Модифицированный код хаффмана пример. Коды Хаффмана: примеры, применение

На данный момент мало кто задумывается над тем, как же работает сжатие файлов. По сравнению с прошлым пользование персональным компьютером стало намного проще. И практически каждый человек, работающий с файловой системой, пользуется архивами. Но мало кто задумывается над тем, как они работают и по какому принципу происходит сжатие файлов. Самым первым вариантом этого процесса стали коды Хаффмана, и их используют по сей день в различных популярных архиваторах. Многие пользователи даже не задумываются, насколько просто происходит сжатие файла и по какой схеме это работает. В данной статье мы рассмотрим, как происходит сжатие, какие нюансы помогают ускорить и упростить процесс кодирования, а также разберемся, в чем принцип построения дерева кодирования.

История алгоритма

Самым первым алгоритмом проведения эффективного кодирования электронной информации стал код, предложенный Хаффманом еще в середине двадцатого века, а именно в 1952 году. Именно он на данный момент является основным базовым элементом большинства программ, созданных для сжатия информации. На данный момент одними из самых популярных источников, использующих этот код, являются архивы ZIP, ARJ, RAR и многие другие.

Также данный алгоритм Хаффмана применяется для и других графических объектов. Ну и все современные факсы также используют кодирование, изобретенное в 1952 году. Несмотря на то что со времени создания кода прошло так много времени, по сей день его используют в самых новых оболочках и на оборудовании старого и современного типов.

Принцип эффективного кодирования

В основу алгоритма по Хаффману входит схема, позволяющая заменить самые вероятные, чаще всего встречающиеся символы системы. А те, которые встречаются реже, заменяются более длинными кодами. Переход на длинные коды Хаффмана происходит только после того, как система использует все минимальные значения. Такая методика позволяет минимизировать длину кода на каждый символ исходного сообщения в целом.

Важным моментом является то, что в начале кодирования вероятности появления букв должны быть уже известны. Именно из них и будет составляться конечное сообщение. Исходя из этих данных, осуществляется построение кодового дерева Хаффмана, на основе которого и будет проводиться процесс кодирования букв в архиве.

Код Хаффмана, пример

Чтобы проиллюстрировать алгоритм, возьмем графический вариант построения кодового дерева. Чтобы использование этого способа было эффективным, стоит уточнить определение некоторых значений, необходимых для понятия данного способа. Совокупность множества дуг и узлов, которые направлены от узла к узлу, принято называть графом. Само дерево является графом с набором определенных свойств:

  • в каждый узел может входить не больше одной из дуг;
  • один из узлов должен быть корнем дерева, то есть в него не должны входить дуги вообще;
  • если от корня начать перемещение по дугам, этот процесс должен позволять попасть совершенно в любой из узлов.

Существует также такое понятие, входящее в коды Хаффмана, как лист дерева. Он представляет собой узел, из которого не должно выходить ни одной дуги. Если два узла соединены дугой, то один из них является родителем, другой ребенком, в зависимости от того, из какого узла дуга выходит, и в какой входит. Если два узла имеют один и тот же родительский узел, их принято называть братскими узлами. Если же, кроме листьев, у узлов выходит по несколько дуг, то это дерево называется двоичным. Как раз таким и является дерево Хаффмана. Особенностью узлов данного построения является то, что вес каждого родителя равен сумме веса всех его узловых детей.

Алгоритм построения дерева по Хаффману

Построение кода Хаффмана делается из букв входного алфавита. Образуется список тех узлов, которые свободны в будущем кодовом дереве. Вес каждого узла в этом списке должен быть таким же, как и вероятность возникновения буквы сообщения, соответствующей этому узлу. При этом среди нескольких свободных узлов будущего дерева выбирается тот, который весит меньше всего. При этом если минимальные показатели наблюдаются в нескольких узлах, то можно свободно выбирать любую из пар.

После чего происходит создание родительского узла, который должен весить столько же, сколько весит сумма этой пары узлов. После этого родителя отправляют в список со свободными узлами, а дети удаляются. При этом дуги получают соответствующие показатели, единицы и нули. Этот процесс повторяется ровно столько, сколько нужно, чтобы оставить только один узел. После чего выписываются по направлению сверху вниз.

Повышение эффективности сжатия

Чтобы повысить эффективность сжатия, нужно во время построения дерева кода использовать все данные относительно вероятности появления букв в конкретном файле, прикрепленном к дереву, и не допускать того, чтобы они были раскиданы по большому количеству текстовых документов. Если предварительно пройтись по этому файлу, можно сразу просчитать статистику того, насколько часто встречаются буквы из объекта, подлежащего сжиманию.

Ускорение процесса сжатия

Чтобы ускорить работу букв нужно проводить не по показателям вероятности появления той или иной буквы, а по частоте ее встречаемости. Благодаря этому алгоритм становится проще, и работа с ним значительно ускоряется. Также это позволяет избежать операций, связанных с плавающими запятыми и делением.

Кроме того, работая в таком режиме, динамический код Хаффмана, а точнее сам алгоритм, не подлежит никаким изменениям. В основном это связанно с тем, что вероятности имеют прямую пропорциональность частотам. Стоит обратить особое внимание на то, что конечный вес файла или так называемого корневого узла будет равен сумме количества букв в объекте, подлежащем обработке.

Заключение

Коды Хаффмана - простой и давно созданный алгоритм, который до сих пор используется многими известными программами и компаниями. Его простота и понятность позволяют добиться эффективных результатов сжатия файлов любых объемов и значительно уменьшить занимаемое ими место на диске хранения. Иными словами, алгоритм Хаффмана - давно изученная и проработанная схема, актуальность которой не уменьшается по сей день.

А благодаря возможности уменьшить размер файлов, их передача через сеть или другими способами становится более простой, быстрой и удобной. Работая с алгоритмом, можно сжать совершенно любую информацию без вреда для ее структуры и качества, но с максимальным эффектом уменьшения веса файла. Иными словами, кодирование по коду Хаффмана было и остается самым популярным и актуальным методом сжатия размера файла.

Сегодня мало кого из пользователей интересует вопрос, связанный с механизмом сжатия файлов. Процесс работы с персональным компьютером по сравнению с прошлым стал осуществляться намного проще.


Сегодня практически любой пользователь, который работает с файловой системой, пользуется архивами. Однако, мало кто из пользователей задумывался, как осуществляется сжатие файлов.

Коды Хаффмана стали первым вариантом. Они по-прежнему используются в различных архиваторах. Большинство пользователей даже не задумывается о том, как просто осуществляется сжатие файла по такой схеме. В данном обзоре мы рассмотрим, как осуществляется сжатие, какие особенности помогают ускорить и упростить процесс кодирования. Также мы попробуем разобраться с основными принципами построения дерева кодирования.

Алгоритм: история

Первым алгоритмом, предназначенным для проведения эффективного кодирования электронной информации, стал код, предложенный Хаффманом в 1952 году. Именно этот код на сегодняшний день можно считать базовым элементом большинства программ, разработанных для сжатия информации. Одними из наиболее популярных источников, которые используют данный код, на сегодняшний день являются архивы RAR, ARJ, ZIP. Данный алгоритм также используется для сжатия изображений JPEG и графических объектов. Также во всех современных факсах используется алгоритм кодирования, который был изобретен еще в 1952 году. Несмотря на то, что со времени создания данного кода прошло достаточно много времени, его эффективно используют в оборудовании старого типа, а также в новом оборудовании и оболочках.

Принцип эффективного кодирования

В основе алгоритма Хаффмана используется схема, которая позволяет заменить самые вероятные и наиболее часто встречающиеся символы кодами двоичной системы. Те символы, которые встречаются реже, заменяют длинными кодами. Переход к длинным кодам Хаффмана осуществляется только после того, как система использует все минимальные значения. Данная методика дает возможность минимизировать длину кода на символ исходного сообщения. В данном случае особенность заключается в том, что вероятности появления букв в начале кодирования должны быть уже известны. Конечное сообщение будет составляться именно из них. Исходя из этой информации, осуществляется построение кодового дерева Хаффмана. На основе него и будет осуществляться процесс кодирования букв в архиве.

Код Хаффмана: пример

Для того чтобы проиллюстрировать алгоритм Хаффмана, рассмотрим графический вариант построения кодового дерева. Чтобы использование данного способа было более эффективным, необходимо уточнить определение некоторых значений, которые необходимы для понятия данного способа. Всю совокупность множества узлов и дуг, которые направлены от узла к узлу, называют графом. Дерево само по себе является графом с набором определенных свойств. В каждый узел должно входить не больше одной из всех дуг. Один из узлов должен являться корнем дерева. Это значит, что в него не должны вообще входить дуги. Если начать от корня перемещения по дугам, то данный процесс должен позволять попасть в любой узел.

В коды Хаффмана также входит такое понятие, как лист дерева. Он представляет собой узел, из которого не должна выходить ни одна дуга. Если два узла между собой соединены дугой, то один из них является родителем, а другой ребенком. Если два узла имеют общий родительский узел, то их называют братскими узлами. Если кроме листьев у узлов выходит по несколько дуг, то такое дерево называют двоичным. Именно таким и является дерево Хаффмана. Особенностью узлов данного строения является то, что вес каждого родителя равняется сумме веса узловых детей.

Дерево Хаффмана: алгоритм построения

Построение кода Хаффмана выполняется из букв входного алфавита. Образуется список узлов, свободных в будущем кодовом дереве. В этом списке вес каждого узла должен быть таким же, что и вероятность возникновения буквы сообщения, которая соответствует данному узлу. Среди нескольких свободных узлов при этом выбирается тот, который меньше всего весит. Если при этом в нескольких узлах наблюдаются минимальные показатели, то можно свободно выбрать любую пару. После этого осуществляется создание родительского узла. Он должен весить столько же, сколько весит сумма данной пары узлов. Родителя после этого отправляют в список со свободными узлами. Детей удаляют. Дуги при этом получают соответствующие показатели, нули и единицы. Данный процесс повторяется столько раз, сколько требуется для того, чтобы остался только один узел. После этого по направлению сверху вниз выписываются двоичные цифры.

Как повысить эффективность сжатия

Для повышения эффективности сжатия, во время построения дерева кода необходимо использовать все данные, касающиеся вероятности появления букв в конкретном файле, который прикреплен к дереву. Нельзя допускать того, чтобы они были раскиданы по большому числу текстовых документов. Если пройтись предварительно по данному файлу, то можно получить статистику того, как часто встречаются буквы из объекта, который подлежит сжиманию.

Как ускорить процесс сжатия

Для ускорения работы алгоритма, определение букв нужно осуществлять не по показателям появления тех или иных букв, а по частоте их встречаемости. Алгоритм благодаря этому становится проще, а работа с ним значительно ускоряется. Это также дает возможность избежать операций, связанных с делением и плавающими запятыми. Также при работе в таком режиме, алгоритм не подлежит изменению. В основном это связано с тем, что вероятности прямо пропорциональны частотам. Стоит также обратить внимание на тот факт, что конечный вес корневого узла будет равняться сумме количества букв в объекте, который подлежит обработке.

Вывод

Коды Хаффмана представляют собой простой и давно разработанный алгоритм, который по сей день используется во многих популярных программах. Простота и понятность данного кода позволяет добиться эффективного сжатия файлов любых объемов.

Кодирование Хаффмана является простым алгоритмом для построения кодов переменной длины, имеющих минимальную среднюю длину. Этот весьма популярный алгоритм служит основой многих компьютерных программ сжатия текстовой и графической информации. Некоторые из них используют непосредственно алгоритм Хаффмана, а другие берут его в качестве одной из ступеней многоуровневого процесса сжатия. Метод Хаффмана производит идеальное сжатие (то есть, сжимает данные до их энтропии), если вероятности символов точно равны отрицательным степеням числа 2. Алгоритм начинает строить кодовое дерево снизу вверх, затем скользит вниз по дереву, чтобы построить каждый индивидуальный код справа налево (от самого младшего бита к самому старшему). Начиная с работ Д.Хаффмана 1952 года, этот алгоритм являлся предметом многих исследований. (Последнее утверждение из § 3.8.1 показывает, что наилучший код переменной длины можно иногда получить без этого алгоритма.)

Алгоритм начинается составлением списка символов алфавита в порядке убывания их вероятностей. Затем от корня строится дерево, листьями которого служат эти символы. Это делается по шагам, причем на каждом шаге выбираются два символа с наименьшими вероятностями, добавляются наверх частичного дерева, удаляются из списка и заменяются вспомогательным символом, представляющим эти два символа. Вспомогательному символу приписывается вероятность, равная сумме вероятностей, выбранных на этом шаге символов. Когда список сокращается до одного вспомогательного символа, представляющего весь алфавит, дерево объявляется построенным. Завершается алгоритм спуском по дереву и построением кодов всех символов.

Лучше всего проиллюстрировать этот алгоритм на простом примере. Имеется пять символов с вероятностями, заданными на рис. 1.3а.

Рис. 1.3. Коды Хаффмана.

Символы объединяются в пары в следующем порядке:

1. объединяется с , и оба заменяются комбинированным символом с вероятностью 0.2;

2. Осталось четыре символа, с вероятностью 0.4, а также и с вероятностями по 0.2. Произвольно выбираем и , объединяем их и заменяем вспомогательным символом с вероятностью 0.4;

3. Теперь имеется три символа и с вероятностями 0.4, 0.2 и 0.4, соответственно. Выбираем и объединяем символы и во вспомогательный символ с вероятностью 0.6;

4. Наконец, объединяем два оставшихся символа и и заменяем на с вероятностью 1.

Дерево построено. Оно изображено на рис. 1.3а, «лежа на боку», с корнем справа и пятью листьями слева. Для назначения кодов мы произвольно приписываем бит 1 верхней ветке и бит 0 нижней ветке дерева для каждой пары. В результате получаем следующие коды: 0, 10, 111, 1101 и 1100. Распределение битов по краям - произвольное.

Средняя длина этого кода равна бит/символ. Очень важно то, что кодов Хаффмана бывает много. Некоторые шаги алгоритма выбирались произвольным образом, поскольку было больше символов с минимальной вероятностью. На рис. 1.3b показано, как можно объединить символы по-другому и получить иной код Хаффмана (11, 01, 00, 101 и 100). Средняя длина равна бит/символ как и у предыдущего кода.

Пример: Дано 8 символов А, В, С, D, Е, F, G и H с вероятностями 1/30, 1/30, 1/30, 2/30, 3/30, 5/30, 5/30 и 12/30. На рис. 1.4а,b,с изображены три дерева кодов Хаффмана высоты 5 и 6 для этого алфавита.

Рис. 1.4. Три дерева Хаффмана для восьми символов.

Средняя длина этих кодов (в битах на символ) равна

Пример : На рис. 1.4d показано другое дерево высоты 4 для восьми символов из предыдущего примера. Следующий анализ показывает, что соответствующий ему код переменной длины плохой, хотя его длина меньше 4.

(Анализ.) После объединения символов А, В, С, D, Е, F и G остаются символы ABEF (с вероятностью 10/30), CDG (с вероятностью 8/30) и H (с вероятностью 12/30). Символы ABEF и CDG имеют наименьшую вероятность, поэтому их необходимо было слить в один, но вместо этого были объединены символы CDG и H. Полученное дерево не является деревом Хаффмана.

Таким образом, некоторый произвол в построении дерева позволяет получать разные коды Хаффмана с одинаковой средней длиной. Напрашивается вопрос: «Какой код Хаффмана, построенный для данного алфавита, является наилучшим?» Ответ будет простым, хотя и неочевидным: лучшим будет код с наименьшей дисперсией.

Дисперсия показывает насколько сильно отклоняются длины индивидуальных кодов от их средней величины (это понятие разъясняется в любом учебнике по статистике). Дисперсия кода 1.3а равна , а для кода 1.3b .

Код 1.3b является более предпочтительным (это будет объяснено ниже). Внимательный взгляд на деревья показывает, как выбрать одно, нужное нам. На дереве рис. 1.3а символ сливается с символом , в то время как на рис. 1.3b он сливается с . Правило будет такое: когда на дереве имеется более двух узлов с наименьшей вероятностью, следует объединять символы с наибольшей и наименьшей вероятностью; это сокращает общую дисперсию кода.

Если кодер просто записывает сжатый файл на диск, то дисперсия кода не имеет значения. Коды Хаффмана с малой дисперсией более предпочтительны только в случае, если кодер будет передавать этот сжатый файл по линиям связи. В этом случае, код с большой дисперсией заставляет кодер генерировать биты с переменной скоростью. Обычно данные передаются по каналам связи с постоянной скоростью, поэтому кодер будет использовать буфер. Биты сжатого файла помещаются в буфер по мере их генерации и подаются в канал с постоянной скоростью для передачи. Легко видеть, что код с нулевой дисперсией будет подаваться в буфер с постоянной скоростью, поэтому понадобится короткий буфер, а большая дисперсия кода потребует использование длинного буфера.

Следующее утверждение можно иногда найти в литературе по сжатию информации: длина кода Хаффмана символа с вероятностью всегда не превосходит . На самом деле, не смотря на справедливость этого утверждения во многих примерах, в общем случае оно не верно. Я весьма признателен Гаю Блелоку, который указал мне на это обстоятельство и сообщил пример кода, приведенного в табл. 1.5. Во второй строке этой таблицы стоит символ с кодом длины 3 бита, в то время как .

Табл. 1.5. Пример кода Хаффмана.

Длина кода символа , конечно, зависит от его вероятности . Однако она также неявно зависит от размера алфавита. В большом алфавите вероятности символов малы, поэтому коды Хаффмана имеют большую длину. В маленьком алфавите наблюдается обратная картина. Интуитивно это понятно, поскольку для малого алфавита требуется всего несколько кодов, поэтому все они коротки, а большому алфавиту необходимо много кодов и некоторые из них должны быть длинными.

Рис. 1.6. Код Хаффмана для английского алфавита.

На рис. 1.6 показан код Хаффмана для всех 26 букв английского алфавита.

Случай алфавита, в котором символы равновероятны, особенно интересен. На рис. 1.7 приведены коды Хаффмана для алфавита с 5, 6, 7 и 8 равновероятными символами. Если размер алфавита является степенью 2, то получаются просто коды фиксированной длины. В других случаях коды весьма близки к кодам с фиксированной длиной. Это означает, что использование кодов переменной длины не дает никаких преимуществ. В табл. 1.8 приведены коды, их средние длины и дисперсии.

Рис. 1.7. Коды Хаффмана с равными вероятностями.

Тот факт, что данные с равновероятными символами не сжимаются методом Хаффмана может означать, что строки таких символов являются совершенно случайными. Однако, есть примеры строк, в которых все символы равновероятны, но не являются случайными, и их можно сжимать. Хорошим примером является последовательность , в которой каждый символ встречается длинными сериями. Такую строку можно сжать методом RLE, но не методом Хаффмана. (Буквосочетание RLE означает «run-length encoding», т.е. «кодирование длин серий». Этот простой метод сам по себе мало эффективен, но его можно использовать в алгоритмах сжатия со многими этапами, см.

Другими словами, будем вдвигать слева в переменную code бит за битом из входного потока, до тех пор, пока code < base. При этом на каждой итерации будем увеличивать переменную length на 1 (т.е. продвигаться вниз по дереву). Цикл в (2) остановится когда мы определим длину кода (уровень в дереве, на котором находится искомый символ). Остается лишь определить какой именно символ на этом уровне нам нужен.

Предположим, что цикл в (2), после нескольких итераций, остановился. В этом случае выражение (code - base) суть порядковый номер искомого узла (символа) на уровне length. Первый узел (символ), находящийся на уровне length в дереве, расположен в массиве symb по индексу offs. Но нас интересует не первый символ, а символ под номером (code - base). Поэтому индекс искомого символа в массиве symb равен (offs + (code - base)). Иначе говоря, искомый символ symbol=symb + code - base].

Приведем конкретный пример. Пользуясь изложенным алгоритмом декодируем сообщение Z / .

Z / ="0001 1 00001 00000 1 010 011 1 011 1 010 011 0001 1 0010 010 011 011 1 1 1 010 1 1 1 0010 011 0011 1 0011 0011 011 1 010 1 1"

  1. code = 0, length = 1
  2. code = 0 < base = 1
    code = 0 << 1 = 0
    code = 0 + 0 = 0
    length = 1 + 1 = 2
    code = 0 < base = 2
    code = 0 << 1 = 0
    code = 0 + 0 = 0
    length = 2 + 1 = 3
    code = 0 < base = 2
    code = 0 << 1 = 0
    code = 0 + 1 = 1
    length = 3 + 1 = 4
    code = 1 = base = 1
  3. symbol = symb = 2 + code = 1 - base = 1] = symb = A
  1. code = 1, length = 1
  2. code = 1 = base = 1
  3. symbol = symb = 7 + code = 1 - base = 1] = symb = H
  1. code = 0, length = 1
  2. code = 0 < base = 1
    code = 0 << 1 = 0
    code = 0 + 0 = 0
    length = 1 + 1 = 2
    code = 0 < base = 2
    code = 0 << 1 = 0
    code = 0 + 0 = 0
    length = 2 + 1 = 3
    code = 0 < base = 2
    code = 0 << 1 = 0
    code = 0 + 0 = 0
    length = 3 + 1 = 4
    code = 0 < base = 1
    code = 0 << 1 = 0
    code = 0 + 1 = 1
    length = 4 + 1 = 5
    code = 1 > base = 0
  3. symbol = symb = 0 + code = 1 - base = 0] = symb = F

Итак, мы декодировали 3 первых символа: A , H , F . Ясно, что следуя этому алгоритму мы получим в точности сообщение S.

Вычисление длин кодов

Для того чтобы закодировать сообщение нам необходимо знать коды символов и их длины. Как уже было отмечено в предыдущем разделе, канонические коды вполне определяются своими длинами. Таким образом, наша главная задача заключается в вычислении длин кодов.

Оказывается, что эта задача, в подавляющем большинстве случаев, не требует построения дерева Хаффмана в явном виде. Более того, алгоритмы использующие внутреннее (не явное) представление дерева Хаффмана оказываются гораздо эффективнее в отношении скорости работы и затрат памяти.

На сегодняшний день существует множество эффективных алгоритмов вычисления длин кодов ( , ). Мы ограничимся рассмотрением лишь одного из них. Этот алгоритм достаточно прост, но несмотря на это очень популярен. Он используется в таких программах как zip, gzip, pkzip, bzip2 и многих других.

Вернемся к алгоритму построения дерева Хаффмана. На каждой итерации мы производили линейный поиск двух узлов с наименьшим весом. Ясно, что для этой цели больше подходит очередь приоритетов, такая как пирамида (минимальная). Узел с наименьшим весом при этом будет иметь наивысший приоритет и находиться на вершине пирамиды. Приведем этот алгоритм.

    Включим все кодируемые символы в пирамиду.

    Последовательно извлечем из пирамиды 2 узла (это будут два узла с наименьшим весом).

    Сформируем новый узел и присоединим к нему, в качестве дочерних, два узла взятых из пирамиды. При этом вес сформированного узла положим равным сумме весов дочерних узлов.

    Включим сформированный узел в пирамиду.

    Если в пирамиде больше одного узла, то повторить 2-5.

Будем считать, что для каждого узла сохранен указатель на его родителя. У корня дерева этот указатель положим равным NULL. Выберем теперь листовой узел (символ) и следуя сохраненным указателям будем подниматься вверх по дереву до тех пор, пока очередной указатель не станет равен NULL. Последнее условие означает, что мы добрались до корня дерева. Ясно, что число переходов с уровня на уровень равно глубине листового узла (символа), а следовательно и длине его кода. Обойдя таким образом все узлы (символы), мы получим длины их кодов.

Максимальная длина кода

Как правило, при кодировании используется так называемая кодовая книга (CodeBook) , простая структура данных, по сути два массива: один с длинами, другой с кодами. Другими словами, код (как битовая строка) хранится в ячейке памяти или регистре фиксированного размера (чаще 16, 32 или 64). Для того чтобы не произошло переполнение, мы должны быть уверены в том, что код поместится в регистр.

Оказывается, что на N-символьном алфавите максимальный размер кода может достигать (N-1) бит в длину. Иначе говоря, при N=256 (распространенный вариант) мы можем получить код в 255 бит длиной (правда для этого файл должен быть очень велик: 2.292654130570773*10^53~=2^177.259)! Ясно, что такой код в регистр не поместится и с ним нужно что-то делать.

Для начала выясним при каких условиях возникает переполнение. Пусть частота i-го символа равна i-му числу Фибоначчи. Например: A -1, B -1, C -2, D -3, E -5, F -8, G -13, H -21. Построим соответствующее дерево Хаффмана.

ROOT /\ / \ / \ /\ H / \ / \ /\ G / \ / \ /\ F / \ / \ /\ E / \ / \ /\ D / \ / \ /\ C / \ / \ A B

Такое дерево называется вырожденным . Для того чтобы его получить частоты символов должны расти как минимум как числа Фибоначчи или еще быстрее. Хотя на практике, на реальных данных, такое дерево получить практически невозможно, его очень легко сгенерировать искусственно. В любом случае эту опасность нужно учитывать.

Эту проблему можно решить двумя приемлемыми способами. Первый из них опирается на одно из свойств канонических кодов. Дело в том, что в каноническом коде (битовой строке) не более младших бит могут быть ненулями. Другими словами, все остальные биты можно вообще не сохранять, т.к. они всегда равны нулю. В случае N=256 нам достаточно от каждого кода сохранять лишь младшие 8 битов, подразумевая все остальные биты равными нулю. Это решает проблему, но лишь отчасти. Это значительно усложнит и замедлит как кодирование, так и декодирование. Поэтому этот способ редко применяется на практике.

Второй способ заключается в искусственном ограничении длин кодов (либо во время построения, либо после). Этот способ является общепринятым, поэтому мы остановимся на нем более подробно.

Существует два типа алгоритмов ограничивающих длины кодов. Эвристические (приблизительные) и оптимальные. Алгоритмы второго типа достаточно сложны в реализации и как правило требуют больших затрат времени и памяти, чем первые. Эффективность эвристически-ограниченного кода определяется его отклонением от оптимально-ограниченного. Чем меньше эта разница, тем лучше. Стоит отметить, что для некоторых эвристических алгоритмов эта разница очень мала ( , , ), к тому же они очень часто генерируют оптимальный код (хотя и не гарантируют, что так будет всегда). Более того, т.к. на практике переполнение случается крайне редко (если только не поставлено очень жесткое ограничение на максимальную длину кода), при небольшом размере алфавита целесообразнее применять простые и быстрые эвристические методы.

Мы рассмотрим один достаточно простой и очень популярный эвристический алгоритм. Он нашел свое применение в таких программах как zip, gzip, pkzip, bzip2 и многих других.

Задача ограничения максимальной длины кода эквивалентна задаче ограничения высоты дерева Хаффмана. Заметим, что по построению любой нелистовой узел дерева Хаффмана имеет ровно два потомка. На каждой итерации нашего алгоритма будем уменьшать высоту дерева на 1. Итак, пусть L - максимальная длина кода (высота дерева) и требуется ограничить ее до L / < L. Пусть далее RN i самый правый листовой узел на уровне i, а LN i - самый левый.

Начнем работу с уровня L. Переместим узел RN L на место своего родителя. Т.к. узлы идут парами нам необходимо найти место и для соседного с RN L узла. Для этого найдем ближайший к L уровень j, содержащий листовые узлы, такой, что j < (L-1). На месте LN j сформируем нелистовой узел и присоединим к нему в качестве дочерних узел LN j и оставшийся без пары узел с уровня L. Ко всем оставшимся парам узлов на уровне L применим такую же операцию. Ясно, что перераспределив таким образом узлы, мы уменьшили высоту нашего дерева на 1. Теперь она равна (L-1). Если теперь L / < (L-1), то проделаем то же самое с уровнем (L-1) и т.д. до тех пор, пока требуемое ограничение не будет достигнуто.

Вернемся к нашему примеру, где L=5. Ограничим максимальную длину кода до L / =4.

ROOT /\ / \ / \ /\ H C E / \ / \ / \ / \ /\ A D G / \ / \ B F

Видно, что в нашем случае RN L =F , j=3, LN j =C . Сначала переместим узел RN L =F на место своего родителя.

ROOT /\ / \ / \ /\ H / \ / \ / \ / \ / \ / \ /\ /\ / \ / \ / \ / \ / \ / \ / \ / \ /\ /\ C E / \ / \ / \ / \ F A D G B (непарный узел)

Теперь на месте LN j =C сформируем нелистовой узел.

ROOT /\ / \ / \ /\ H E / \ / \ / \ / \ / \ / \ F A D G ? ? B (непарный узел) C (непарный узел)

Присоединим к сформированному узлу два непарных: B и C .

ROOT /\ / \ / \ /\ H / \ / \ / \ / \ / \ / \ / \ / \ / \ /\ /\ / \ / \ / \ / \ / \ / \ / \ / \ /\ /\ /\ E / \ / \ / \ / \ / \ / \ F A D G B C

Таким образом, мы ограничили максимальную длину кода до 4. Ясно, что изменив длины кодов, мы немного потеряли в эффективности. Так сообщение S, закодированное при помощи такого кода, будет иметь размер 92 бита, т.е. на 3 бита больше по сравнению с минимально-избыточным кодом.

Ясно, что чем сильнее мы ограничим максимальную длину кода, тем менее эффективен будет код. Выясним насколько можно ограничивать максимальную длину кода. Очевидно что не короче бит.

Вычисление канонических кодов

Как мы уже неоднократно отмечали, длин кодов достаточно для того чтобы сгенерировать сами коды. Покажем как это можно сделать. Предположим, что мы уже вычислили длины кодов и подсчитали сколько кодов каждой длины у нас есть. Пусть L - максимальная длина кода, а T i - количество кодов длины i.

Вычислим S i - начальное значение кода длины i, для всех i из

S L = 0 (всегда)
S L-1 = (S L + T L) >> 1
S L-2 = (S L-1 + T L-1) >> 1
...
S 1 = 1 (всегда)

Для нашего примера L = 5, T 1 .. 5 = {1, 0, 2 ,3, 2}.

S 5 = 00000 bin = 0 dec
S 4 = (S 5 =0 + T 5 =2) >> 1 = (00010 bin >> 1) = 0001 bin = 1 dec
S 3 = (S 4 =1 + T 4 =3) >> 1 = (0100 bin >> 1) = 010 bin = 2 dec
S 2 = (S 3 =2 + T 3 =2) >> 1 = (100 bin >> 1) = 10 bin = 2 dec
S 1 = (S 2 =2 + T 2 =0) >> 1 = (10 bin >> 1) = 1 bin = 1 dec

Видно, что S 5 , S 4 , S 3 , S 1 - в точности коды символов B , A , C , H . Эти символы объединяет то, что все они стоят на первом месте, каждый на своем уровне. Другими словами, мы нашли начальное значение кода для каждой длины (или уровня).

Теперь присвоим коды остальным символам. Код первого символа на уровне i равен S i , второго S i + 1, третьего S i + 2 и т.д.

Выпишем оставшиеся коды для нашего примера:

B = S 5 = 00000 bin A = S 4 = 0001 bin C = S 3 = 010 bin H = S 1 = 1 bin
F = S 5 + 1 = 00001 bin D = S 4 + 1 = 0010 bin E = S 3 + 1 = 011 bin
G = S 4 + 2 = 0011 bin

Видно, что мы получили точно такие же коды, как если бы мы явно построили каноническое дерево Хаффмана.

Передача кодового дерева

Для того чтобы закодированное сообщение удалось декодировать, декодеру необходимо иметь такое же кодовое дерево (в той или иной форме), какое использовалось при кодировании. Поэтому вместе с закодированными данными мы вынуждены сохранять соответствующее кодовое дерево. Ясно, что чем компактнее оно будет, тем лучше.

Решить эту задачу можно несколькими способами. Самое очевидное решение - сохранить дерево в явном виде (т.е. как упорядоченное множество узлов и указателей того или иного вида). Это пожалуй самый расточительный и неэффективный способ. На практике он не используется.

Можно сохранить список частот символов (т.е. частотный словарь). С его помощью декодер без труда сможет реконструировать кодовое дерево. Хотя этот способ и менее расточителен чем предыдущий, он не является наилучшим.

Наконец, можно использовать одно из свойств канонических кодов. Как уже было отмечено ранее, канонические коды вполне определяются своими длинами. Другими словами, все что необходимо декодеру - это список длин кодов символов. Учитывая, что в среднем длину одного кода для N-символьного алфавита можно закодировать [(log 2 (log 2 N))] битами, получим очень эффективный алгоритм. На нем мы остановимся подробнее.

Предположим, что размер алфавита N=256, и мы сжимаем обыкновенный текстовый файл (ASCII). Скорее всего мы не встретим все N символов нашего алфавита в таком файле. Положим тогда длину кода отсутвующих символов равной нулю. В этом случае сохраняемый список длин кодов будет содержать достаточно большое число нулей (длин кодов отсутствующих символов) сгруппированных вместе. Каждую такую группу можно сжать при помощи так называемого группового кодирования - RLE (Run - Length - Encoding). Этот алгоритм чрезвычайно прост. Вместо последовательности из M одинаковых элементов идущих подряд, будем сохранять первый элемент этой последовательности и число его повторений, т.е. (M-1). Пример: RLE("AAAABBBCDDDDDDD")=A3 B2 C0 D6.

Более того, этот метод можно несколько расширить. Мы можем применить алгоритм RLE не только к группам нулевых длин, но и ко всем остальным. Такой способ передачи кодового дерева является общепринятым и применяется в большинстве современных реализаций.

Реализация: SHCODEC

Приложение: биография Д. Хаффмана

Дэвид Хаффман родился в 1925 году в штате Огайо (Ohio), США. Хаффман получил степень бакалавра электротехники в государственном университете Огайо (Ohio State University) в возрасте 18 лет. Затем он служил в армии офицером поддержки радара на эсминце, который помогал обезвреживать мины в японских и китайских водах после Второй Мировой Войны. В последствии он получил степень магистра в университете Огайо и степень доктора в Массачусетском Институте Технологий (Massachusetts Institute of Technology - MIT). Хотя Хаффман больше известен за разработку метода построения минимально-избыточных кодов, он так же сделал важный вклад во множество других областей (по большей части в электронике). Он долгое время возглавлял кафедру Компьютерных Наук в MIT. В 1974, будучи уже заслуженным профессором, он подал в отставку. Хаффман получил ряд ценных наград. В 1999 - Медаль Ричарда Хамминга (Richard W. Hamming Medal) от Института Инженеров Электричества и Электроники (Institute of Electrical and Electronics Engineers - IEEE) за исключительный вклад в Теорию Информации, Медаль Louis E. Levy от Франклинского Института (Franklin Institute) за его докторскую диссертацию о последовательно переключающихся схемах, Награду W. Wallace McDowell, Награду от Компьютерного Сообщества IEEE, Золотую юбилейную награду за технологические новшества от IEEE в 1998. В октябре 1999 года, в возрасте 74 лет Дэвид Хаффман скончался от рака.

R.L. Milidiu, A.A. Pessoa, E.S. Laber, "Efficient implementation of the warm-up algorithm for the construction of length-restricted prefix codes", Proc. of ALENEX (International Workshop on Algorithm Engineering and Experimentation), pp. 1-17, Springer, Jan. 1999.

Относительно простой метод сжатия данных может быть выполнен путём создания так называемых деревьев Хаффмана для файла и используется для его сжатия и распаковки данных в нём. Для большинства приложений используются бинарные деревья Хаффмана (например, каждый узел является либо листом, либо имеет ровно два подузла). Можно, однако, построить деревья Хаффмана с произвольным числом поддеревьев (например, троичных или, в общем случае, N -ичных деревьев).

Дерево Хаффмана для файла, содержащего Z разных символов имеет Z листьев. Путь от корня к листу, который представляет определенный символ, определяет кодировку, и каждый шаг на пути к листу определяет кодировку (которая может быть 0 , 1 , ..., (N-1) ). Путём размещения часто встречающихся символы ближе к корню, и менее часто встречающихся символов дальше от корня, и достигается желаемое сжатие. Строго говоря, такое дерево будет деревом Хаффмана, только если в результате кодирования будет использовано минимальное число N -ичных символов для кодирования заданного файла.

В этой задаче мы будем рассматривать только деревья, где каждый узел является либо внутренним узлом либо листом кодирования символов и нет изолированных листьев, которые не кодируют символ.

На рисунке ниже показан пример троичного дерева Хаффмана, символы "a " и "е " кодируются с помощью одной троичного символа; менее часто встречающиеся символы "s " и "p " кодируются с помощью двух троичных символов и наиболее редко встречающиеся символы "x ", "q " и "y " кодируются с помощью трех троичных символов каждый.

Конечно, если мы хотим, чтобы можно развернуть список N -ичных символов потом обратно, важно знать, какое дерево используется для сжатия данных. Это можно сделать несколькими способами. В этой задаче мы будем использовать следующий метод: потоку входных данных будет предшествовать заголовок, состоящий из закодированных значений символов Z , находящихся в исходном файле в лексикографическом порядке.

Зная количество входных символов Z , значение N , обозначающее "N -арность" дерева Хаффмана и сам заголовок, необходимо найти первичное значение закодированных символов.

Входные данные

Входные данные начинаются с целого числа T , расположенного в отдельной строке и обозначающего количество последующих тестовых случаев. Далее задано каждый из T тестовых случаев, каждый из которых расположен в 3 -х строках следующим образом:

  • Количество различных символов в тестовом случае Z (2 Z 20 );
  • Число N , обозначающее " N -арность" дерева Хаффмана (2 N 10 );
  • Строка, представляющая заголовок полученного сообщения, каждый символ будет цифрой в диапазоне . Эта строка будет содержать меньше 200 символов.

Примечание : Хотя и редко, но это возможно для заголовка, чтобы иметь несколько толкований при расшифровке (например, для заголовка "010011101100 ", и значениях Z = 5 и N = 2 ). Гарантируется, что во всех предлагаемых во входных данных тестовых случаях, имеется единственное решение.

Выходные данные

Для каждого из T тестовых случаев вывести Z строк, дающих декодированную версию каждого из Z символов в порядке возрастания. Используйте формат оригинал->кодировка , где оригинал - это десятичное число в диапазоне и соответствующая кодированная строка кодированных цифр для этих символов (каждая цифра ≥ 0 и < N ).