Модель данных. Уровни и типы моделей бд

Как отмечалось, инфологическая модель отображает реальный мир в некоторые понятные человеку концепции, полностью независимые от параметров среды хранения данных. Существует множество подходов к построению таких моделей: графовые модели, семантические сети, модель "сущность-связь" и т.д. Наиболее популярной из них оказалась модель "сущность-связь", которая будет рассмотрена в главе 2.

Инфологическая модель должна быть отображена в компьютеро-ориентированную даталогическую модель, "понятную" СУБД. В процессе развития теории и практического использования баз данных, а также средств вычислительной техники создавались СУБД, поддерживающие различные даталогические модели.

Сначала стали использовать иерархические даталогические модели. Простота организации, наличие заранее заданных связей между сущностями, сходство с физическими моделями данных позволяли добиваться приемлемой производительности иерархических СУБД на медленных ЭВМ с весьма ограниченными объемами памяти. Но, если данные не имели древовидной структуры, то возникала масса сложностей при построении иерархической модели и желании добиться нужной производительности.

Сетевые модели также создавались для мало ресурсных ЭВМ. Это достаточно сложные структуры, состоящие из "наборов" – поименованных двухуровневых деревьев. "Наборы" соединяются с помощью "записей-связок", образуя цепочки и т.д. При разработке сетевых моделей было выдумано множество "маленьких хитростей", позволяющих увеличить производительность СУБД, но существенно усложнивших последние. Прикладной программист должен знать массу терминов, изучить несколько внутренних языков СУБД, детально представлять логическую структуру базы данных для осуществления навигации среди различных экземпляров, наборов, записей и т.п. Один из разработчиков операционной системы UNIX сказал "Сетевая база – это самый верный способ потерять данные".

Сложность практического использования иерархических и и сетевых СУБД заставляла искать иные способы представления данных. В конце 60-х годов появились СУБД на основе инвертированных файлов, отличающиеся простотой организации и наличием весьма удобных языков манипулирования данными. Однако такие СУБД обладают рядом ограничений на количество файлов для хранения данных, количество связей между ними, длину записи и количество ее полей.

Сегодня наиболее распространены реляционные модели, которые будут подробно рассмотрены в главе 3.

Физическая организация данных оказывает основное влияние на эксплуатационные характеристики БД. Разработчики СУБД пытаются создать наиболее производительные физические модели данных, предлагая пользователям тот или иной инструментарий для поднастройки модели под конкретную БД. Разнообразие способов корректировки физических моделей современных промышленных СУБД не позволяет рассмотреть их в этом разделе.

Модели организации баз данных

1. Иерархический подход к организации баз данных. Иерархические базы данных имеют форму деревьев с дугами-связями и узлами-элементами данных. Иерархическая структура предполагала неравноправие между данными – одни жестко подчинены другим. Подобные структуры, безусловно, четко удовлетворяют требованиям многих, но далеко не всех реальных задач.

2. Сетевая модель данных. В сетевых БД наряду с вертикальными реализованы и горизонтальные связи. Однако унаследованы многие недостатки иерархической и главный из них, необходимость четко определять на физическом уровне связи данных и столь же четко следовать этой структуре связей при запросах к базе.

3. Реляционная модель. Реляционная модель появилась вследствие стремления сделать базу данных как можно более гибкой. Данная модель предоставила простой и эффективный механизм поддержания связей данных.

Во-первых , все данные в модели представляются в виде таблиц и только таблиц. Реляционная модель – единственная из всех обеспечивает единообразие представления данных. И сущности, и связи этих самых сущностей представляются в модели совершенно одинаково – таблицами . Правда, такой подход усложняет понимание смысла хранящейся в базе данных информации, и, как следствие, манипулирование этой информацией.

Избежать трудностей манипулирования позволяет второй элемент модели – реляционно-полный язык (отметим, что язык является неотъемлемой частью любой модели данных, без него модель не существует). Полнота языка в приложении к реляционной модели означает, что он должен выполнять любую операцию реляционной алгебры или реляционного исчисления (полнота последних доказана математически Э.Ф. Коддом). Более того, язык должен описывать любой запрос в виде операций с таблицами, а не с их строками. Одним из таких языков является SQL.

Третий элемент реляционной модели требует от реляционной модели поддержания некоторых ограничений целостности. Одно из таких ограничений утверждает, что каждая строка в таблице должна иметь некий уникальный идентификатор, называемый первичным ключом . Второе ограничение накладывается на целостность ссылок между таблицами. Оно утверждает, что атрибуты таблицы, ссылающиеся на первичные ключи других таблиц, должны иметь одно из значений этих первичных ключей.

4. Объектно-ориентированная модель. Новые области использования вычислительной техники, такие как научные исследования, автоматизированное проектирование и автоматизация учреждений, потребовали от баз данных способности хранить и обрабатывать новые объекты – текст, аудио- и видеоинформацию, а также документы. Основные трудности объектно-ориентированного моделирования данных проистекают из того, что такого развитого математического аппарата, на который могла бы опираться общая объектно-ориентированная модель данных, не существует. В большой степени поэтому до сих пор нет базовой объектно-ориентированной модели. С другой стороны, некоторые авторы утверждают, что общая объектно-ориентированная модель данных в классическом смысле и не может быть определена по причине непригодности классического понятия модели данных к парадигме объектной ориентированности. Несмотря на преимущества объектно-ориентированных систем – реализация сложных типов данных, связь с языками программирования и т.п. – на ближайшее время превосходство реляционных СУБД гарантировано.

5.3.3 Модели данных и концептуальное моделирование

Выше уже упоминалось, что схема создается с помощью некоторого языка определения данных. На самом деле она создается на основе языка определения данных конкретной целевой СУБД, являющегося языком относительно низкого уровня; с его помощью трудно описать требования к данным так, чтобы созданная схема была доступна пониманию пользователей самых разных категорий. Чтобы достичь такого понимания, требуется составить описание схемы на некотором, более высоком уровне, которое будем называть моделью данных. При этом под моделью данных мы будем понимать интегрированный набор понятий для описания данных, связей между ними и ограничений, накладываемых на данные в пределах некоторой предметной области.

Модель является представлением объектов и событий предметной области, а также существующих между ними связей. Модель данных можно рассматривать как сочетание трех указанных ниже компонентов.

· Структурная часть, т.е. набор правил, по которым может быть построена база данных.

· Управляющая часть, определяющая типы допустимых операций с данными (сюда относятся операции обновления и извлечения данных, а также операции изменения структуры базы данных).

· Набор ограничений поддержки целостности данных, гарантирующих корректность используемых данных.

Цель построения модели данных заключается в представлении данных в понятном виде. Если такое представление возможно, то модель данных можно будет легко применить при проектировании базы данных. Для отображения архитектуры ANSI-SPARC можно определить следующие три связанные модели данных:

· внешнюю модель данных, отображающую представления каждого существующего в организации типа пользователей;

· концептуальную модель данных, отображающую логическое (или обобщенное) представление о данных, независимое от типа выбранной СУБД;

· внутреннюю модель данных, отображающую концептуальную схему определенным образом, понятным выбранной целевой СУБД.

В литературе предложено и опубликовано достаточно много моделей данных. Они подразделяются на три категории: объектные (object-based) модели данных, модели данных на основе записей (record-based) и физические модели данных. Первые две используются для описания данных на концептуальном и внешнем уровнях, а последняя - на внутреннем уровне.

Объектные модели данных. При построении объектных моделей данных используются такие понятия как сущности, атрибуты и связи. Сущность - это отдельный элемент (сотрудник, изделие, понятие или событие) предметной области, который должен быть представлен в базе данных. Атрибут - это свойство, которое описывает некоторый аспект объекта и значение которого следует зафиксировать, а связь является ассоциативным отношением между сущностями. Ниже перечислены некоторые наиболее общие типы объектных моделей данных.

    • Модель типа "сущность-связь", или ER-модель (Entity-Relationship model).
    • Семантическая модель.
    • Функциональная модель.
    • Объектно-ориентированная модель.

В настоящее время ER-модель стала одним из основных методов концептуального проектирования баз данных. Объектно-ориентированная модель расширяет определение сущности с целью включения в него не только атрибутов, которые описывают состояние объекта, но и действий, которые с ним связаны, т.е. его поведение. В таком случае говорят, что объект инкапсулирует состояние и поведение.

Модели данных на основе записей. В модели на основе записей база данных состоит из нескольких записей фиксированного формата, которые могут иметь разные типы. Каждый тип записи определяет фиксированное количество полей, каждое из которых имеет фиксированную длину. Существует три основных типа логических моделей данных на основе записей: реляционная модель данных (relational data model), сетевая модель данных (network data model) и иерархическая модель данных (hierarchical data model).

Это БД, основанная на древовидной структуре. По принципу построения она чем-то схожа с файловой системой компьютера. У использования такой модели есть свои достоинства и недостатки, которые будут рассмотрены в этой статье, вместе с подробными примерами.

Виды баз данных

Как известно, различают четыре вида посторения БД:

  • Реляционные - табличные СУБД, где информация представлена в виде строк-столбцов. По этому принципу строятся в "Аксесе", к примеру.
  • Объектно-ориентированные - тесно связаны с в котором идет работа с объектами), и это их главный плюс, но, учитывая их небольшую производительность, они пока значительно уступают в распространенности реляционным.
  • Гибридные - СУБД, вмещающие в себе сразу два указанных выше вида.
  • Иерархические - объект внимания данной статьи. характеризирующиеся древообразной структурой.

Наиболее известным примером иерархической базы данных является продукт, созданный компанией IBM ("АйБиЭм"), под названием Information Management System (переводится как "Информационная система управления"), сокращенно IMS. Первая версия IMS вышла еще в прошлом, двадцатом веке, в шестьдесят восьмом году. Она используется для хранения и контроля данных и поныне.

Принцип построения иерархической модели

Иерархическая модель данных строится по следующему принципу:

  • для каждого узла древовидной структуры ставится в соответствие некий сегмент;
  • под сегментом понимаются поля данных с присвоенным каждому полю именем и выстроенные в один линейный кортеж;
  • еще одно соответствие: один входной и несколько выходных сегментов для каждого исходного поля;
  • для каждого структурного элемента существует одно и только одно место в системе иерархии;
  • древовидная структура начинается с корневого элемента;
  • у каждого подчиненного узла только один предок, но у каждого исходного может быть несколько потомков.

Применение иерархической структуры данных

Иерархическая база данных - это хранилище, применимое для тех систем, которым изначально свойственна древовидная структура. Для них выбирать подобное моделирование - логично.

Пример иерархической базы данных с изначально систематизированными степенями - воинское подразделение, в котором, как известно, четко определены ранги. Также это могут быть сложные механизмы, состоящие из все более упрощающихся к низу иерархии частичек. Для моделирования таких систем и приведения их к виду рассматриваемой БД нет необходимости в декомпозиции. Тем не менее такая ситуация складывается не всегда.

Кроме того, существует тенденция, при которой направленный вниз по структуре запрос проще, чем аналогичный вверх.

Основные операции над БД, построенными на иерархической модели

Структура иерархической базы данных позволяет успешно и практически беспроблемно (в зависимости от навыков и умений) совершать следующие операции (представлены самые основные, список всегда можно расширить мелкими дополнениями):

  • поиск по базе данных того или иного элемента;
  • переход по базе данных - от дерева к дереву;
  • переход по дереву - от ветви к ветви;
  • соответственно, переход по ветвям - поэлементно;
  • работа с записями: вставка новой и/или удаление текущей, копирование, вырезание и т. д.

Обобщенное описание структуры

Термин "древовидная" для описания структуры упоминается в этой статье уже далеко не единожды. Пора рассказать, откуда он произошел. Все потому что иерархическая база данных - это такая БД, которая использует тип данных "дерево". Рассмотрим подробнее, что он из себя представляет.

Это составной тип: в каждый из элементов (узлов) вкладывается несколько последующих (один или более). А начинается все с одного корневого элемента. Суть в том, что каждый из кусочков типа "дерево", является подтипом, тоже "деревом". Много-много разветвленных, и все также упорядоченных структур.

Элементарные типы могут быть простыми и составными, но по существу это всегда записи. Но в простом записи присутствует один а в составном - целая их совокупность.

Иерархической модели свойственен принцип потомков, когда каждый предыдущий сегмент является предком для последующего. Кроме того, потомок по отношению к вышестоящему типу является типом подчиненным, в то время как равнозначные один другому записи считаются близнецами.

Наполнение БД

Основными данными иерархической БД являются значения (числа или символы), которые хранятся в записях. Обходят такую базу данных обычно снизу вверх и слева направо.

Достоинства

Иерархическая база данных - это имеющая корневую папку БД, постепенно разветвляющаяся книзу. Учитывая, что подобная структура весьма схожа с файловой системой, такие базы успешно применяются для выполнения различных операций над данными ЭВМ. Итог: рациональное распределение ее памяти, а также весьма достойные показатели времени, затраченного на работу.

Иерархическая модель идеальна для применения ее для упорядоченной информации.

Недостатки

Однако те же особенности рассматриваемых СУБД, которые стали их основными достоинствами, определяют также и их недостатки. К примеру, громоздкость и сложность логических связей - опытному специалисту при работе с ранее неизвестной базой будет трудно разобраться, а простой пользователь и вовсе в ней "заблудится". Эта сложность понимания приводит к тому, что на самом деле не так много СУБД построены на иерархической модели. Примером иерархической базы данных является, кроме уже описанного продукта компании "АйБиЭм", "Ока" и МИРИС (производство России), а также Data Edge и Team-UP (от зарубежных корпораций).

Примеры

Иерархическая база данных - это многообразие различных уровней, на которых строятся взаимосвязи. Схематично она выглядит как перевернутый граф. Пример иерархической базы данных - любое государственное административное учреждение. Взять, допустим, школу.

На самом верхней уровне будет располагаться "лидер" администрации - директор. В его подчинении завучи, у завучей - преподаватели, который руководят параллелями классов. В каждой параллели энное их количество, а в каждом классе есть некоторое число учеников.

По такому же принципу можно расписать и управление какой-нибудь корпорацией. Глава компании или даже совет директоров на самом верху. Далее - все большее количество подразделений, в каждом из которых действует своя структура. Есть и общие черты: начальник в каждом отделе, его помощник, его секретарь, собственно, офисные сотрудники и так далее.

Применение в ЭВМ

Могут быть и более серьезные области применения. Яркий пример иерархической базы данных- это файловая система. Всем привычный "Проводник" строится в самом ядре операционной системы "Виндоус" именно по такой схеме, так же, как и многие другие файловые менеджеры.

Сетевые базы данных

Существуют:

  • реляционные;
  • иерархические;
  • сетевые базы данных.

Почему мы вновь вспомнили о классификации? Поскольку, в отличие от реляционной, сетевая БД имеет с иерархической схожие черты.

Время вспомнить в базах данных. Есть связи "один-к-одному", "один-ко-многим" и "многие-ко-многим". Нас интересует последняя. В сетевой БД она проявляется следующим образом: у одного узла-наследника может быть сразу несколько предков. Свойство иметь несколько потомков также сохраняется. Можно сказать, что иерархические базы данных, сетевые базы данных сами по себе уже пример такого наследования. Предком в данном случае является именно иерархическая БД, так как принцип построения структуры в сетевых БД остается прежним.

Иерархия и реляционность

Название "реляционная" произошло от английского слова "отношение". Как уже упоминалось в начале статьи, они часто выражаются таблично. Но в предыдущем пункте мы указали, что иерархическая БД также может организовывать связи, значит ли это, что и между этими двумя типами есть некая объединяющая их тонкая ниточка?

Да. Помимо того, что и первый, и второй вид все еще относятся к базам данных, кроме этого признака есть еще одно общее свойство. Например, иерархическую БД (и сетевую заодно с ней) можно выразить в таблице. Суть здесь не в том, в каком виде представить информацию конечному пользователю (это уже вопрос юзабилити интерфейса), но по какому принципу была структурирована информация. Так, четкое деление на отделы со своими начальниками, подразделениями и прочим по-прежнему будет выражено в иерархии, но для удобства занесено в таблицу.

База данных (БД) – это совокупность взаимосвязанных, характеризующаяся возможностью использования для большого количества приложений, возможностью быстрого получения и модификации необходимой информации, минимальной избыточностью информации, независимостью прикладных программ, общим управляемым способом поиска

Возможность применения баз данных для многих прикладных программ пользователя упрощает реализацию комплексных запро­сов, снижает избыточность хранимых данных и повышает эффектив­ность использования информационной технологии. Основное свойство баз данных - независимость данных и использующих их программ. Независимость данных подразумевает, что изменение дан­ных не приводит к изменению прикладных программ и наоборот.

Ядром любой базы данных является модель данных. Модель данных – это совокупность структур данных и операций их обработки.

Модели баз данных базируются на современном подходе к об­работке информации, состоящем в том, что структуры данных об­ладают относительной устойчивостью. Структура информационной базы, отображающая в структурированном виде информационную мо­дель предметной области, позволяет сформировать логические за­писи, их элементы и взаимосвязи между ними. Взаимосвязи могут быть типизированы по следующим основным видам:

– "один к одному", когда одна запись может быть связана
только с одной записью;

– "один ко многим", когда одна запись взаимосвязана со многими другими;

– "многие ко многим", когда одна и та же запись может входить в отношения со многими другими записями в различных вариантах.

Применение того или иного вида взаимосвязей определило три основные модели баз данных: иерархическую, сетевую и ре­ляционную.

Для пояснения логической структуры основных моделей баз данных рассмотрим такую простую задачу: необходимо разработать логическую структуру БД для хранения данных о трех поставщиках: П 1 , П 2 , П 3 , которые могут поставлять товары Т 1 , Т 2 , Т 3 в следующих комбинациях: поставщик П 1 - все три вида товаров, поставщик П 2 - товары Т 1 и Т 3 , поставщик П 3 - товары Т 2 и Т 3 .

Иерархическая модель представляется в виде древовидного графа, в котором объекты выделяются по уровням соподчиненности (иерархии) объектов (рис. 4.1.)

Рис. 4.1. Иерархическая модель БД

На верхнем, первом уровне находится информация об объекте "поставщики" (П), на втором - о конкретных поставщиках П 1 , П 2 , П 3 , на нижнем, третьем, уровне - о товарах, которые могут поставлять конкретные поставщики. В иерархической модели дол­жно соблюдаться правило: каждый порожденный узел не может иметь больше одного порождающего узла (только одна входящая стрелка); в структуре может быть только один непорожденный узел (без входящей стрелки) - корень. Узлы, не имеющие входных стре­лок, носят название листьев. Узел интегрируется как запись. Для поиска необходимой записи нужно двигаться от корня к листьям, т.е. сверху вниз, что значительно упрощает доступ.

Достоинство иерархической модели данных состоит в том, что она позволяет описать их структуру, как на логическом, так и на физическом уровне. Недостатками данной модели являются жесткая фиксированность взаимосвязей между элемен­тами данных, вследствие чего любые изменения связей требуют изменения структуры, а также жесткая зависимость физической и логической организации данных. Быстрота доступа в иерархи­ческой модели достигнута за счет потери информационной гиб­кости (за один проход по дереву невозможно получить информа­цию о том, какие поставщики поставляют, например, товар Ti).

В иерархической модели используется вид связи между элементами данных "один ко многим". Если применяется взаимосвязь вида "многие ко многим", то приходят к сетевой модели данных.

Сетевая модель базы данных для поставленной задачи представлена в виде диаграммы связей (рис. 5.2.). На диаграмме указа­ны независимые (основные) типы данных П 1 , П 2 , П 3 , т.е. ин­формация о поставщиках, и зависимые - информация о товарах T 1 , T 2 , и Т 3 . В сетевой модели допустимы любые виды связей меж­ду записями и отсутствует ограничение на число обратных свя­зей. Но должно соблюдаться одно правило: связь включает ос­новную и зависимую записи

Рис. 4.2. Сетевая модель базы данных

Достоинство сетевой модели БД - большая информаци­онная гибкость по сравнению с иерархической моделью. Однако сохраняется общий для обеих моделей недостаток - доста­точно жесткая структура, что препятствует развитию информа­ционной базы системы управления. При необходимости частой реорганизации информационной базы (например, при исполь­зовании настраиваемых базовых информационных технологий) применяют наиболее совершенную модель БД - реляционную, в которой отсутствуют различия между объектами и взаимосвязями.

В реляционной модели базы данных взаимосвязи между элемен­тами данных представляются в виде двумерных таблиц, называе­мых отношениями. Отношения обладают следующими свойства­ми: каждый элемент таблицы представляет собой один элемент данных (повторяющиеся группы отсутствуют); элементы столб ца имеют одинаковую природу, и столбцам однозначно присво­ены имена; в таблице нет двух одинаковых строк; строки и стол­бцы могут просматриваться в любом порядке вне зависимости от их информационного содержания.

Преимуществами реляционной модели БД являются про­стота логической модели (таблицы привычны для представления информации); гибкость системы защиты (для каждого отноше­ния может быть задана правомерность доступа); независимость данных; возможность построения простого языка манипулиро­вания данными с помощью математически строгой теории реля­ционной алгебры (алгебры отношений).

Для приведенной выше задачи о поставщиках и товарах логи­ческая структура реляционной БД будет содержать три таблицы (отношения): R 1 , R 2 , R 3 , состоящие соответственно из записей о поставках, о товарах и о поставках товаров поставщиками (рис. 4.3.)



Рис. 4.3. Реляционная модель БД

СУБД и ее функции

Системой управления базами данных (СУБД) называют программную систему, предназначенную для создания на ЭВМ общей базы данных, используемой для решения множества задач. Подобные системы служат для поддержания базы данных в актуальном состоянии и обеспечи­вают эффективный доступ пользователей к содержащимся в ней данным в рамках предоставленных пользователям полномочий.

СУБД предназначена для централизованного управления базой данных в интересах всех работающих в этой системе.

По степени универсальности различают два класса СУБД:

– системы общего назначения;

– специализированные системы.

СУБД общего назначения не ориентированы на какую-либо предметную область или на информационные потребности какой-либо группы пользователей. Каждая система тако­го рода реализуется как программный продукт, способный функционировать на некоторой модели ЭВМ в определенной операционной системе и поставляется многим пользователям как коммерческое изделие. Такие СУБД обладают средствами настройки на работу с кон­кретной базой данных. Использование СУБД общего назначения в качестве инструменталь­ного средства для создания автоматизированных информационных систем, основанных на технологии баз данных, позволяет существенно сокращать сроки разработки, экономить трудовые ресурсы. Этим СУБД присущи развитые функциональные возможности.

Специализированные СУБД создаются в редких случаях при невозможности или не­целесообразности использования СУБД общего назначения.

СУБД общего назначения - это сложные программные комплексы, предназначенные для выполнения всей совокупности функций, связанных с созданием и эксплуатацией базы данных информационной системы.

Используемые в настоящее время СУБД обладают средствами обеспечения целостнос­ти данных и надежной безопасности, что дает возможность разработчикам гарантировать большую безопасность данных при меньших затратах сил на низкоуровневое программирование. Продукты, функционирующие в среде WINDOWS, выгодно отличаются удобством пользовательского интерфейса и встроенными средствами повышения производительности.

Производительность СУБД оценивается:

– временем выполнения запросов;

– скоростью поиска информации в неиндексированных полях;

– временем выполнения операций импортирования базы данных из других форматов;

– скоростью создания индексов и выполнения таких массовых операций, как обновление, вставка, удаление данных;

– максимальным числом параллельных обращений к данным в многопользовательском режиме;

– временем генерации отчета.

На производительность СУБД оказывают влияние два фактора:

– СУБД, которые следят за соблюдением целостности данных, несут дополнительную нагрузку, которую не испытывают другие программы;

– производительность собственных прикладных программ сильно зависит от правильного проектирования и построения базы данных.


Похожая информация.


Аспект структуры определяет, что из себя логически представляет база данных, аспект манипуляции определяет способы перехода между состояниями базы данных (то есть способы модификации данных) и способы извлечения данных из базы данных, аспект целостности определяет средства описаний корректных состояний базы данных.

Модель данных - это абстрактное, самодостаточное, логическое определение объектов, операторов и прочих элементов, в совокупности составляющих абстрактную машину доступа к данным, с которой взаимодействует пользователь. Эти объекты позволяют моделировать структуру данных, а операторы - поведение данных .

В литературе, статьях и в обиходной речи иногда встречается использование термина «модель данных» в смысле «схема базы данных » («модель базы данных»). Такое использование является неверным, на что указывают многие авторитетные специалисты, в том числе К. Дж. Дейт , М. Р. Когаловский, С. Д. Кузнецов. Модель данных есть теория , или инструмент моделирования , в то время как модель базы данных (схема базы данных) есть результат моделирования . По выражению К. Дейта соотношение между этими понятиями аналогично соотношению между языком программирования и конкретной программой на этом языке .

М. Р. Когаловский поясняет эволюцию смысла термина следующим образом. Первоначально понятие модели данных употреблялось как синоним структуры данных в конкретной базе данных . В процессе развития теории систем баз данных термин «модель данных» приобрел новое содержание. Возникла потребность в термине, который обозначал бы инструмент, а не результат моделирования, и воплощал бы, таким образом, множество всевозможных баз данных некоторого класса. Во второй половине 1970-х годов во многих публикациях, посвященных указанным проблемам, для этих целей стал использоваться все тот же термин «модель данных». В настоящее время в научной литературе термин «модель данных» трактуется в подавляющем большинстве случаев в инструментальном смысле (как инструмент моделирования) .

Тем не менее, длительное время термин «модель данных» использовался без формального определения. Одним из первых специалистов, который достаточно формально определил это понятие, был Э. Кодд . В статье «Модели данных в управлении базами данных» он определил модель данных как комбинацию трех компонентов:

См. также

  • Метамоделирование
  • Статья Метамоделирование в Викиучебнике

Примечания

Литература

  • Дейт К. Дж. Введение в системы баз данных = Introduction to Database Systems. - 8-е изд. - М .: «Вильямс», 2006. - 1328 с. - ISBN 0-321-19784-4
  • Когаловский М. Р. Перспективные технологии информационных систем. - М .: ДМК Пресс; Компания АйТи, 2003. - 288 с. - ISBN 5-279-02276-4
  • Когаловский М. Р. Энциклопедия технологий баз данных. - М .: Финансы и статистика, 2002. - 800 с. - ISBN 5-279-02276-4
  • Цикритзис Д., Лоховски Ф. Модели данных = D. Tsichritzis, F. Lochovsky. Data Models. Prentice Hall, 1982. - М .: Финансы и статистика, 1985. - 344 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Модель данных" в других словарях:

    модель данных - Совокупность правил порождения структур данных в базе данных, операций над ними, а также ограничений целостности, определяющих допустимые связи и значения данных, последовательность их изменения. Примечание Для задания модели данных используется… …

    Модель данных - – способ представления данных информационной модели в вычислительной среде. [ГОСТ 2.053 2006] Рубрика термина: Технологии Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника … Энциклопедия терминов, определений и пояснений строительных материалов

    модель данных - 3.1.7 модель данных (Data Model; DM): Графическое и/или лексическое представление данных, устанавливающее их свойства, структуры и взаимосвязи. [ИСО/МЭК ТО 11404 3:1996, определение 3.2.11] Источник …

    МОДЕЛЬ ДАННЫХ - согласно ГОСТ 2.053–2006 ЕСКД «Электронная структура изделия», – способ представления данных информационной модели в вычислительной среде … Делопроизводство и архивное дело в терминах и определениях

    модель данных многомерная - Модель данных, оперирующая многомерными представлениями данных в виде кубов данных. Такие модели данных стали широко использоваться в середине 90 х годов в связи с развитием технологий OLAP. Операционные возможности многомерных моделей данных… … Справочник технического переводчика

    модель данных Всемирной таможенной организации - Модель данных и набор данных, разработанные во Всемирной таможенной организации на основе Справочника элементов внешнеторговых данных ООН (СЭВД ООН) [Упрощение процедур торговли: англо русский глоссарий терминов (пересмотренное второе издание)… … Справочник технического переводчика

    Иерархическая модель данных представление базы данных в виде древовидной (иерархической) структуры, состоящей из объектов (данных) различных уровней. Между объектами существуют связи, каждый объект может включать в себя несколько объектов… … Википедия

    - (РМД) логическая модель данных, прикладная теория построения баз данных, которая является приложением к задачам обработки данных таких разделов математики как теории множеств и логика первого порядка. На реляционной модели данных строятся… … Википедия

    У этого термина существуют и другие значения, см. ER. Модель сущность связь (ER модель) (англ. entity relationship model, ERM) модель данных, позволяющая описывать концептуальные схемы предметной области. ER модель используется при… … Википедия

    ГОСТ Р ИСО/МЭК 19778-1-2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства - Терминология ГОСТ Р ИСО/МЭК 19778 1 2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства оригинал документа: 5.4.9 AE CE ID … Словарь-справочник терминов нормативно-технической документации

Книги

  • Модель электронного газа и теория обобщенных зарядов для описания межатомных сил и адсорбции , А. М. Долгоносов. В предлагаемой книге рассмотрены четыре ключевые темы атомной и молекулярной физики, квантовой и физической химии: описание атомного электронного газа и следующий из этого вывод основных…
Иерархические базы данных имеют форму деревьев с дугами-связями и узлами-элементами данных. Иерархическая структура предполагала неравноправие между данными - одни жестко подчинены другим. Подобные структуры, безусловно, четко удовлетворяют требованиям многих, но далеко не всех реальных задач.

2. Сетевая модель данных. В сетевых БД наряду с вертикальными реализованы и горизонтальные связи. Однако унаследованы многие недостатки иерархической и главный из них, необходимость четко определять на физическом уровне связи данных и столь же четко следовать этой структуре связей при запросах к базе.

3. Реляционная модель. Реляционная модель появилась вследствие стремления сделать базу данных как можно более гибкой. Данная модель предоставила простой и эффективный механизм поддержания связей данных.

Во-первых , все данные в модели представляются в виде таблиц и только таблиц. Реляционная модель - единственная из всех обеспечивает единообразие представления данных. И сущности, и связи этих самых сущностей представляются в модели совершенно одинаково - таблицами . Правда, такой подход усложняет понимание смысла хранящейся в базе данных информации, и, как следствие, манипулирование этой информацией.

Избежать трудностей манипулирования позволяет второй элемент модели - реляционно-полный язык (отметим, что язык является неотъемлемой частью любой модели данных, без него модель не существует). Полнота языка в приложении к реляционной модели означает, что он должен выполнять любую операцию реляционной алгебры или реляционного исчисления ( полнота последних доказана математически Э.Ф. Коддом). Более того, язык должен описывать любой запрос в виде операций с таблицами, а не с их строками. Одним из таких языков является SQL .

Третий элемент реляционной модели требует от реляционной модели поддержания некоторых ограничений целостности . Одно из таких ограничений утверждает, что каждая строка в таблице должна иметь некий уникальный идентификатор , называемый первичным ключом. Второе ограничение накладывается на целостность ссылок между таблицами. Оно утверждает, что атрибуты таблицы, ссылающиеся на первичные ключи других таблиц, должны иметь одно из значений этих первичных ключей.

4. Объектно-ориентированная модель. Новые области использования вычислительной техники, такие как научные исследования, автоматизированное проектирование и автоматизация учреждений, потребовали от баз данных способности хранить и обрабатывать новые объекты - текст, аудио- и видеоинформацию, а также документы. Основные трудности объектно-ориентированного моделирования данных проистекают из того, что такого развитого математического аппарата, на который могла бы опираться общая , не существует. В большой степени, поэтому до сих пор нет базовой объектно-ориентированной модели. С другой стороны, некоторые авторы утверждают, что общая объектно-ориентированная модель данных в классическом смысле и не может быть определена по причине непригодности классического понятия модели данных к парадигме объектной ориентированности. Несмотря на преимущества объектно-ориентированных систем - реализация сложных типов данных , связь с языками программирования и т.п. - на ближайшее время превосходство реляционных СУБД гарантировано.

Рассмотрим более подробно эти модели данных далее.

Иерархическая модель базы данных

Иерархические базы данных - самая ранняя модель представления сложной структуры данных. Информация в иерархической базе организована по принципу древовидной структуры, в виде отношений "предок- потомок ". Каждая запись может иметь не более одной родительской записи и несколько подчиненных. Связи записей реализуются в виде физических указателей с одной записи на другую. Основной недостаток иерархической структуры базы данных - невозможность реализовать отношения " многие-ко-многим ", а также ситуации, когда запись имеет несколько предков.

Иерархические базы данных . Иерархические базы данных графически могут быть представлены как перевернутое дерево , состоящее из объектов различных уровней. Верхний уровень ( корень дерева ) занимает один объект , второй - объекты второго уровня и так далее.

Между объектами существуют связи, каждый объект может включать в себя несколько объектов более низкого уровня. Такие объекты находятся в отношении предка ( объект , более близкий к корню) к потомку ( объект более низкого уровня), при этом объект -предок может не иметь потомков или иметь их несколько, тогда как объект - потомок обязательно имеет только одного предка. Объекты, имеющие общего предка, называются близнецами.

Иерархической базой данных является Каталог папок Windows , с которым можно работать, запустив Проводник. Верхний уровень занимает папка Рабочий стол . На втором уровне находятся папки Мой компьютер , Мои документы, Сетевое окружение и Корзина , которые являются потомками папки Рабочий стол , а между собой является близнецами. В свою очередь , папка Мой компьютер является предком по отношению к папкам третьего уровня -папкам дисков ( Диск 3,5(А:), (С:), (D:), (Е:), (F:)) и системным папкам ( сканер , bluetooth и.т.д.) - на рис. 4.1 .


Рис. 4.1.

Организация данных в СУБД иерархического типа определяется в терминах: элемент, агрегат, запись ( группа ), групповое отношение , база данных .

Атрибут (элемент данных) - наименьшая единица структуры данных. Обычно каждому элементу при описании базы данных присваивается уникальное имя. По этому имени к нему обращаются при обработке. Элемент данных также часто называют полем.
Запись - именованная совокупность атрибутов. Использование записей позволяет за одно обращение к базе получить некоторую логически связанную совокупность данных. Именно записи изменяются, добавляются и удаляются. Тип записи определяется составом ее атрибутов. Экземпляр записи - конкретная запись с конкретным значением элементов.
Групповое отношение - иерархическое отношение между записями двух типов. Родительская запись (владелец группового отношения) называется исходной записью, а дочерние записи (члены группового отношения) - подчиненными. Иерархическая база данных может хранить только такие древовидные структуры.

Корневая запись каждого дерева обязательно должна содержать ключ с уникальным значением. Ключи некорневых записей должны иметь уникальное значение только в рамках группового отношения. Каждая запись идентифицируется полным сцепленным ключом, под которым понимается совокупность ключей всех записей от корневой, по иерархическому пути.

При графическом изображении групповые отношения изображают дугами ориентированного графа, а типы записей - вершинами ( диаграмма Бахмана).

Для групповых отношений в иерархической модели обеспечивается автоматический режим включения и фиксированное членство. Это означает, что для запоминания любой некорневой записи в БД должна существовать ее родительская запись .

Пример

Рассмотрим следующую модель данных предприятия (см. рис. 4.2): предприятие состоит из отделов, в которых работают сотрудники. В каждом отделе может работать несколько сотрудников, но сотрудник не может работать более чем в одном отделе.

Поэтому, для информационной системы управления персоналом необходимо создать групповое отношение, состоящее из родительской записи ОТДЕЛ (НАИМЕНОВАНИЕ_ОТДЕЛА, ЧИСЛО_РАБОТНИКОВ) и дочерней записи СОТРУДНИК (ФАМИЛИЯ, ДОЛЖНОСТЬ, ОКЛАД). Это отношение показано на рис. 4.2 (а) (Для простоты полагается, что имеются только две дочерние записи).

Для автоматизации учета контрактов с заказчиками необходимо создание еще одной иерархической структуры: заказчик - контракты с ним - сотрудники, задействованные в работе над контрактом. Это дерево будет включать записи ЗАКАЗЧИК (НАИМЕНОВАНИЕ_ЗАКАЗЧИКА, АДРЕС), КОНТРАКТ(НОМЕР, ДАТА,СУММА), ИСПОЛНИТЕЛЬ (ФАМИЛИЯ, ДОЛЖНОСТЬ, НАИМЕНОВАНИЕ_ОТДЕЛА) (