Принцип действия трансформатора. Трансформаторы тока назначение и принцип действия

Работа трансформатора основана на двух базовых принципах:

1. Изменяющийся во времени электрический ток создаёт магнитное поле (электромагнетизм)

2. Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)

Протекающий в первичной обмотке переменный ток создаёт переменный магнитный поток в магнитопроводе, изменения которого в свою очередь, проходя через вторичную обмотку, создают в ней переменную ЭДС.

Рис. 1 Схематическое устройство трансформатора. 1 - первичная обмотка, 2 - вторичная

Закон Фарадея

ЭДС, создаваемая во вторичной обмотке, может быть вычислена по закону Фарадея, который гласит, что:

N2 - число витков во вторичной обмотке,

Φ - суммарный магнитный поток, через один виток обмотки. Если витки обмотки расположены перпендикулярно линиям магнитного поля, то поток будет пропорционален магнитному полю B и площади S через которую он проходит.

ЭДС, создаваемая в первичной обмотке, соответственно:

U1 - мгновенное значение напряжения на концах первичной обмотки,

N1 - число витков в первичной обмотке.

Поделив уравнение U2 на U1, получим отношение:

Уравнения идеального трансформатора

Если вторичную обмотку подключить к нагрузке, то электрическая энергия будет передаваться из первичной цепи во вторичную. В идеале трансформатор всю поступающую энергию из первичной цепи трансформирует в магнитное поле и, затем, в энергию вторичной цепи. В этом случае поступающая энергия, равна преобразованной энергии.

P1 - мгновенное значение поступающей на трансформатор мощности, поступающей из первичной цепи,

P2 - мгновенное значение преобразованной трансформатором мощности, поступающей во вторичную цепь.

Соединив это уравнение с отношение напряжений на концах обмоток, получим уравнение идеального трансформатора:

Таким образом получаем, что при увеличении напряжения наконцах вторичной обмотки U2, уменьшается ток вторичной цепи I2.

Для преобразования сопротивления одной цепи к сопротивлению другой, нужно умножить величину на квадрат отношения. Например, сопротивление Z2 подключено к концам вторичной обмотки, его приведённое значение к первичной цепи будет . Данное правило справедливо также и для вторичной цепи: .

Работа трансформатора основана на явлении электромагнитной индукции. На одну из обмоток, называемую первичной обмоткой подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в магнитопроводе, сдвинутый по фазе, при синусоидальном токе, на 90° по отношению к напряжению в первичной обмотке. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку. Когда вторичные обмотки ни к чему не подключены (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток через первичную обмотку невелик, и определяется в основном её индуктивным сопротивлением. Напряжение индукции на вторичных обмотках в режиме холостого хода определяется отношением числа витков соответствующей обмотки w2 к числу витков первичной обмотки w1:


При подключении вторичной обмотки к нагрузке, по ней начинает течь ток. Этот ток также создаёт магнитный поток в магнитопроводе, причём он направлен противоположно магнитному потоку, создаваемому первичной обмоткой. В результате, в первичной обмотке нарушается компенсация ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке, до тех пор, пока магнитный поток не достигнет практически прежнего значения. В этом режиме отношение токов первичной и вторичной обмотки равно обратному отношению числа витков обмоток

отношение напряжений в первом приближении также остаётся прежним. В результате, мощность, потребляемая от источника в цепи первичной обмотки практически полностью передаётся во вторичную.

Схематично, выше сказанное можно изобразить следующим образом:

U1 → I1 → I1w1 → Ф → ε2 → I2

Мгновенный магнитный поток в магнитопроводе трансформатора определяется интегралом по времени от мгновенного значения ЭДС в первичной обмотке, и в случае синусоидального напряжения сдвинут по фазе на 90° по отношению к ЭДС. Наведенная во вторичных обмотках ЭДС пропорциональна первой производной от магнитного потока, и для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке.

Трансформатором называют статическое электромагнитное устройство, имеющее две или большее число индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.

Трансформаторы широко используют для следующих целей.

    Для передачи и распределения электрической энергии. Обычно на электростанциях генераторы переменного тока вырабатывают электрическую энергию при напряжении 6-24 кВ.

    Для питания различных цепей радио- и телевизионной аппаратуры; устройств связи, автоматики в телемеханики, электробытовых приборов; для разделения электрических цепей различных элементов этих устройств; для согласования напряжений

    Для включения электроизмерительных приборов и некоторых аппаратов, например реле, в электрические цепи высокого напряжения или в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопасности. Трансформаторы, применяемые для этой цели, называют измерительными. Они имеют сравнительно небольшую мощность, определяемую мощностью, потребляемой электроизмерительными приборами, реле и др.

Принцип действия трансформатора

Электромагнитная схема однофазного двухобмоточного трансформатора состоит из двух обмоток (рис. 2.1), разме­щенных на замкнутом магнитопроводе, который выполнен из ферромагнитного материала. Применение ферромагнитного магнитопровода позволяет усилить электромагнитную связь между обмотками, т. е. уменьшить магнитное сопротивление контура, по которому проходит магнитный поток машины. Первичную обмотку 1 подключают к источнику переменного тока - электрической сети с напряжением u 1 . Ко вторичной обмотке 2 присоединяют сопротивление нагрузки Z H .

Обмотку более высокого напряжения называют обмоткой высшего напряжения (ВН), а низкого напряжения - обмоткой низшего напряжения (НН). Начала и концы обмотки ВН обозначают буквами А и X; обмотки НН - буквами а и х.

При подключении к сети в первичной обмотке возникает переменный ток i 1 , который создает переменный магнитный поток Ф, замыкающийся по магнитопроводу. Поток Ф индуцирует в обеих обмотках переменные ЭДС - е 1 и е 2 , пропорциональные, согласно закону Максвелла, числам витков w 1 и w 2 соответствующей обмотки и скорости изменения потока d Ф/dt .

Таким образом, мгновенные значения ЭДС, индуцированные в каждой обмотке,

е 1 = - w 1 dФ/dt; е2= -w 2 dФ/dt .

Следовательно, отношение мгновенных и действующих ЭДС в обмотках определяется выражением

Следовательно, подбирая соответствующим образом числа витков обмоток, при заданном напряжении U 1 можно получить желаемое напряжение U 2 . Если необходимо повысить вторичное напряжение, то число витков w 2 берут больше числа w 1 ; такой трансформатор называют повышающим. Если требуется уменьшить напряжение U 2 , то число витков w 2 берут мень­шим w 1 ; такой трансформатор называют понижающим,

Отношение ЭДС Е ВН обмотки высшего напряжения к ЭДС Е НН обмотки низшего напряжения (или отношение их чисел витков) называют коэффициентом трансформации

k = Е ВН /Е НН = w ВН /w НН

Коэффициент k всегда больше единицы.

В системах передачи и распределения энергии в ряде слу­чаев применяют трехобмоточные трансформаторы, а в устрой­ствах радиоэлектроники и автоматики - многообмоточные трансформаторы. В таких трансформаторах на магнитопроводе размещают три или большее число изолированных друг от друга обмоток, что дает возможность при питании одной из обмоток получать два или большее число различных напряжений (U 2 , U 3 , U 4 и т.д.) для электроснабжения двух или большего числа групп потребителей. В трехобмоточных силовых трансформаторах различают обмотки высшего, низшего и среднего (СН) напряжений.

В трансформаторе преобразуются только напряжения и токи. Мощность же остается приблизительно постоянной (она несколько уменьшается из-за внутренних потерь энергии в трансформаторе). Следовательно,

I 1 /I 2 ≈ U 2 /U 1 ≈ w 2 /w 1 .

При увеличении вторичного напряжения трансформатора в k раз по сравнению с первичным, ток i 2 во вторичной обмотке соответственно уменьшается в k раз.

Трансформатор может работать только в цепях переменного тока. Если первичную обмотку трансформатора под­ключить к источнику постоянного тока, то в его магнито-проводе образуется магнитный поток, постоянный во времени по величине и направлению. Поэтому в первичной и вторичной обмотках в установившемся режиме не индуцируются ЭДС, а следовательно, не передается электрическая энергия из первичной цепи во вторичную. Такой режим опасен для трансформатора, так как из-за отсутствия ЭДС E 1 первич­ной обмотке ток I 1 =U 1 R 1 весьма большой.

Важным свойством трансформатора, используемым в устройствах автоматики и радиоэлектроники, является способность его преобразовывать нагрузочное сопротивление. Если к источнику переменного тока подключить сопротивление R через трансформатор с коэффициентом трансформации к, то для цепи источника

R" = P 1 /I 1 2 ≈ P 2 /I 1 2 ≈ I 2 2 R/I 1 2 ≈ k 2 R

где Р 1 - мощность, потребляемая трансформатором от источ­ника переменного тока, Вт; Р 2 = I 2 2 R P 1 - мощность, по­требляемая сопротивлением R от трансформатора.

Таким образом, трансформатор изменяет значение сопро­тивления R в k 2 раз. Это свойство широко используют при разработке различных электрических схем для согласования сопротивлений нагрузки с внутренним сопротивлением источ­ников электрической энергии.

ТРАНСФОРМАТОРЫ

НАЗНАЧЕНИЕ ТРАНСФОРМАТОРОВ И ИХ ПРИМЕНЕНИЕ

Трансформатор предназначен для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Увеличение напряжения осуществляется с помощью повышающих трансформаторов, уменьшение — понижающих.

Трансформаторы применяют в линиях электропередачи, в технике связи, в автоматике, измерительной технике и других областях.

В соответствии с назначением различают:

Силовые трансформаторы для питания электрических двигателей и осветительных сетей;

Специальные трансформаторы для питания сварочных аппаратов, электропечей и других потребителей особого назначения;

Измерительные трансформаторы для подключения измерительных приборов.

По числу фаз трансформаторы делятся на одно- и трехфазные. Трансформаторы, используемые в технике связи, подразделяют на низко- и высокочастотные.

Расчетные мощности трансформаторов различны — от долей вольт-ампер до десятков тысяч киловольт-ампер; рабочие частоты — от единиц герц до сотен килогерц.

Трансформатор — простой, надежный и экономичный электрический аппарат. Он не имеет движущихся частей и скользящих контактных соединений, его КПД достигает 99%. КПД трансформатора η, определяемый как отношение мощности на выходе Р 2 к мощности на входе Р 1 , зависит от нагрузки.

УСТРОЙСТВО ТРАНСФОРМАТОРА

Трансформатор представляет собой замкнутый магнитопровод, на котором расположены две или несколько обмоток. В маломощных высокочастотных трансформаторах, используемых в радиотехнических схемах, магнитопроводом может являться воздушная среда.

Для уменьшения потерь на гистерезис магнитопровод изготовляют из магнитомягкого материала — трансформаторной стали, имеющей узкую петлю намагничивания. Для уменьшения потерь на вихревые токи в материал магнитопровода вводят примесь кремния, повышающую его электрическое сопротивление, а сам магнитопровод собирают из отдельных листов электротехнической стали толщиной 0,35—0,5 мм, изолированных друг от друга теплостойким лаком или специальной бумагой.

Различают трансформаторы стержневого (рис. 7.1, а) и броневого (рис. 7.1, б) типов.

Рис. 7.1. Конструкция однофазного маломощного трансформатора стержневого (а) и броневого (б) типов

Последний хорошо защищает обмотки катушек от механических повреждений. Верхнюю часть магнитопровода, называемую ярмом, крепят после насадки на стержень катушек (обмоток). Стержни и ярмо соединяют очень плотно, чтобы исключить воздушные зазоры на стыках. В маломощных трансформаторах находят широкое применение кольцевые магнитопроводы, которые собирают из штампованных колец или навивают из длинной ленты. В этих магнитопроводах отсутствует воздушный зазор, поэтому магнитный поток рассеяния мал. В трансформаторах, рассчитанных на повышенные частоты, кольцевые магнитопроводы часто прессуют из ферромагнитного порошка, смешанного с изоляционным лаком.

Обмотки трансформаторов изготовляют из медного провода и располагают на одном и том же или на разных стержнях, рядом или одну под другой. В последнем случае непосредственно к стержню примыкает обмотка низшего напряжения, а поверх нее размещается обмотка высшего напряжения.

Обмотку трансформатора, к которой подводится напряжение питающей сети, называют первичной , а обмотку, к которой подсоединяется нагрузка,— вторичной . На сердечнике может быть размещено несколько вторичных обмоток с разным числом витков, что позволяет получить различные по значению вторичные напряжения.

При работе трансформатора за счет токов в обмотках, а также вследствие перемагничивания магнитопровода и вихревых токов выделяется теплота. Трансформаторы небольшой мощности (до 10 кВ-А), для которых достаточно воздушного охлаждения, называют сухими.

Рис. 7.2. Трехфазный силовой трансформатор Рис. 7.3. Общий вид автотрансформатора

I — ручка скользящего контакта; 2— скользящий контакт; 3 — обмотка

В мощных трансформаторах применяют масляное охлаждение (рис. 7.2). Магнитопровод 1 с обмотками 2, 3 размещается в баке 4, заполненном минеральным (трансформаторным) маслом. Масло не только отводит теплоту за счет конвекции или принудительной циркуляции, но и является хорошим диэлектриком (изолятором). Масляные трансформаторы надежны в работе и имеют меньшие размеры и массу по сравнению с сухими трансформаторами той же мощности. При изменении температуры объем масла меняется. При повышении температуры излишек масла поглощается расширителем 5, а при понижении температуры масло из расширителя возвращается в основной бак.

В тех случаях, когда требуется плавно изменять вторичное напряжение, применяют скользящий контакт для изменения числа витков обмотки (примерно так же, как это делается в ползунковых реостатах). Скользящий контакт широко используется в автотрансформаторах, рассчитанных на регулирование напряжения в небольших пределах (рис. 7.3).

ФОРМУЛА ТРАНСФОРМАТОРНОЙ ЭДС

Рассмотрим катушку (рис. 7.4), к зажимам которой подведено синусоидальное напряжение. Пренебрежем сопротивлением катушки и потерями на гистерезис и вихревые токи. Тогда приложенное к катушке напряжение u = U m sinωt будет уравновешиваться только ЭДС самоиндукции e = E m sin ω t .

Это очевидно, так как полностью уравновешивать друг друга могут только равные и одинаково изменяющиеся во времени величины.

В соответствии с законом электромагнитной индукции е = — w ; следовательно, Е m sin ωt= —ω.

Это дифференциальное уравнение позволяет найти зависимость между ЭДС обмотки и магнитным потоком в магнитопроводе:

d Ф= - sin ωt dt

Проинтегрируем левую и правую части этого выражения:

Ф = - ∫ sin ω t dt= cos ωt +A

Здесь постоянная интегрирования A = 0, так как синусоидальная ЭДС не может создать постоянную составляющую магнитного потока. Таким образом,

E= cos ω t = Ф m cos ω t,

где Ф m = Е m /ω w —амплитудное значение переменного магнитного потока в магнитопроводе катушки. Подставив в последнее равенство Е m = √2 E и ω = 2πf, получим

Ф m =, или Е=

т. е. Е = 4,44 fw Ф m . Это выражение, связывающее действующее значение ЭДС в обмотке с амплитудой магнитного потока в магнитопроводе, принято называть формулой трансформаторной ЭДС. Она играет важную роль в теории трансформаторов и электрических машин переменного тока.

Рис. 7.4. Схема катушки с ферромагнитным сердечником в цепи переменного тока

ПРИНЦИП ДЕЙСТВИЯ ОДНОФАЗНОГО ТРАНСФОРМАТОРА.

КОЭФФИЦИЕНТ ТРАНСФОРМАЦИИ.

Работа трансформатора основана на явлении взаимной индукции, которое является следствием закона электромагнитной индукции.

Рассмотрим более подробно сущность процесса трансформации тока и напряжения.

При подключении первичной обмотки трансформатора к сети переменного тока напряжением U 1 по обмотке начнет проходить ток I 1 (рис. 7.5), который создаст в магнитопроводе переменный магнитный поток Ф. Магнитный поток, пронизывая витки вторичной обмотки, индуцирует в ней ЭДС E 2 , которую можно использовать для питания нагрузки.

Поскольку первичная и вторичная обмотки трансформатора пронизываются одним и тем же магнитным потоком Ф, выражения индуцируемых в обмотке ЭДС можно записать в виде

Е 1 = 4,44fw 1 Ф m

Е 2 = 4,44 fw 2 Ф m

где f — частота переменного тока; w 1 , w 2 — число витков обмоток.

Е 2 /Е 1 = w 2 / w 2 = k .

Отношение чисел витков обмоток трансформатора называют коэффициентом трансформации k .

Таким образом, коэффициент трансформации показывает, как относятся действующие значения ЭДС вторичной и первичной обмоток.

На основании закона электромагнитной индукции можно написать

e 1 = — w 1 , e 2 = — w 2

Поделив одно равенство на другое, получим e 2 / e 1 = w 2 / w 1 = k

Следовательно, в любой момент времени отношение мгновенных значений ЭДС вторичной и первичной обмоток равно коэффициенту трансформации. Нетрудно понять, что это возможно только при полном совпадении по фазе ЭДС е 1 и е 2 .

Если цепь вторичной обмотки трансформатора разомкнута (режим холостого хода), то напряжение на зажимах обмотки равно ее ЭДС: U 2 = E 2 , а напряжение источника питания почти полностью уравновешивается ЭДС первичной обмотки U ≈ E 1 . Следовательно, можно написать, что k = E 2 / E 1 ≈U 2 /U 1 .

Рис. 7.5. Принципиальная схема однофазного трансформатора

Таким образом, коэффициент трансформации может быть определен на основании измерений напряжения на входе и выходе ненагруженного трансформатора. Отношение напряжений на обмотках ненагруженного трансформатора указывается в его паспорте.

Учитывая высокий КПД трансформатора, можно полагать, что S t ≈ S 2 , где S 1 = U 1 I 1 — мощность, потребляемая из сети; S 2 = U 2 I 2 — мощность, отдаваемая в нагрузку.

Таким образом, U 1 I 1 ≈ U 2 I 2 , откуда I 1 / I 2 ≈ U 2 / U 1 = k .

Отношение токов первичной и вторичной обмоток приближенно равно коэффициенту трансформации, поэтому ток I 2 во столько раз увеличивается (уменьшается), во сколько раз уменьшается (увеличивается) U 2 .

ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ

В линиях электропередачи используют в основном трехфазные силовые трансформаторы. Внешний вид, конструктивные особенности и компоновка основных элементов этого трансформатора представлены на рис. 7.2. Магнитопровод трехфазного трансформатора имеет три стержня, на каждом из которых размещаются две обмотки одной фазы (рис. 7.6).

Рис. 7.6. Размещение обмоток на сердечнике трехфазного трансформатора

Для подключения трансформатора к линиям электропередачи на крышке бака имеются вводы, представляющие собой фарфоровые изоляторы, внутри которых проходят медные стержни. Вводы высшего напряжения обозначают буквами А, В, С, вводы низшего напряжения — буквами а, b , с. Ввод нулевого провода располагают слева от ввода а и обозначают О (рис. 7.7).

Принцип работы и электромагнитные процессы в трехфазном трансформаторе аналогичны рассмотренным ранее. Особенностью трехфазного трансформатора является зависимость коэффициента трансформации линейных напряжений от способа соединения обмоток.

Применяются главным образом три способа соединения обмоток трехфазного трансформатора: 1) соединение первичных и вторичных обмоток звездой (рис. 7.8, а); 2) соединение первичных обмоток звездой, вторичных — треугольником (рис. 7.8, б); 3) соединение первичных обмоток треугольником, вторичных—звездой (рис. 7.8, в).

Рис. 7.8. Способы соединения обмоток трехфазного трансформатора

Обозначим отношение чисел витков обмоток одной фазы буквой k , что соответствует коэффициенту трансформации однофазного трансформатора и может быть выражено через отношение фазных напряжений: k = w 2 / w 1 ≈ U 2ф / U 1ф

Обозначим коэффициент трансформации линейных напряжений буквой с.

При соединении обмоток по схеме звезда — звезда

При соединении обмоток по схеме звезда — треугольник

с =.

При соединении обмоток по схеме треугольник— звезда

Таким образом, при одном и том же числе витков обмоток трансформатора можно в √3 раза увеличить или уменьшить его коэффициент трансформации, выбирая соответствующую схему соединения обмоток.

АВТОТРАНСФОРМАТОРЫ И ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ

Принципиальная схема автотрансформатора изображена на рис. 7.9.

У автотрансформатора часть витков первичной обмотки используется в качестве вторичной обмотки, поэтому помимо магнитной связи имеется электрическая связь между первичной и вторичной цепями. В соответствии с этим энергия из первичной цепи во вторичную передается как с помощью магнитного потока, замыкающегося по магнитопроводу, так и непосредственно по проводам. Поскольку формула трансформаторной ЭДС применима к обмоткам автотрансформатора так же, как и к обмоткам трансформатора, коэффициент трансформации автотрансформатора выражается известными отношениями

k = w 2 /w l =E 2 /E l ≈ U 2 /U 1 ≈I 1 /I 2

Вследствие электрического соединения обмоток через часть витков, принадлежащую одновременно первичной и вторичной цепям, проходят токи I 1 и I 2 , которые направлены встречно и при небольшом коэффициенте трансформации мало отличаются друг от друга по значению. Поэтому их разность оказывается небольшой и обмотку w 2 можно выполнить из тонкого провода. Таким образом, при k = 0,5 - 2 экономится значительное количество меди. При больших или меньших коэффициентах трансформации это преимущество автотрансформатора исчезает, так как та часть обмотки, по которой проходят встречные токи I 1 и I 2 , уменьшается до нескольких витков, а сама разность токов увеличивается.

Электрическое соединение первичной и вторичной цепей повышает опасность при эксплуатации аппарата, так как при пробое изоляции в понижающем автотрансформаторе оператор может оказаться под высоким напряжением первичной цепи.

Автотрансформаторы применяют для пуска мощных двигателей переменного тока, регулирования напряжения в осветительных сетях, а также в других случаях, когда необходимо регулировать напряжение в небольших пределах.

Измерительные трансформаторы напряжения и тока используют для включения измерительных приборов, аппаратуры автоматического регулирования и защиты в высоковольтные цепи. Они позволяют уменьшить размеры и массу измерительных устройств, повысить безопасность обслуживающего персонала, расширить пределы измерения приборов переменного тока.

Измерительные трансформаторы напряжения служат для включения вольтметров и обмоток напряжения измерительных приборов (рис. 7.10). Поскольку эти обмотки имеют большое сопротивление и потребляют маленькую мощность, можно считать, что трансформаторы напряжения работают в режиме холостого хода.

Измерительные трансформаторы тока используют для включения амперметров и токовых катушек измерительных приборов (рис. 7.11). Эти катушки имеют очень маленькое сопротивление, поэтому трансформаторы тока практически работают в режиме короткого замыкания.

Рис. 7.10. Схема включения и Рис. 7.11. Схема включения и

условное обозначение измери- условное обозначение изме-

тельного трансформатора напря- рительного трансформатора тока
жения

Результирующий магнитный поток в магнитопроводе трансформатора равен разности магнитных потоков, создаваемых первичной и вторичной обмотками. В нормальных условиях работы трансформатора тока он невелик. Однако при размыкании цепи вторичной обмотки в сердечнике будет существовать только магнитный поток первичной обмотки, который значительно превышает разностный магнитный поток. Потери в сердечнике резко возрастут, трансформатор перегреется и выйдет из строя. Кроме того, на концах оборванной вторичной цепи появится большая ЭДС, опасная для работы оператора. Поэтому трансформатор тока нельзя включать в линию без подсоединенного к нему измерительного прибора. Для повышения безопасности обслуживающего персонала кожух измерительного трансформатора должен быть тщательно заземлен.

СВАРОЧНЫЕ ТРАНСФОРМАТОРЫ

К источникам питания сварочных аппаратов предъявляются специфические требования: при заданной мощности они должны создавать большие токи в нагрузке, причем резкое изменение сопротивления нагрузки не должно существенно сказываться на значении сварочного тока.

Относительно невысокие напряжения при больших токах обеспечивают не только эффективное тепловыделение в сварочном контакте, но и безопасность сварщика, работающего обычно среди металлических конструкций с высокой электропроводностью.

В соответствии с рассмотренными требованиями сварочные трансформаторы обеспечивают понижение напряжения от 220 или 380 В до 60—70 В. Такое напряжение на зажимах вторичной обмотки устанавливается при холостом ходе сварочного трансформатора. В процессе сварки оно колеблется от максимального значения 60—70 В до значений, близких к нулю. Сопротивление электрической дуги, возникающей при сварке, изменяется при перемещениях руки сварщика. Если бы напряжение на зажимах вторичной обмотки трансформатора поддерживалось постоянным, возникали бы резкие колебания тока в цепи и регулировать тепловыделение было бы невозможно. Поэтому сварочный трансформатор устроен так, что при резком уменьшении сопротивления дуги ток в цепи увеличивается незначительно, а произведение I 2 R , определяющее количество теплоты, сохраняется на требуемом уровне.

В соответствии с законом Ома при резком уменьшении сопротивления и незначительном увеличении тока напряжение на дуге снижается. Сварочный трансформатор имеет крутопадающую внешнюю характеристику.

Сварочный трансформатор выдерживает короткие замыкания, возникающие в случае прикосновения электрода к сварочному шву. Ток короткого замыкания, как показывает внешняя характеристика, ограничен. Вторичная обмотка трансформатора рассчитана на достаточно длительное протекание этого тока.

При постоянном напряжении питающей сети быстрое снижение выходного напряжения трансформатора при незначительном возрастании тока может быть достигнуто только за счет увеличения внутреннего падения напряжения в обмотках трансформатора. Для этого нужно увеличить сопротивление обмоток.

Сварочные трансформаторы изготовляют с большим регулируемым индуктивным сопротивлением обмоток. При этом увеличивают не активное сопротивление проводов, а индуктивное сопротивление рассеяния обмоток, так как увеличение активного сопротивления привело бы к возрастанию потерь энергии и перегреву трансформатора.

Для увеличения индуктивного сопротивления рассеяния обмоток увеличивают поток рассеяния, вводя в магнитопровод трансформатора шунтирующий магнитопроводящий стержень, через который замыкается часть основного магнитного потока. Изменяя значение воздушного зазора в шунтирующем стержне, можно изменять магнитный поток рассеяния. Средний подвижный стержень, выполняющий функции магнитного шунта, предусмотрен, например, в конструкции отечественного сварочного трансформатора СТАН-1.

Применяют и другие способы изменения индуктивного сопротивления рассеяния обмоток. Так, в трансформаторе СТЭ в цепь вторичной обмотки включают специальный дроссель с регулируемым воздушным зазором, а в трансформаторе ТС-500 изменяют расстояние между первичной и вторичной обмотками.

Содержание:

В электротехнике довольно часто возникает необходимость измерения величин с большими значениями. Для решения этой задачи применяются трансформаторы тока, назначение и принцип действия которых делает возможным проведение любых измерений. С этой целью выполняется последовательное включение первичной обмотки устройства в цепь с переменным током, значение которого необходимо измерить. Вторичная обмотка подключается к измерительным приборам. Между токами в первичной и вторичной обмотке существует определенная пропорция. Все трансформаторы этого типа отличаются высокой точностью. В их конструкцию входит две и более вторичных обмоток, к которым подключаются защитные устройства, измерительные средства и приборы учета.

Что такое трансформатор тока?

К трансформаторам тока относятся устройства, в которых вторичный ток, применяемый для измерений, находится в пропорциональном соотношении с первичным током, поступающим из электрической сети.

Включение в цепь первичной обмотки осуществляется последовательно с токопроводом. Подключение вторичной обмотки выполняется на какую-либо нагрузку в виде измерительных приборов и . Между токами обеих обмоток возникает пропорциональная зависимость, соответствующая количеству витков. В трансформаторных устройствах высокого напряжения выполняется изоляция между обмотками из расчета на полное рабочее напряжение. Как правило производится заземление одного из концов вторичной обмотки, поэтому потенциалы обмотки и земли будут примерно одинаковыми.

Все трансформаторы тока предназначены для выполнения двух основных функций: измерения и защиты. В некоторых устройствах обе функции могут совмещаться.

  • Измерительные трансформаторы передают полученную информацию к подключенным измерительным приборам. Они устанавливаются в цепях с высоким напряжением, в которые невозможно включить напрямую приборы для измерений. Поэтому только во вторичную обмотку трансформатора выполняется подключение , счетчиков, токовых обмоток ваттметров и прочих приборов учета. В результате, трансформатор преобразует переменный ток даже очень высокого значения, в переменный ток с показателями, наиболее приемлемыми для использования обычных измерительных приборов. Одновременно обеспечивается изоляция измерительных приборов от цепей с высоким напряжением, повышается электробезопасность обслуживающего персонала.
  • Защитные трансформаторные устройства в первую очередь передают полученную измерительную информацию на устройства управления и защиты. С помощью защитных трансформаторов, переменный ток любого значения преобразуется в переменный ток с наиболее подходящим значением, обеспечивающим питание устройств релейной защиты. Одновременно выполняется изоляция реле, к которых имеется доступ персонала, от цепей высокого напряжения.

Назначение трансформаторов

Трансформаторы тока относятся к категории специальных вспомогательных приборов, используемых совместно с различными измерительными устройствами и реле в цепях переменного тока. Главной функцией таких трансформаторов является преобразование любого значения тока до величин, наиболее удобных для проведения измерений, обеспечения питания отключающих устройств и обмоток реле. За счет изоляции приборов, обслуживающий персонал оказывается надежно защищен от поражения током высокого напряжения.

Измерительные трансформаторы тока предназначены для электрических цепей с высоким напряжением, когда отсутствует возможность прямого подключения измерительных приборов. Их основное назначение заключается в передаче полученных данных об электрическом токе на измерительные устройства, подключаемые к вторичной обмотке.

Немаловажной функцией трансформаторов является контроль над состоянием электрического тока в цепи, к которой они подключены. Во время подключения к силовому реле, выполняются постоянные проверки сетей, наличие и состояние заземления. Когда ток достигает аварийного значения, включается защита, отключающая все используемое оборудование.

Принцип работы

Принцип работы трансформаторов тока основан на . Напряжение из внешней сети поступает на силовую первичную обмотку с определенным количеством витков и преодолевает ее полное сопротивление. Это приводит к появлению вокруг катушки магнитного потока, улавливаемого магнитопроводом. Данный магнитный поток располагается перпендикулярно по отношению к направлению тока. За счет этого потери электрического тока в процессе преобразования будут минимальными.

При пересечении витков вторичной обмотки, расположенных перпендикулярно, происходит активация магнитным потоком электродвижущей силы. Под влиянием ЭДС появляется ток, который вынужден преодолевать полное сопротивление катушки и выходной нагрузки. Одновременно на выходе вторичной обмотки наблюдается падение напряжения.

Классификация трансформаторов тока

Все трансформаторы тока можно классифицировать, в зависимости от их особенностей и технических характеристик:

  1. По назначению. Устройства могут быть измерительными, защитными или промежуточными. Последний вариант используется при включении измерительных приборов в токовые цепи релейной защиты и других аналогичных схемах. Кроме того, существуют лабораторные трансформаторы тока, отличающиеся высокой точностью и множеством .
  2. По типу установки. Существуют трансформаторные устройства для наружной и внутренней установки, накладные и переносные. Некоторые виды приборов могут встраиваться в машины, электрические аппараты и другое оборудование.
  3. В соответствии с конструкцией первичной обмотки. Устройства разделяются на одновитковые или стержневые, многовитковые или катушечные, а также шинные, например, ТШ-0,66.
  4. Внутренняя и наружная установка трансформаторов предполагает проходные и опорные способы монтажа этих устройств.
  5. Изоляция трансформаторов бывает сухая, с применением бакелита, фарфора, и других материалов. Кроме того, применяется обычная и конденсаторная бумажно-масляная изоляция. В некоторых конструкциях используется заливка компаундом.
  6. По количеству ступеней трансформации, устройства могут быть одно- или двухступенчатыми, то есть, каскадными.
  7. Номинальное рабочее напряжение трансформаторов может быть до 1000 В или более 1000 В.

Все характерные классификационные признаки присутствуют в тока, состоят из определенных .

Параметры и характеристики

Каждый трансформатор тока обладает индивидуальными параметрами и техническими характеристиками, определяющими область применения этих устройств.

Номинальный ток . Позволяет устройству работать в течение длительного времени без перегрева. В таких трансформаторах имеется значительный запас по нагреву, а нормальная работа возможна при перегрузках до 20%.

Номинальное напряжение . Его значение должно обеспечивать нормальную работу трансформатора. Именно этот показатель влияет на качество изоляции между обмотками, одна из которых находится под высоким напряжением, а другая заземлена.

Коэффициент трансформации . Представляет собой отношение между токами в первичной и вторичной обмотке и определяется по специальной формуле. Его действительное значение будет отличаться от номинального в связи с определенными потерями в процессе трансформации.

Токовая погрешность . Возникает в трансформаторе под влиянием тока намагничивания. Абсолютное значение первичного и вторичного тока различается между собой как раз на эту величину. Ток намагничивания приводит к созданию в сердечнике магнитного потока. При его возрастании, токовая погрешность трансформатора также увеличивается.

. Определяет нормальную работу устройства в своем классе точности. Она измеряется в Омах и в некоторых случаях может заменяться таким понятием, как номинальная мощность. Значение тока является строго нормированным, поэтому значение мощности трансформатора полностью зависит лишь от нагрузки.

Номинальная предельная кратность . Представляет собой кратность первичного тока к его номинальному значению. Погрешность такой кратности может достигать до 10%. Во время расчетов сама нагрузка и ее коэффициенты мощности должны быть номинальными.

Максимальная кратность вторичного тока . Представлена в виде отношения максимального вторичного тока и его номинального значения, когда действующая вторичная нагрузка является номинальной. Максимальная кратность связана со степенью насыщения магнитопровода, при котором первичный ток продолжает увеличиваться, а значение вторичного тока не меняется.

Возможные неисправности трансформаторов тока

У трансформатора тока, включенного под нагрузку, иногда возникают неисправности и даже аварийные ситуации. Как правило, это связано с нарушениями электрического сопротивления изоляции обмоток, снижением их проводимости под влиянием повышенных температур. Негативное влияние оказывают случайные механические воздействия или некачественно выполненный монтаж.

В процессе работы оборудования наиболее часто происходит повреждение изоляции, вызывающее межвитковые замыкания обмоток, что существенно снижает передаваемую мощность. Токи утечки могут появиться в результате случайно созданных цепей, вплоть до возникновения короткого замыкания.

С целью предупреждения аварийных ситуаций, специалистами с помощью тепловизоров периодически проверяется вся действующая схема. Это позволяет своевременно устранить дефекты нарушения контактов, снижается перегрев оборудования. Наиболее сложные испытания и проверки проводятся в специальных лабораториях.

Генераторы, которые стоят на электростанциях, вырабатывают очень мощное ЭДС. На практике такое напряжения редко когда бывает нужно. Поэтому такое напряжение необходимо преобразовывать.

Трансформаторы

Для преобразования напряжения используются устройства, называемы трансформаторами. Трансформаторы могут как и повысить напряжение, так и понизить его. Существуют также стабилизирующие трансформаторы, которые не повышают и не понижают напряжение.

Рассмотрим устройство трансформатора на следующем рисунке.

картинка

Устройство и работа трансформатора

Трансформатор состоит из двух катушек с проволочными обмотками. Эти катушки надевают на стальной сердечник. Сердечник не является монолитным, а собирается из тонких пластин.

Одна из обмоток называется первичной. К этой обмотке подсоединяют переменное напряжение, которое идет от генератора, и которое нужно преобразовать. Другая обмотка называется вторичной. К ней подсоединяют нагрузку. Нагрузка это все приборы и устройства, которые потребляют энергию.

На следующем рисунке представлено условное обозначение трансформатора.

картинка

Работа трансформатора основана на явлении электромагнитной индукции. Когда через первичную обмотку проходит переменный ток, в сердечнике возникает переменный магнитный поток. А так как сердечник общий, магнитный поток индуцирует ток и в другой катушке.

В первичной обмотке трансформатора имеется N1 витков, её полная ЭДС индукции равняется e1 = N1*e, где е – мгновенное значение ЭДС индукции во всех витках. е одинаково для всех витков обоих катушек.

Во вторичной обмотке имеется N2 витков. В ней индуцируется ЭДС e2 = N2*e.

Следовательно:

Сопротивлением обмоток пренебрегаем. Следовательно, значения ЭДС индукции и напряжения будут приблизительно равны по модулю:

При разомкнутой цепи вторичной обмотки в ней не идет ток, следовательно:

Мгновенные значения ЭДС e1, e2 колеблются в одной фазе. Их отношение можно заменить отношением значений действующих ЭДС: E1 и E2. А отношение мгновенных значений напряжения заменим действующими значениями напряжения. Получим:

E1/E2 ≈U1/U2 ≈N1/N2 = K

К – коэффициент трансформации. При K>0 трансформатор повышает напряжение, при K<0 – трансформатор понижает напряжение. Если же к концам вторичной обмотки подключить нагрузку, то во второй цепи появится переменный ток, который вызовет появление в сердечнике еще одного магнитного потока.

Это магнитный поток будет уменьшать изменение магнитного потока сердечника. Для нагруженного трансформатора будет справедлива следующая формула:

U1/U2 ≈ I2/I1.

То есть при повышении напряжения в несколько раз, мы во столько же раз уменьшим силу тока.