAID-1 . Называемый так же "Mirror" или "Зеркало". Два или более жестких дисков объединяются в один путем параллельного слияния. Т.е. если мы возьмем два диска объемом 500Гб и создадим из них RAID-1 , операционной системой это будет восприниматься как один диск объемом в 500Гб. При этом скорость чтения/записи у этого массива будет такая же, как у одного диска, поскольку, чтение/запись информации производятся на оба диска одновременно. RAID-1 не дает выигрыша в скорости, однако обеспечивает большую отказоустойчивость, поскольку в случае смерти одного из жестких дисков, всегда есть полный дубль информации, находящийся на втором диске. При этом необходимо помнить, что отказоустойчивость обеспечивается только от смерти одного из дисков массива. В случае если данные были удалены целенаправленно, то они удаляются со всех дисков массива одновременно!

RAID-5 . Более безопасный вариант RAID-0. Объем массива рассчитывается по формуле (N - 1) * DiskSize RAID-5 из трех дисков по 500Гб, мы получим массив объемом в 1 терабайт. Суть массива RAID-5 в том, что несколько дисков объединятся в RAID-0, а на последнем диске хранится так называемая "контрольная сумма" - служебная информация, предназначенная для восстановления одного из дисков массива, в случае его смерти. Скорость записи в массиве RAID-5 несколько ниже, поскольку тратится время на расчет и запись контрольной суммы на отдельный диск, зато скорость чтения такая же, как в RAID-0.
Если один из дисков массива RAID-5 умирает, резко падает скорость чтения/записи, поскольку все операции сопровождаются дополнительными манипуляциями. Фактически RAID-5 превращается в RAID-0 и если своевременно не позаботиться восстановлением RAID-массива есть существенный риск потерять данные полностью.
С массивом RAID-5 можно использовать так называемый Spare-диск, т.е. запасной. Во время стабильной работы RAID-массива этот диск простаивает и не используется. Однако в случае наступления критической ситуации, восстановление RAID-массива начинается автоматически - на запасной диск восстанавливается информация с поврежденного с помощью контрольных сумм, расположенных на отдельном диске.
RAID-5 создается как минимум из трех дисков и спасает от одиночных ошибок. В случае одновременного появления разных ошибок на разных дисках RAID-5 не спасает.

RAID-6 - является улучшенным вариантом RAID-5. Суть та же самая, только для контрольных сумм используется уже не один, а два диска, причем контрольные суммы считаются с помощью разных алгоритмов, что существенно повышает отказоустойчивость всего RAID-массива в целом. RAID-6 собирается минимум из четырех дисков. Формула расчета объема массива выглядит как (N - 2) * DiskSize , где N - количество дисков в массиве, а DiskSize - объем каждого диска. Т.е. при создании RAID-6 из пяти дисков по 500Гб, мы получим массив объемом в 1,5 терабайта.
Скорость записи RAID-6 ниже чем у RAID-5 примерно на 10-15%, что обусловлено дополнительными временными затратами на расчет и запись контрольных сумм.

RAID-10 - так же иногда называется RAID 0+1 или RAID 1+0 . Представляет собой симбиоз RAID-0 и RAID-1. Массив строится минимум из четырех дисков: на первом канале RAID-0, на втором RAID-0 для повышения скорости чтения/записи и между собой они в зеркале RAID-1 для повышения отказоустойчивости. Таким образом, RAID-10 совмещает в себе плюс первых двух вариантов - быстрый и отказоустойчивый.

RAID-50 - аналогично RAID-10 является симбиозом RAID-0 и RAID-5 - фактически строится RAID-5, только его составляющими элементами являются не самостоятельные жесткие диски, а массивы RAID-0. Таким образом, RAID-50 дает очень хорошую скорость чтения/записи и содержит устойчивость и надежность RAID-5.

RAID-60 - та же самая идея: фактически имеем RAID-6, собранный из нескольких массивов RAID-0.

Так же существуют другие комбинированные массивы RAID 5+1 и RAID 6+1 - они похожи на RAID-50 и RAID-60 с той лишь разницей, что базовыми элементами массива являются не ленты RAID-0, а зеркала RAID-1.

Как Вы сами понимаете комбинированные RAID-массивы: RAID-10 , RAID-50 , RAID-60 и варианты RAID X+1 являются прямыми наследниками базовых типов массивов RAID-0 , RAID-1 , RAID-5 и RAID-6 и служат только для повышения либо скорости чтения/записи, либо повышения отказоустойчивости, неся при этом в себе функционал базовых, родительских типов RAID-массивов .

Если перейти к практике и поговорить о применении тех или иных RAID-массивов в жизни, то логика довольно проста:

RAID-0 в чистом виде не используем вообще;

RAID-1 используем там, где не особо важна скорость чтения/записи, но важна отказоустойчивость - например на RAID-1 хорошо ставить операционные системы. В таком случае к дискам никто кроме ОС не обращается, скорости самих жестких дисков для работы вполне достаточно, отказоустойчивость обеспечена;

RAID-5 ставим там, где нужна скорость и отказоустойчивость, но не хватает денег на покупку большего количества жестких дисков или есть необходимость восстанавливать массивы в случае их повреждения, не прекращая работы - тут нам помогут запасные Spare-диски. Обычное применение RAID-5 - хранилища данных;

RAID-6 используется там, где просто страшно или есть реальная угроза смерти сразу нескольких дисков в массиве. На практике встречается достаточно редко, в основном у параноиков;

RAID-10 - используется там, где нужно чтобы работало быстро и надежно. Так же основным направлением для использования RAID-10 являются файловые серверы и серверы баз данных.

Опять же, если еще упростить, то приходим к выводу, что там где нет большой и объемной работы с файлами вполне достаточно RAID-1 - операционная система, AD, TS, почта, прокси и т.д. Там же, где требуется серьезная работа с файлами: RAID-5 или RAID-10 .

Идеальным решением для сервера баз данных представляется машина с шестью физическими дисками, два из которых объединены в зеркало RAID-1 и на нем установлена ОС, а оставшиеся четыре объединены в RAID-10 для быстрой и надежной работы с данными.

Если прочитав, все вышеизложенное Вы решили установить на своих серверах RAID-массивы , но не знаете, как это делать и с чего начать - обращайтесь к нам ! - мы поможем подобрать необходимое оборудование, а так же проведем инсталляционные работы по внедрению RAID-массивов .

RAID (англ. redundant array of independent disks - избыточный массив независимых жёстких дисков) - массив из нескольких дисков, управляемых контроллером, взаимосвязанных скоростными каналами и воспринимаемых внешней системой как единое целое. В зависимости от типа используемого массива может обеспечивать различные степени отказоустойчивости и быстродействия. Служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации. Изначально, подобные массивы строились в качестве резерва носителям на оперативной (RAM) памяти, которая в то время была дорогой. Со временем, аббревиатура приобрела второе значение – массив уже был из независимых дисков, подразумевая использование нескольких дисков, а не разделов одного диска, а также дороговизну (теперь уже относительно просто нескольких дисков) оборудования, необходимого для построения этого самого массива.

Рассмотрим, какие бывают RAID массивы. Сперва рассмотрим уровни, которые были представлены учёными из Беркли, потом их комбинации и необычные режимы. Стоит заметить, что если используются диски разного размера (что не рекомендуется), то работать они буду по объёму наименьшего. Лишний объем больших дисков просто будет недоступен.

RAID 0. Дисковый массив с чередованием без отказоустойчивости/чётности (Stripe)

Является массивом, где данные разбиваются на блоки (размер блока можно задавать при создании массива) и затем записываются на отдельные диски. В простейшем случае – есть два диска, один блок пишется на первый диск, другой на второй, затем опять на первый и так далее. Также этот режим называется «чередование», поскольку при записи блоков данных чередуются диски, на которые осуществляется запись. Соответственно, читаются блоки тоже поочерёдно. Таким образом, происходит параллельное выполнение операций ввода/вывода, что приводит к большей производительности. Если раньше за единицу времени мы могли считать один блок, то теперь можем сделать это сразу с нескольких дисков. Основным плюсом данного режима как раз и является высокая скорость передачи данных.

Однако чудес не бывает, а если бывают, то нечасто. Производительность растёт всё же не в N раз (N – число дисков), а меньше. В первую очередь, увеличивается в N раз время доступа к диску, и без того высокое относительно других подсистем компьютера. Качество контроллера оказывает не меньшее влияние. Если он не самый лучший, то скорость может едва заметно отличаться от скорости одного диска. Ну и немалое влияние оказывает интерфейс, которым RAID контроллер соединён с остальной системой. Всё это может привести не только к меньшему, чем N увеличению скорости линейного чтения, но и к пределу количества дисков, установка выше которого прироста давать уже не будет вовсе. Или, наоборот, будет слегка снижать скорость. В реальных задачах, с большим числом запросов шанс столкнуться с этим явлением минимален, ибо скорость весьма сильно упирается в сам жёсткий диск и его возможности.

Как видно, в этом режиме избыточности нет как таковой. Используется всё дисковое пространство. Однако, если один из дисков выходит из строя, то, очевидно, теряется вся информация.

RAID 1. Зеркалирование (Mirror)

Суть данного режима RAID сводится к созданию копии (зеркала) диска с целью повышения отказоустойчивости. Если один диск выходит из строя, то работа не прекращается, а продолжается, но уже с одним диском. Для этого режима требуется чётное число дисков. Идея этого метода близка к резервному копированию, но всё происходит «на лету», равно как и восстановление после сбоя (что порой весьма важно) и нет необходимости тратить время на это.

Минусы – высокая избыточность, так как нужно вдвое больше дисков для создания такого массива. Ещё одним минусом является то, что отсутствует какой-либо прирост производительности – ведь на второй диск просто пишется копия данных первого.

RAID 2 Массив с использованием ошибкоустойчивого кода Хемминга.

Данный код позволяет исправлять и обнаруживать двойные ошибки. Активно используется в памяти с коррекцией ошибок (ECC). В этом режиме диски разбиваются на две группы – одна часть используется для хранения данных и работает аналогично RAID 0, разбивая блоки данных по разным дискам; вторая часть используется для хранения ECC кодов.

Из плюсов можно выделить исправление ошибок «на лету», высокую скорость потоковой передачи данных.

Главным минусом является высокая избыточность (при малом числе дисков она почти двойная, n-1). При увеличении числа дисков удельное число дисков хранения ECC кодов становится меньше (снижается удельная избыточность). Вторым минусом является низкая скорость работы с мелкими файлами. Из-за громоздкости и высокой избыточности с малым числом дисков, данный уровень RAID в данное время не используется, сдав позиции более высоким уровням.

RAID 3. Отказоустойчивый массив с битовым чередованием и чётностью.

Данный режим записывает данные по блокам на разные диски, как RAID 0, но использует ещё один диск для хранения четности. Таким образом, избыточность намного ниже, чем в RAID 2 и составляет всего один диск. В случае сбоя одного диска, скорость практически не меняется.

Из основных минусов надо отметить низкую скорость при работе с мелкими файлами и множеством запросов. Связано это с тем, что все контрольные коды хранятся на одном диске и при операциях ввода/вывода их необходимо переписывать. Скорость этого диска и ограничивает скорость работы всего массива. Биты чётности пишутся только при записи данных. А при чтении – они проверяются. По причине этого наблюдается дисбаланс в скорости чтения/записи. Одиночное чтение небольших файлов также характеризуется невысокой скоростью, что связано с невозможностью параллельного доступа с независимых дисков, когда разные диски параллельно выполняют запросы.

RAID 4

Данные записываются блоками на разные диски, один диск используется для хранения битов чётности. Отличие от RAID 3 заключается в том, что блоки разбиваются не по битам и байтам, а по секторам. Преимущества заключаются в высокой скорости передачи при работе с большими файлами. Также высока скорость работы с большим числом запросов на чтение. Из недостатков можно отметить доставшиеся от RAID 3 – дисбаланс в скорости операций чтения/записи и существование условий, затрудняющих параллельный доступ к данным.

RAID 5. Дисковый массив с чередованием и распределённой чётностью.

Метод похож на предыдущий, но в нём для битов чётности выделяется не отдельный диск, а эта информация распределяется между всеми дисками. То есть, если используется N дисков, то будет доступен объём N-1 диска. Объём одного будет выделен под биты чётности, как и в RAID 3,4. Но они хранятся не на отдельном диске, а разделены. На каждом диске есть (N-1)/N объёма информации и 1/N объёма заполнено битами чётности. Если в массиве выходит из строя один диск, то он остаётся работоспособным (данные, хранившиеся на нём, вычисляются на основе чётности и данных других дисков «на лету»). То есть, сбой проходит прозрачно для пользователя и порой даже с минимальным падением производительности (зависит от вычислительной способности RAID контроллера). Из преимуществ отметим высокие скорости чтения и записи данных, как при больших объёмах, так и при большом числе запросов. Недостатки – сложное восстановление данных и более низкая, чем в RAID 4 скорость чтения.

RAID 6. Дисковый массив с чередованием и двойной распределённой чётностью.

Всё отличие сводится к тому, что используются две схемы чётности. Система устойчива к отказам двух дисков. Основной сложностью является то, что для реализации этого приходится делать больше операций при выполнении записи. Из-за этого скорость записи является чрезвычайно низкой.

Комбинированные (nested) уровни RAID.

Поскольку массивы RAID являются прозрачными для ОС, то вскоре пришло время и созданию массивов, элементами которых являются не диски, а массивы других уровней. Обычно они пишутся через плюс. Первая цифра означает то, массивы какого уровня входят в качестве элементов, а вторая цифра – то, какую организацию имеет верхний уровень, который объединяет элементы.

RAID 0+1

Комбинация, которая является массивом RAID 1, собранным на базе массивов RAID 0. Как и в массиве RAID 1, доступным будет только половина объёма дисков. Но, как и в RAID 0, скорость будет выше, чем с одним диском. Для реализации такого решения необходимо минимум 4 диска.

RAID 1+0

Также известен, как RAID 10. Является страйпом зеркал, то есть, массивом RAID 0, построенным из RAID 1 массивов. Практически аналогичен предыдущему решению.

RAID 0+3

Массив с выделенной чётностью над чередованием. Является массивом 3-го уровня, в котором данные блоками разбиваются и пишутся на массивы RAID 0. Комбинации, кроме простейших 0+1 и 1+0 требуют специализированных контроллеров, зачастую достаточно дорогих. Надёжность данного вида ниже, чем у следующего варианта.

RAID 3+0

Также известен, как RAID 30. Является страйпом (массивом RAID 0) из массивов RAID 3. Обладает весьма высокой скорость передачи данных, вкупе с неплохой отказоустойчивостью. Данные сначала разделяются на блоки (как в RAID 0) и попадают на массивы-элементы. Там они опять делятся на блоки, считается их чётность, блоки пишутся на все диски кроме одного, на который пишутся биты чётности. В данном случае, из строя может выйти один из дисков каждого из входящих в состав RAID 3 массива.

RAID 5+0 (50)

Создаётся путём объединения массивов RAID 5 в массив RAID 0. Обладает высокой скоростью передачи данных и обработки запросов. Обладает средней скоростью восстановления данных и хорошей стойкостью при отказе. Комбинация RAID 0+5 также существует, но больше теоретически, так как даёт слишком мало преимуществ.

RAID 5+1 (51)

Сочетание зеркалирования и чередования с распределённой четностью. Также вариантом является RAID 15 (1+5). Обладает очень высокой отказоустойчивостью. Массив 1+5 способен работать при отказе трех дисков, а 5+1 – пяти из восьми дисков.

RAID 6+0 (60)

Чередование с двойной распределённой четностью. Иными словами – страйп из RAID 6. Как уже говорилось применительно к RAID 0+5, RAID 6 из страйпов не получил распространения (0+6). Подобные приёмы (страйп из массивов с четностью) позволяют повысить скорость работы массива. Ещё одним преимуществом является то, что так можно легко повысить объём, не усложняя ситуации с задержками, необходимыми на вычисление и запись большего числа битов четности.

RAID 100 (10+0)

RAID 100, также пишущийся как RAID 10+0, является страйпом из RAID 10. По своей сути, он схож с более широким RAID 10 массивом, где используется вдвое больше дисков. Но именно такой «трехэтажной» структуре есть своё объяснение. Чаще всего RAID 10 делают аппаратным, то есть силами контроллера, а уже страйп из них делают программно. К такой уловке прибегают, чтобы избежать проблемы, о которой говорилось в начале статьи – контроллеры имеют свои ограничения по масштабируемости и если воткнуть в один контроллер двойное число дисков, прироста можно при некоторых условиях вообще не увидеть. Программный же RAID 0 позволяет создать его на базе двух контроллеров, каждый из которых держит на борту RAID 10. Так, мы избегаем «бутылочного горлышка» в лице контроллера. Ещё одним полезным моментом является обход проблемы с максимальным числом разъёмов на одном контроллере – удваивая их число, мы удваиваем и число доступных разъёмов.

Нестандартные режимы RAID

Двойная четность

Распространённым дополнением к перечисленным уровням RAID является двойная четность, порой реализованная и потому называемая «диагональной четностью». Двойная четность уже внедрена в RAID 6. Но, в отличие от нее, четность считается над другими блоками данных. Недавно спецификация RAID 6 была расширена, потому диагональная четность может считаться RAID 6. Если для RAID 6 четность считается как результат сложения по модулю 2 битов, идущих в ряд (то есть сумма первого бита на первом диске, первого бита на втором и т.д.), то в диагональной четности идет смещение. Работа в режиме сбоя дисков не рекомендуется (ввиду сложности вычисления утраченных битов из контрольных сумм).

Является разработкой NetApp RAID массива с двойной четностью и подпадает под обновленное определение RAID 6. Использует отличную от классической RAID 6 реализации схему записи данных. Запись ведется сначала на кеш NVRAM, снабжённый источником бесперебойного питания, чтобы предотвратить потерю данных при отключении электричества. Программное обеспечение контроллера, по возможности, пишет только цельные блоки на диски. Такая схема предоставляет большую защиту, чем RAID 1 и имеет более высокую скорость работы, нежели обычный RAID 6.

RAID 1,5

Был предложен компанией Highpoint, однако теперь применяется очень часто в контроллерах RAID 1, без каких-либо выделений данной особенности. Суть сводится к простой оптимизации – данные пишутся как на обычный массив RAID 1 (чем 1,5 по сути и является), а читают данные с чередованием с двух дисков (как в RAID 0). В конкретной реализации от Highpoint, применявшейся на платах DFI серии LanParty на чипсете nForce 2, прирост был едва заметным, а порой и нулевым. Связано это, вероятно, с невысокой скоростью контроллеров данного производителя в целом в то время.

Комбинирует в себе RAID 0 и RAID 1. Создаётся минимум на трёх дисках. Данные пишутся с чередованием на три диска, а со сдвигом на 1 диск пишется их копия. Если пишется один блок на три диска, то копия первой части пишется на второй диск, второй части – на третий диск. При использовании четного числа дисков лучше, конечно, использовать RAID 10.

Обычно при построении RAID 5 один диск оставляют свободным (spare), чтобы в случае сбоя система сразу стала перестраивать (rebuild) массив. При обычной работе этот диск работает вхолостую. Система RAID 5E подразумевает использование этого диска в качестве элемента массива. А объём этого свободного диска распределяется по всему массиву и находится в конце дисков. Минимальное число дисков – 4 штуки. Доступный объём равен n-2, объём одного диска используется (будучи распределенным между всеми) для четности, объем еще одного – свободный. При выходе из строя диска происходит сжатие массива до 3-х дисков (на примере минимального числа) заполнением свободного пространства. Получается обычный массив RAID 5, устойчивый к отказу ещё одного диска. При подключении нового диска, массив расжимается и занимает вновь все диски. Стоит отметить, что во время сжатия и распаковки диск не является устойчивым к выходу еще одного диска. Также он недоступен для чтения/записи в это время. Основное преимущество – большая скорость работы, поскольку чередование происходит на большем числе дисков. Минус – что нельзя данный диск назначать сразу к нескольким массивам, что возможно в простом массиве RAID 5.

RAID 5EE

Отличается от предыдущего только тем, что области свободного места на дисках не зарезервированы одним куском в конце диска, а чередуются блоками с битами четности. Такая технология значительно ускоряет восстановление после сбоя системы. Блоки можно записать прямо на свободное место, без необходимости перемещения по диску.

Аналогично с RAID 5E использует дополнительный диск для повышения скорости работы и распределения нагрузки. Свободное место разделяется между другими дисками и находится в конце дисков.

Данная технология является зарегистрированной торговой маркой фирмы Storage Computer Corporation. Массив, основывающийся на RAID 3, 4, оптимизированный для повышения производительности. Основное преимущество заключается в использовании кеширования операций чтения/записи. Запросы на передачу данных осуществляются асинхронно. При построении используются диски SCSI. Скорость выше решений RAID 3,4 приблизительно в 1,5-6 раз.

Intel Matrix RAID

Является технологией, представленной Intel в южных мостах, начиная с ICH6R. Суть сводится к возможности комбинации RAID массивов разных уровней на разделах дисков, а не на отдельных дисках. Скажем, на двух дисках можно организовать по два раздела, два из них будут хранить на себе операционную систему на массиве RAID 0, а другие два – работая в режиме RAID 1 – хранить копии документов.

Linux MD RAID 10

Это RAID драйвер ядра Linux, предоставляющий возможность создания более продвинутой версии RAID 10. Так, если для RAID 10 существовало ограничение в виде чётного числа дисков, то этот драйвер может работать и с нечетным. Принцип для трех дисков будет тем же, что в RAID 1E, когда происходит чередование дисков по очереди для создания копии и чередования блоков, как в RAID 0. Для четырех дисков это будет эквивалентно обычному RAID 10. Помимо этого, можно задавать, на какой области диска будет храниться копия. Скажем, оригинал будет в первой половине первого диска, а его копия – во второй половине второго. Со второй половиной данных – наоборот. Данные можно дублировать несколько раз. Хранение копий на разных частях диска позволяет достичь большей скорости доступа в результате разнородности жесткого диска (скорость доступа меняется в зависимости от расположения данных на пластине, обычно разница составляет два раза).

Разработан компанией Kaleidescape для использования в своих медиа устройствах. Схож с RAID 4 с использованием двойной четности, но использует другой метод отказоустойчивости. Пользователь может легко расширять массив, просто добавляя диски, причём в случае, если он содержит данные, данные будут просто добавлены в него, вместо удаления, как это требуется обычно.

Разработка компании Sun. Самой большой проблемой RAID 5 является потеря информации в результате отключения питания, когда информация из дискового кеша (который является энергозависимой памятью, то есть не хранит данные без электричества) не успела сохраниться на магнитные пластины. Такое несовпадение информации в кеше и на диске называют некогерентностью. Сама организация массива связана с файловой системой Sun Solaris – ZFS. Используется принудительная запись содержимого кеш-памяти дисков, восстанавливать можно не только весь диск, но и блок «на лету», когда контрольная сумма не совпала. Ещё немаловажным аспектом является идеология ZFS – она не меняет данные при необходимости. Вместо этого она пишет обновлённые данные и потом, убедившись, что операция прошла уже удачно, меняет указатель на них. Таким образом, удаётся избежать потери данных при модификации. Мелкие файлы дублируются вместо создания контрольных сумм. Это тоже делается силами файловой системы, поскольку она знакома со структурой данных (массивом RAID) и может выделять место под эти цели. Существует также RAID-Z2, которая, подобно RAID 6 способна выдержать отказ двух дисков с помощью использования двух контрольных сумм.

То, что не является RAID в принципе, но часто вместе с ним употребляется. Дословно переводится как «просто набор дисков» (just a bunch of disks) Технология объединяет все диски, установленные в системе в один большой логический диск. То есть, вместо трех дисков будет виден один крупный. Используется весь суммарный объем дисков. Ускорения ни надежности, ни производительности нет.

Drive Extender

Функция, заложенная в Window Home Server. Совмещает в себе JBOD и RAID 1. При необходимости создания копии, она не дублирует сразу файл, а ставит NTFS разделе метку, указывающую на данные. При простое система копирует файл так, чтобы место на дисках было максимальным (использовать можно диски разного объема). Позволяет достичь многих преимуществ RAID – отказоустойчивости и возможности простой замены вышедшего из строя диска и его восстановления в фоновом режиме, прозрачности местонахождения файла (вне зависимости от того, на каком диске он находится). Также можно проводить параллельный доступ с разных дисков с помощью вышеуказанных меток, получая сходную с RAID 0 производительность.

Разработана компанией Lime technology LLC. Эта схема отличается от обычных RAID массивов тем, что позволяет смешивать диски SATA и PATA в одном массиве и диски разных объема и скорости. Для контрольной суммы (четности) используется выделенный диск. Данные не чередуются между дисками. В случае отказа одного диска, теряются только файлы, на нём хранящиеся. Однако, с помощью четности они могут быть восстановлены. UNRAID внедрен как добавление к Linux MD (multidisk).

Большинство видов RAID массивов не получило распространения, часть используется в узких сферах применения. Наиболее массовыми, от простых пользователей до серверов начального уровня стали RAID 0, 1, 0+1/10, 5 и 6. Нужен ли вам рейд-массив для ваших задач – решать вам. Теперь вы знаете, в чём их отличия друг от друга.

Если Вы заинтересовались этой статьей, то Вы, по-видимому, столкнулись или предполагаете вскоре столкнуться с одной из ниже перечисленных проблем на Вашем компьютере:

- явно не хватает физического объема винчестера, как единого логического диска. Наиболее часто эта проблема возникает при работе с файлами большого объема (видео, графика, базы данных);
- явно не хватает производительности винчестера. Наиболее часто эта проблема возникает при работе с системами нелинейного видео монтажа или при одновременном обращении к файлам на винчестере большого количества пользователей;
- явно не хватает надежности винчестера. Наиболее часто эта проблема возникает при необходимости работать с данными, которые ни в коем случае нельзя потерять или которые должны быть всегда доступны для пользователя. Печальный опыт показывает, что даже самая надежная техника иногда ломается и, как правило, в самый не подходящий момент.
Решить эти и некоторые другие проблемы может создание на Вашем компьютере RAID-системы.

Что такое «RAID»?

В 1987 году Паттерсон (Patterson), Гибсон (Gibson) и Катц (Katz) из калифорнийского университета Беркли опубликовали статью «Корпус для избыточных массивов из дешевых дисководов (RAID)» (A Case for Redundant Arrays of Inexpensive Disks (RAID)). В этой статье описывались разные типы дисковых массивов, обозначаемых сокращением RAID - Redundant Array of Independent (или Inexpensive) Disks (избыточный массив независимых (или недорогих) дисководов). В основу RAID положена следующая идея: объединяя в массив несколько небольших и/или дешевых дисководов, можно получить систему, превосходящую по объему, скорости работы и надежности самые дорогие дисководы. Вдобавок ко всему такая система с точки зрения компьютера выглядит как один единственный дисковод.
Известно, что среднее время наработки на отказ массива дисководов равно среднему времени наработки на отказ одиночного дисковода, деленному на число дисководов в массиве. Вследствие этого среднее время наработки на отказ массива оказывается слишком малым для многих приложений. Однако дисковый массив можно несколькими способами сделать устойчивым к отказу одного дисковода.

В вышеупомянутой статье было определено пять типов (уровней) дисковых массивов: RAID-1, RAID-2, ..., RAID-5. Каждый тип обеспечивал устойчивость на отказ, а также различные преимущества по сравнению с одиночным дисководом. Наряду с этими пятью типами популярность приобрел также дисковый массив RAID-0, НЕ обладающий избыточностью.

Какие существуют уровни RAID и какой из них выбрать?

RAID-0 . Обычно определяется как НЕ избыточная группа дисководов без контроля четности. RAID-0 по способу размещения информации по дисководам, входящим в массив, иногда называется "Striping" ("полосатый" или "тельняшка"):

Так как RAID-0 не обладает избыточностью, авария одного дисковода приводит к аварии всего массива. С другой стороны RAID-0 обеспечивает максимальную скорость обмена и эффективность использования объема дисководов. Поскольку для RAID-0 не требуются сложные математические или логические вычисления, затраты на его реализацию минимальны.

Область применения: аудио- и видео приложения требующие высокой скорости непрерывной передачи данных, которую не может обеспечить одиночный дисковод. Например, исследования, проведенные фирмой Mylex, с целью определить оптимальную конфигурацию дисковой системы для станции нелинейного видео монтажа показывают, что, по сравнению с одним дисководом, массив RAID-0 из двух дисководов дает прирост скорости записи/чтения на 96%, из трех дисководов - на 143% (по данным теста Miro VIDEO EXPERT Benchmark).
Минимальное количество дисководов в массиве "RAID-0" - 2шт.

RAID-1 . Более известен как "Mirroring" ("Зеркалирование") - это пара дисководов, содержащих одинаковую информацию и составляющих один логический диск:

Запись производится на оба дисковода в каждой паре. Тем не менее, дисководы, входящие в пару, могут совершать одновременные операции чтения. Таким образом «зеркалирование» может удваивать скорость чтения, но скорость записи остается неизменной. RAID-1 обладает 100% избыточностью и авария одного дисковода не приводит к аварии всего массива - контроллер просто переключает операции чтения/записи на оставшийся дисковод.
RAID-1 обеспечивает наивысшую скорость работы среди всех типов избыточных массивов (RAID-1 - RAID-5), особенно в многопользовательском окружении, но наихудшее использование дискового пространства. Поскольку для RAID-1 не требуются сложные математические или логические вычисления, затраты на его реализацию минимальны.
Минимальное количество дисководов в массиве "RAID-1" - 2шт.
Для увеличения скорости записи и обеспечения надежности хранения данных несколько массивов RAID-1 можно, в свою очередь, объединить в RAID-0. Такая конфигурация называется «двухуровневый» RAID или RAID-10 (RAID 0+1):


Минимальное количество дисководов в массиве "RAID 0+1" - 4шт.
Область применения: дешевые массивы, в которых главное - надежность хранения данных.

RAID-2 . Распределяет данные по страйпам размером в сектор по группе дисководов. Некоторые дисководы выделяются для хранения ECC (код коррекции ошибок). Так как большинство дисководов по умолчанию хранят коды с ECC для каждого сектора, RAID-2 не дает особых преимуществ по сравнению с RAID-3 и, поэтому, практически не применяется.

RAID-3 . Как и в случае с RAID-2 данные распределяются по страйпам размером в один сектор, а один из дисководов массива отводится для хранения информации о четности:

RAID-3 полагается на коды с ECC, хранящиеся в каждом секторе для обнаружения ошибок. В случае отказа одного из дисководов восстановление хранившейся на нем информации возможно с помощью вычисления исключающего ИЛИ (XOR) по информации на оставшихся дисководах. Каждая запись обычно распределена по всем дисководам и поэтому этот тип массива хорош для работы в приложениях с интенсивным обменом с дисковой подсистемой. Так как каждая операция ввода-вывода обращается ко всем дисководам массива, RAID-3 не может одновременно выполнять несколько операций. Поэтому RAID-3 хорош для однопользовательского однозадачного окружения с длинными записями. Для работы с короткими записями требуется синхронизация вращения дисководов, так как иначе неизбежно уменьшение скорости обмена. Применяется редко, т.к. проигрывает RAID-5 по использованию дискового пространства. Реализация требует значительных затрат.
Минимальное количество дисководов в массиве "RAID-3" - 3шт.

RAID-4 . RAID-4 идентичен RAID-3 за исключением того, что размер страйпов много больше одного сектора. В этом случае чтение осуществляется с одного дисковода (не считая дисковода, хранящего информацию о четности), поэтому возможно одновременное выполнение нескольких операций чтения. Тем не менее, так как каждая операция записи должна обновить содержимое дисковода четности, одновременное выполнение нескольких операций записи невозможно. Этот тип массива не имеет заметных преимуществ перед массивом типа RAID-5.
RAID-5. Этот тип массива иногда называется «массив с вращающейся четностью». Данный тип массива успешно преодолевает присущий RAID-4 недостаток - невозможность одновременного выполнения нескольких операций записи. В этом массиве, как и в RAID-4, используются страйпы большого размера, но, в отличие от RAID-4, информация о четности хранится не на одном дисководе, а на всех дисководах по очереди:

Операции записи обращаются к одному дисководу с данными и к другому дисководу с информацией о четности. Так как информация о четности для разных страйпов хранится на разных дисководах выполнение нескольких одновременных операций записи невозможно только в тех редких случаях, когда либо страйпы с данными, либо страйпы с информацией о четности находятся на одном и том же дисководе. Чем больше дисководов в массиве, тем реже совпадает местоположение страйпов информации и четности.
Область применения: надежные массивы большого объема. Реализация требует значительных затрат.
Минимальное количество дисководов в массиве "RAID-5" - 3шт.

RAID-1 или RAID-5?
RAID-5 по сравнению с RAID-1 более экономно использует дисковое пространство, так как в нем для избыточности хранится не «копия» информации, а контрольное число. В результате в RAID-5 можно объединить любое количество дисководов, из которых только один будет содержать избыточную информацию.
Но более высокая эффективность использования дискового пространства достигается за счет более низкой скорости обмена информацией. Во время записи информации в RAID-5 надо каждый раз обновлять информацию о четности. Для этого надо определить, какие именно биты четности изменились. Сначала считывается подлежащая обновлению старая информация. Затем эта информация перемножается по XOR с новой информацией. Результат этой операции - битовая маска, в которой каждый бит =1 означает, что в информации о четности в соответствующей позиции надо заменить значение. Затем обновленная информация о четности записывается на соответствующее место. Следовательно, на каждое требование программы записать информацию, RAID-5 совершает два чтения, две записи и две операции XOR.
За то, что более эффективно используется дисковое пространство (вместо копии данных хранится блок четности) приходится платить: на генерацию и запись информации о четности уходит добавочное время. Это означает, что скорость записи на RAID-5 ниже, чем на RAID-1 в соотношении 3:5 или даже 1:3 (т.е. скорость записи на RAID-5 составляет от 3/5 до 1/3 от скорости записи RAID-1). Из-за этого RAID-5 бессмысленно создавать в программном варианте. Их также нельзя рекомендовать в тех случаях, когда именно скорость записи имеет решающее значение.

Какой выбрать способ реализации RAID - программный или аппаратный?

Прочитав описание различных уровней RAID можно заметить, что нигде не упоминаются какие-либо специфические требования к аппаратуре, которая необходима для реализации RAID. Из чего можно сделать вывод, что все, что нужно для реализации RAID - подключить необходимое количество дисководов к имеющемуся в компьютере контроллеру и установить на компьютер специальное программное обеспечение. Это верно, но не совсем!
Действительно, существует возможность программной реализации RAID. Примером может служить ОС Microsoft Windows NT 4.0 Server, в которой возможна программная реализация RAID-0, -1 и даже RAID-5 (Microsoft Windows NT 4.0 Workstation обеспечивает только RAID-0 и RAID-1). Однако данное решение следует рассматривать, как крайне упрощенное, не позволяющее полностью реализовать возможности RAID-массива. Достаточно отметить, что при программной реализации RAID вся нагрузка по размещению информации на дисководах, вычислению контрольных кодов и т.д. ложится на центральный процессор, что естественно, не увеличивает производительности и надежности системы. По тем же причинам, здесь практически отсутствуют какие-либо сервисные функции и все операции по замене неисправного дисковода, добавления нового дисковода, изменения уровня RAID и т. п. производятся с полной потерей данных и при полном запрете выполнения каких-либо других операций. Единственное достоинство программной реализации RAID - минимальная стоимость.
- специализированный контроллер освобождает центральный процессор от основных операций с RAID, причем эффективность контроллера тем более заметна, чем выше уровень сложности RAID;
- контроллеры, как правило, снабжены драйверами, позволяющими создать RAID практически для любой популярной ОС;
- встроенный BIOS контроллера и прилагаемые к нему программы управления позволяют администратору системы легко подключать, отключать или заменять дисководы, входящие в RAID, создавать несколько RAID-массивов, причем даже разных уровней, контролировать состояние дискового массива и т.д. У «продвинутых» контроллеров эти операции можно производить «на лету», т.е. не выключая системный блок. Многие операции могут быть выполнены в «фоновом режиме», т.е. не прерывая текущую работу и даже дистанционно, т.е. с любого (конечно при наличии доступа) рабочего места;
- контроллеры могут оснащаться буферной памятью («кэш»), в которой запоминаются несколько последних блоков данных, что, при частом обращении к одним и тем же файлам, позволяет значительно увеличить быстродействие дисковой системы.
Недостатком аппаратной реализации RAID является относительно высокая стоимость RAID-контроллеров. Однако, с одной стороны, за все (надежность, быстродействие, сервис) надо платить. С другой стороны, в последнее время, с развитием микропроцессорной техники, стоимость RAID-контоллеров (особенно младших моделей) стала резко падать и стала сравнимой со стоимостью обыкновенных дисковых контроллеров, что позволяет устанавливать RAID-системы не только в дорогие мэйнфреймы, но и в сервера начального уровня и даже в рабочие станции.

Как выбрать модель RAID-контроллера?

Можно выделить несколько типов RAID-контроллеров в зависимости от их функциональных возможностей, конструктивному исполнению и стоимости:
1. Контроллеры дисковода с функциями RAID.
По сути, это обыкновенный дисковый контроллер, который благодаря специальной прошивке BIOS позволяет объединять дисководы в RAID-массив, как правило, уровня 0, 1 или 0+1.

Ultra (Ultra Wide) SCSI контроллер фирмы Mylex KT930RF (KT950RF).
Внешне данный контроллер ни чем не отличается от обыкновенного SCSI-контроллера. Вся "специализация" находится в BIOS, который как бы разделен на две части - «Конфигурация SCSI» / «Конфигурация RAID». Несмотря на невысокую стоимость (менее $200) данный контроллер обладает неплохим набором функций:

- объединение до 8-и дисководов в RAID 0, 1или 0+1;
- поддержка Hot Spare для замены "на лету" вышедшего из строя дисковода;
- возможность автоматической (без вмешательства оператора) замены неисправного дисковода;
- автоматический контроль целостности и идентичности (для RAID-1) данных;
- наличие пароля для доступа в BIOS;
- программа RAIDPlus представляющая информацию о состоянии дисководов в RAID;
- драйвера для DOS, Windows 95, NT 3.5x, 4.0