Целевая функция. Какой должна быть целевая функция

Являясь централизованным, выполняет следующие функции функцию регулирования цен между новой и серийной продукцией функцию целевого и постоянного обеспечения -процесса производства новой техники денежными средствами функцию перераспределения средств по освоению новой техники между предприятиями, в различной степени участвующими в освоении новой техники.  

Что касается расходов государства, то они представляют целевые фонды денежных средств , ассигнованные и фактически использованные государством для реализации своих функций. К основным функциям целевых расходов относят  

Перейдем теперь к описанию целевых функций. Целевая функция ПМ  

Целевая функция. Целевая функция определяет задачу, которая должна быть решена в процессе оптимизации. Например, в этой главе мы занимаемся минимизацией риска портфеля активов. Типичной целевой функцией для портфеля рискованных активов будет  

ФУНКЦИЯ ЦЕЛЕВАЯ - это функция, которая связывает цель (оптимизируемую переменную) и управляемые переменные в задаче оптимизации.  

Первое выражение называется целевой функцией (равно произведению прибыли на единицу продукта с,- на выпуск этого продукта Xj). Остальные уравнения составляют линейные ограничения , которые означают, что расход сырья, полуфабрикатов, качество продукции , мощности, т. е. исходные ресурсы, не должны превышать заранее установленных величин / /. Коэффициенты а,7 - постоянные величины , показывающие расход ресурса на /-и продукт. Задача может быть решена при неотрицательности переменных и при числе неизвестных большем, чем число ограничений. Если последнее условие не удовлетворяется, то задача является несовместной.  

В качестве целевой функции принимаем выработку автобензина А-76  

Целевая функция имеет вид  

Поскольку от объема производства зависят переменные затраты , то максимизации подлежит разность между ценой и переменными затратами . Условно-постоянные расходы (амортизационные отчисления , затраты па текущий ремонт , заработная плата с начислениям общецеховые и общезаводские расходы) в модель не включают и вычитают из целевой функции, полученной на ЭВМ. Если в качестве неизвестных принята длительность работы установки по каждому варианту, то рассчитывают переменные затраты на один день ее работы.  

Условие (4,56) характеризует целевую функцию, те максимальную разность между оптовой ценой и себестоимостью товарных бензинов.  

В качестве целевой функции при решении данной задачи может быть как максимум прибыли по предприятию (4.52), так и максимум объема производства товарной продукции в стоимостном выражении (4.53)  

Приведенная модель расчета себестоимости является одновременно и моделью расчета прибыли предприятия. Однако основной эффект реализации расчета себестоимости на ЭВМ состоит в возможности использования результатов этого расчета для оптимизации производственной программы предприятия . В данном случае в качестве целевой функции может быть принят максимум прибыли от реализации продукции . Оптимизируя производственную программу , необходимо максимизировать функцию вида  

Преимущества и недостатки структуры, ориентированной на покупателя, в общем те же, что и у продуктовой структуры , если учесть различия, связанные с разной целевой функцией.  

Так как интегральную энергоемкость определяют с учетом энергозатрат прямых и опосредованных (через материальные, технические и трудовые ресурсы), то и в суммарной народнохозяйственной экономии учитывают снижение энергоемкости каждого из расходуемых и используемых ресурсов. Энергоемкость каждого целевого эффекта (продукта, услуги) рассчитывают как сумму энергоемкостей по стадиям его формирования. Например, энергоемкость трубы складывается из энергоемкости добычи руды, выплавки стали, проката листа и собственно изготовления трубы и измеряется в килограммах условного топлива на 1 руб. ее стоимости. Существующие формы учета и предложенная методика позволяют определить эти показатели для любого продукта, услуги и т.д. Таким образом, для экономии энергии необходимо снизить расход производственных ресурсов всех видов при достижении заданного целевого эффекта. Эти ресурсы и конечный целевой эффект измеряют в стоимостном выражении. Затраты на них зависят от масштаба применяемой технологии, уровня срвершенства технических средств , в которых реализуется главная целевая функция - целевой технологический процесс , числа масштабности и разветвленности вспомогательных функций, обеспечивающих выполнение главной функции, а также уровня применяемой техники и технологии.  

Выражение (I) обычно наз. исходной системой уравнений и неравенств, а выражение (II) - функционалом задачи линейного программирования или целевой функцией. Целевая функция является критерием оптимальности . Первая группа неравенств системы (I) позволяет учесть в расчете ограничения в существующих на начало планируемого периода мощностях топливодобывающих предприятий. Вторая группа неравенств учиты-  

К М. м. в з. и. относят след, разделы прикладной математики математическое программирование , теорию игр, теорию массового обслуживания , теорию расписании , теорию управления запасами и теорию износа п замены оборудования . М а т е м а т и ч. (или оптимальное) п р о г р а м м н р о в а н и о разрабатывает теорию и методы решения условных экстремальных адач, является осн. частью формального аппарата анализа разнообразных задач управления , планирования и проектирования. Играет особую роль в задачах оптимизации планирования нар. х-ва и управления нронз-вом. Задачи планирования экономики п управления техникой сводятся обычно к выбору совокупности чисел (т. н. параметров управления), обеспечивающих оптимум пек-рой функции (целевой функции пли показателя качества решения) при ограничениях вида равенств и неравенств, определяемых условиями работы системы . В зависимости от свойств функций, определяющих показатель качества и ограничения задачи, математич. программирование делится на линейное и нелинейное. Задачи, и к-рых целевая функция - линейная, а условия записываются в виде линейных равенств и неравенств, составляют предмет линейного программа-ронпии.ч. Задачи, в к-рых показатель качества решения или нек-рые из функций, определяющих ограничения, нелинейны, относятся к н е л и н е и н о м у п р о-г р а м м и [) о н а н п го. Нелинейное программирование , в свою очередь, делится на выпуклое и невынуклое программирование. В зависимости от того, являются лп исходные параметры, характеризующие условия задачи, вполне определёнными числами или случайными величинами , в математич. программировании различаются методы управления и планирования в условиях полной и неполной информации . Методы постановки и решения условных экстремальных задач , условия к-рых содержат случайные параметры, составляют предмет с т о х а с т и ч о с к о г о п р о г р а м м и р о в а-  

Цель модели - максимизация суммарного дисконтированного чистого дохода (до на-огов) для совокупности месторождений и газопроводных систем при заданных ехнологических и экономических ограничениях. Модель позволяет использовать льтернативные критерии - минимизации взвешенной суммы отклонений от заданного начения целевой функции (целевое программирование) расчеты могут проводиться ля заданного уровня инвестиций, для заданного уровня добычи, для заданного начения ДЧД.  

Успех такой деловой женщины зависит от того, насколько администрацией будутугаданы возможные поприща, способные дать удовлетворение трудом. Замечено, что женщины хорошо справляются с функциями, требующими общения с людьми, если же это еще и интеллектуальная деятельность -учительница, журналист, экскурсовод и т. п. - то высокая эффективность их труда и положительная ими самими оценка почти наверняка совпадут. В Японии женщинам редко удается получить инженерное, естественно-научное образование, особенно по современным, наиболее перспективным специальностям, тем не менее их включение в широко распростра-няющиеся подвижные целевые группы по решению нестандартных задач оказывается продуктивным. Изобретательность женского ума замечена давно и во всех странах. В Японии же, когда хотят привести яркое тому доказательство, вспоминают конкурс, объявленный известной фирмой "Адзи-но мото". Она предложила большой денежный приз за подсказку, как увеличить продажи, выпускаемой ею приправы, с виду похожей на соль и продаваемой в подобии солонок. Люди писали трактаты, привлекали всевозможные научные знания. Но победительницей стала домохозяйка, ответ которой уместился в одной строке "Сделать покрупнее дырки у солонки".  

где - постоянные затраты, которые не зависят от режима обработки, мин;

Здесь - подготовительно – заключительное время на операцию, мин;

Размер партии обрабатываемых деталей;

Вспомогательное время операции, мин;

Время на обслуживание без учета времени на замену инструмента, мин;

Время на отдых рабочего, мин;

Затраты времени, связанные с заменой затупившегося инструмента и соответствующей поднастройкой технологической системы;

где - время на замену инструмента и соответствующую размерную настройку;

Диаметр и длина обрабатываемого вала;

Коэффициент для расчета скорости резания;

Скорость резания;

Глубина резания;

Здесь - показатели степени в формулах для расчета режимов резания.

Анализ целевой функции времени позволяет вскрыть резервы дополнительного повышения производительности и определить оптимальные режимы резания, обеспечивающие минимальные затраты на выполнение операции.

Целевая функция стоимости на примере обработки вала имеет вид:

Здесь - расходы на материал;

Расходы в единицу времени соответственно на эксплуатацию оборудования, приспособления, по зарплате с учетом накладных расходов;

Время на замену инструмента и соответствующую размерную настройку;

Стоимость инструмента за период его эксплуатации.

Первый член выражения определяет постоянные затраты на материал, расходы, связанные с подготовительно – заключительным временем и временем обслуживания. Второй член выражения определяет затраты на режущий инструмент и простои при его замене. Третий член выражения определяет расходы, связанные непосредственно с выполнением процесса резания.

Объемное планирование работы технологических станочных систем

Эта и все последующие лекции посвящены вопросам математического моделирования и оптимизации технологических станочных систем.

Объемное планирование работы механического участка при достижении максимальной загрузки технологического оборудования

Постановка задачи . Имеется m – станков (m – групп станков), на которых могут быть изготовлены n – типов деталей. Трудоемкость обработки j - ой детали на i – м станке составляет , час. Известны фонды времени работы каждого станка (группы станков) – B i . Исходные данные для решения задачи представлены в таблице 14.1.

Таблица 14.1. Исходные данные для решения задачи, представленные в общем виде

Требуется определить количество деталей каждого наименования , при обработке которых достигается максимальная загрузка оборудования участка.



Математическая модель для решения задачи запишется:

Ограничения :

Задача решается методом линейного программирования. При этом следует иметь в виду следующее. Количество ограничений вида (14.1) - (14.3) в математической модели должно строго равняться количеству станков (групп станков) участка. При решении задачи с помощью компьютера количество станков (групп станков), а также типов деталей практически не ограничено и определяется только возможностями компьютера и соответствующей программы. При решении задачи вручную с применением графо-аналитического метода количество типов станков (групп станков) также не ограничено, но их увеличение естественным образом приведет к увеличению времени расчетов. Количество же типов деталей не должно превышать двух, т.к. в противном случае невозможно будет на плоскости выполнить необходимые графические построения.

Пример. Исходные данные для примера приведены в таблице 14.2.

Таблица 14.2. Исходные данные для решения задачи

Обозначим через количество деталей типа D 1 , через количество деталей типа D 2 .

Математическая модель для решения данной задачи запишется следующим образом:

Ограничения (по фонду времени работы оборудования):

Требуется найти значения и , удовлетворяющие заданным ограничениям (14.6) – (14.10) и обеспечивающие максимум целевой функции (14.11). Параметры и являются управляемыми параметрами в математической модели.

Решим задачу графо – аналитическим методом (см. лекцию 6). Графическая иллюстрация решения задачи приведена на рис. 14.1.

Рис.14.1. Графическая иллюстрация решения задачи

Вычисления для построения ограничений (14.6) – (14.8):

x 1
x 2
x 1
x 2

Проведя прямую линию, параллельную данной, находим точку касания ее границы ОДР – это точка А. Для нахождения ее координат (точки пересечения ограничений 14.7 и 14.8) решаем следующую систему уравнений:

Т.е. окончательно

Максимальное значение целевой функции (максимальная загрузка оборудования участка) при оптимальных значениях искомых параметров составит:

Задача о минимальной загрузке оборудования

Эта и последующие задачи в данной лекции приводятся на уровне постановки задачи и формирования математической модели для ее решения. Все они решаются методами линейного программирования.

Имеется m станков, на которых могут быть изготовлены n типов деталей. Производительность i - го станка при изготовлении детали j - го типа составляет C ij . Величины плановых заданий A j на изготовление j - ой детали и ресурс времени B i работы i - го станка приведены в таблице 14.3.

Таблица 14.3 Исходные данные для решения задачи

Требуется, учитывая ресурсы времени работы каждого станка распределить задания между станками таким образом, чтобы общее время работы всех станков было минимальным.

Пусть t ij - время изготовления j - ой детали i - м станком. Составим ограничения по ресурсу времени для каждого станка:

Решение поставленной задачи состоит в минимизации линейной целевой функции (суммарного времени)

(14.14)

при ограничениях (14.12), (14.13) и условии, что все переменные .

Задача об оптимальном распределении деталей по станкам

Пусть некоторая машина состоит из различных видов деталей, которые мы пронумеруем числами . Имеется типов различных станков, причем количество станков - го типа равно . Детали могут быть изготовлены на станках разного типа. Производительность станка - го типа при изготовлении - ой детали составляет . После изготовления детали поступают на сборку. Требуется закрепить станки за деталями так, чтобы в единицу времени получать максимальное количество машин.

Пусть - количество станков - го типа, на которых можно изготовить - ю деталь. Очевидно, что количество станков - го типа, изготавливающих детали видов, не должно превышать заданное число :

Общее количество комплектов деталей, необходимых для сборки машины, равно общему количеству какой-либо одной детали, имеющей, например, номер 1. Поэтому решение задачи заключается в максимизации линейной функции

(14.17)

при ограничениях (14.15), (14,16) с дополнительным условием, что все переменные .

Найденные оптимальные значения этой задачи не обязательно целые числа. Например, означает, что на двух станках первого типа в течение единицы времени будут изготовлять деталь с номером 1, тогда как третий станок того же типа будет работать лишь половину указанного времени.

Задача о производстве продукции при ограниченных запасах сырья

Из видов сырья производится различных типов продукции. Стоимость реализации изготовленной продукции - го типа составляет . Запас сырья - го вида на планируемый период равен . Потребность в сырье - го типа составляет . Исходные данные для решения задачи приведены в таблице 14.4.

Таблица 14.4 Исходные данные для решения задачи

Требуется для каждого типа продукта определить такой объем производства , чтобы обеспечить максимальную стоимость реализации изготовленной продукции при условии, что не будут превышены запасы имеющегося сырья.

Ограничения по запасам сырья имеют вид:

(14.18)

Задача заключается в том, чтобы определить оптимальные значения параметров (переменных) , обращающих в максимум стоимость продукции, т.е. целевую функцию

при ограничениях (14.18) и дополнительных условиях .

Основы теории массового обслуживания

Теория массового обслуживания составляет один из разделов теории вероятностей. В этой теории рассматриваются вероятностные задачи и математические модели (до этого нами рассматривались детерминированные математические модели). Напомним, что:

Детерминированная математическая модель отражает поведение объекта (системы, процесса) с позиций полной определенности в настоящем и будущем.

Вероятностная математическая модель учитывает влияние случайных факторов на поведение объекта (системы, процесса) и, следовательно, оценивает будущее с позиций вероятности тех или иных событий.

Т.е. здесь как, например, в теории игр задачи рассматриваются в условиях неопределенности .

Рассмотрим сначала некоторые понятия, которые характеризуют «стохастическую неопределенность», когда неопределенные факторы, входящие в задачу, представляют собой случайные величины (или случайные функции), вероятностные характеристики которых либо известны, либо могут быть получены из опыта. Такую неопределенность называют еще «благоприятной», «доброкачественной».

Понятие случайного процесса

Строго говоря, случайные возмущения присущи любому процессу. Проще привести примеры случайного, чем «неслучайного» процесса. Даже, например, процесс хода часов (вроде бы это строгая выверенная работа – «работает как часы») подвержен случайным изменениям (уход вперед, отставание, остановка). Но до тех пор, пока эти возмущения несущественны, мало влияют на интересующие нас параметры, мы можем ими пренебречь и рассматривать процесс как детерминированный, неслучайный.

Пусть имеется некоторая система S (техническое устройство, группа таких устройств, технологическая система – станок, участок, цех, предприятие, отрасль промышленности и т.д.). В системе S протекает случайный процесс , если она с течением времени меняет свое состояние (переходит из одного состояния в другое), причем, заранее неизвестным случайным образом.

Примеры: 1. Система S – технологическая система (участок станков). Станки время от времени выходят из строя и ремонтируются. Процесс, протекающий в этой системе, случаен.

2. Система S – самолет, совершающий рейс на заданной высоте по определенному маршруту. Возмущающие факторы – метеоусловия, ошибки экипажа и т.д., последствия – «болтанка», нарушение графика полетов и т.д.

Марковский случайный процесс

Случайный процесс, протекающий в системе, называется Марковским , если для любого момента времени t 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t 0 и не зависят от того, когда и как система пришла в это состояние.

Пусть в настоящий момент t 0 система находится в определенном состоянии S 0 . Мы знаем характеристики состояния системы в настоящем и все, что было при t < t 0 (предысторию процесса). Можем ли мы предугадать (предсказать) будущее, т.е. что будет при t > t 0 ? В точности – нет, но какие-то вероятностные характеристики процесса в будущем найти можно. Например, вероятность того, что через некоторое время система S окажется в состоянии S 1 или останется в состоянии S 0 и т.д.

Пример . Система S – группа самолетов, участвующих в воздушном бою. Пусть x – количество «красных» самолетов, y – количество «синих» самолетов. К моменту времени t 0 количество сохранившихся (не сбитых) самолетов соответственно – x 0 , y 0 . Нас интересует вероятность того, что в момент времени численный перевес будет на стороне «красных». Эта вероятность зависит от того, в каком состоянии находилась система в момент времени t 0 , а не от того, когда и в какой последовательности погибали сбитые до момента t 0 самолеты.

На практике Марковские процессы в чистом виде обычно не встречаются. Но имеются процессы, для которых влиянием «предистории» можно пренебречь. И при изучении таких процессов можно применять Марковские модели (в теории массового обслуживания рассматриваются и не Марковские системы массового обслуживания, но математический аппарат, их описывающий, гораздо сложнее).

В исследовании операций большое значение имеют Марковские случайные процессы с дискретными состояниями и непрерывным временем.

Процесс называется процессом с дискретным состоянием , если его возможные состояния S 1 , S 2 , … можно заранее определить, и переход системы из состояния в состояние происходит «скачком», практически мгновенно.

Процесс называется процессом с непрерывным временем , если моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны и могут произойти в любой момент.

Пример . Технологическая система (участок) S состоит из двух станков, каждый из которых в случайный момент времени может выйти из строя (отказать), после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время. Возможны следующие состояния системы:

S 0 - оба станка исправны;

S 1 - первый станок ремонтируется, второй исправен;

S 2 - второй станок ремонтируется, первый исправен;

S 3 - оба станка ремонтируются.

Переходы системы S из состояния в состояние происходят практически мгновенно, в случайные моменты выхода из строя того или иного станка или окончания ремонта.

При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой – графом состояний . Вершины графа – состояния системы. Дуги графа – возможные переходы из состояния в

Рис.15.1. Граф состояний системы

состояние. Для нашего примера граф состояний приведен на рис.15.1.

Примечание. Переход из состояния S 0 в S 3 на рисунке не обозначен, т.к. предполагается, что станки выходят из строя независимо друг от друга. Вероятностью одновременного выхода из строя обоих станков мы пренебрегаем.

Потоки событий

Поток событий – последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени.

В предыдущем примере – это поток отказов и поток восстановлений. Другие примеры: поток вызовов на телефонной станции, поток покупателей в магазине и т.д.

Поток событий можно наглядно изобразить рядом точек на оси времени O t – рис. 15.2.

Рис.15.2. Изображение потока событий на оси времени

Положение каждой точки случайно, и здесь изображена лишь какая-то одна реализация потока.

Интенсивность потока событий () – это среднее число событий, приходящееся на единицу времени.

Рассмотрим некоторые свойства (виды) потоков событий.

Поток событий называется стационарным , если его вероятностные характеристики не зависят от времени.

В частности, интенсивность стационарного потока постоянна. Поток событий неизбежно имеет сгущения или разрежения, но они не носят закономерного характера, и среднее число событий, приходящееся на единицу времени, постоянно и от времени не зависит.

Поток событий называется потоком без последствий , если для любых двух непересекающихся участков времени и (см. рис.15.2) число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой. Другими словами, это означает, что события, образующие поток, появляются в те или иные моменты времени независимо друг от друга и вызваны каждое своими собственными причинами.

Поток событий называется ординарным , если события в нем появляются поодиночке, а не группами по нескольку сразу.

Поток событий называется простейшим (или стационарным пуассоновским), если он обладает сразу тремя свойствами: 1) стационарен, 2) ординарен, 3) не имеет последствий.

Простейший поток имеет наиболее простое математическое описание. Он играет среди потоков такую же особую роль, как и закон нормального распределения среди других законов распределения. А именно, при наложении достаточно большого числа независимых, стационарных и ординарных потоков (сравнимых между собой по интенсивности) получается поток, близкий к простейшему.

Для простейшего потока с интенсивностью интервал T между соседними событиями имеет так называемое показательное (экспоненциальное) распределение с плотностью

Переменные задачи

Построим модель задачи.

Решение

Прежде чем построить математическую модель задачи, ᴛ.ᴇ. записать ее с помощью математических символов, крайне важно четко разобраться с экономической ситуацией, описанной в условии. Для этого крайне важно с точки зрения экономики, а не математики, ответить на следующие вопросы:

1) Что является искомыми величинами задачи?

2) Какова цель решения? Какой параметр задачи служит критерием эффективности (оптимальности) решения, к примеру, прибыль, себестоимость, время и т.д. В каком направлении должно изменяться значение этого параметра (к max или к min) для достижения наилучших результатов?

3) Какие условия в отношении искомых величин и ресурсов задачи должны быть выполнены?

Эти условия устанавливают, как должны соотноситься друг с другом различные параметры задачи, к примеру, количество ресурса, затраченного при производстве, и его запас на складе; количество выпускаемой продукции и емкость склада, где она будет храниться; количество выпускаемой продукции и рыночный спрос на эту продукцию и т.д.

Только после экономического ответа на всœе эти вопросы можно приступать к записи этих ответов в математическом виде, ᴛ.ᴇ. к записи математической модели.

В задаче требуется установить, сколько краски каждого вида нужно производить. По этой причине искомыми величинами, а значит, и переменными задачи являются суточные объёмы производства каждого вида красок:

x1 – суточный объём производства краски 1-го вида, [т краски/сутки];

x2 – суточный объём производства краски 2-го вида, [т краски/сутки].

В условии задачи сформулирована цель – добиться максимального дохода от реализации продукции. Т.е. критерием эффективности служит параметр суточного дохода, который должен стремиться к максимуму. Чтобы рассчитать величину суточного дохода от продажи красок обоих видов, крайне важно знать объёмы производства красок, ᴛ.ᴇ. x1 и x2 т краски в сутки, а также оптовые цены на краски 1-го и 2-го видов – согласно условию, соответственно 3 и 2 тыс. руб. за 1 т краски. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, доход от продажи суточного объёма производства краски 1-го вида равен 3 x 1 тыс. руб. в сутки, а от продажи краски 2-го вида – 2x 2 тыс. руб. в сутки. По этой причине запишем целœевую функцию в виде суммы дохода от продажи красок 1-го и 2-го видов (при допущении независимости объёмов сбыта каждой из красок)

Целевая функция - понятие и виды. Классификация и особенности категории "Целевая функция" 2017, 2018.

  • - Основные понятия. Критерии эффективности. Целевая функция

    ГЛАВА 16. ЭФФЕКТИВНОСТЬ МЕНЕДЖМЕНТА КОНТРОЛЬНЫЕ ВОПРОСЫ 1. Чем вызвана необходимость внешнеэкономической деятельности предприятия? 2. Что благоприятствует внешнеэкономической деятельности предприятия? 3. Что является препятствием для... .


  • - В нашем примере целевая функция имеет вид

    F(X) = 75X1 + 800/X1 + 78X2 + 1600/X2 . Функция выпукла, если F"(x)>0 для любого x. Проверим: ; ; ; . Значит, функция выпукла, поскольку "x>0. Следовательно, выбор оптимального числа поездов на двух участках оказывается задачей выпуклого программирования, которая может быть решена... .


  • - Целевая функция потребления и моделирование поведения потребителей

    В условиях рыночной системы управления производственной и сбытовой деятельностью предприятий и фирм в основе принятия хозяйственных решений лежит рыночная информация, а обоснованность решений проверяется рынком в ходе реализации товаров и услуг. При таком подходе...

  • Целевая функция

    Функция, связывающая цель (оптимизируемую переменную) с управляемыми переменными в задаче оптимизации.

    Важно, что критерий всегда привносится извне, и только после этого ищется правило решения, минимизирующее или максимизирующее целевую функцию.

    См. также

    • Бурак Я. И., Огирко И. В. Оптимальный нагрев цилиндрической оболочки с зависящими от температуры характеристиками материала // Мат. методы и физ.-мех. поля. - 1977. - Вып. 5. - С.26-30

    Wikimedia Foundation . 2010 .

    • ЦНИИ робототехники и технической кибернетики
    • 1885 год в театре

    Смотреть что такое "Целевая функция" в других словарях:

      целевая функция - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] целевая функция В экстремальных задачах — функция, минимум или максимум которой требуется найти. Это… …

      Целевая функция - в экстремальных задачах функция, минимум или максимум которой требуется найти. Это ключевое понятие оптимального программирования. Найдя экстремум Ц.ф. и, следовательно, определив значения управляемых переменных, которые к нему… …

      целевая функция - 3.1.8 целевая функция (business function): Набор процессов, обеспечивающих достижение конкретной цели деятельности. Источник: Р 50.1.041 2002: Инфор … Словарь-справочник терминов нормативно-технической документации

      целевая функция - tikslo funkcija statusas T sritis automatika atitikmenys: angl. objective function vok. Zielfunktion, f rus. функция цели, f; целевая функция, f pranc. fonction de cible, f … Automatikos terminų žodynas

      Целевая функция - функция, экстремальное значение которой ищется на допустимом множестве в задачах математического программирования (См. Математическое программирование) … Большая советская энциклопедия

      ЦЕЛЕВАЯ ФУНКЦИЯ - функция цели название оптимизируемой функции в задачах математического программирования … Математическая энциклопедия

      Целевая функция - (условное название, относительно корректно может быть применено только к системам, созданным с определенной целью человеком), в объективном мире не существует, там имеет место системообразующий фактор … Теоретические аспекты и основы экологической проблемы: толкователь слов и идеоматических выражений

      Целевая функция потребления - 1. Этим термином, а также несколькими равнозначными ему или почти равнозначными (функция уровня жизни, функция благосостояния, функция общественной полезности, функция потребления и др.) обозначают в… … Экономико-математический словарь

      целевая функция потребления - 1. Этим термином, а также несколькими равнозначными ему или почти равнозначными (функция уровня жизни, функция благосостояния, функция общественной полезности, функция потребления и др.) обозначают в теоретических исследованиях целевую функцию… … Справочник технического переводчика

      целевая функция автоматизированной медицинской системы - целевая функция АМС Совокупность действий автоматизированной медицинской системы, обеспечивающая эффективное выполнение заданной медицинской программы. [ГОСТ 27878 88] Тематики системы и комплексы медицинские Обобщающие термины системы и… … Справочник технического переводчика

    Книги

    • Подход к организации адаптивной системы управления обучением на основе использования информационных технологий , А. В. Анастасьин. Вопрос использования информационных технологий в образовательном процессе высших учебных заведений уже давно и постоянно обсуждается на самых различных уровнях. Это обусловлено быстрыми…

      Для нахождения максимума целевой функции используйте функцию maximize, формат которой следующий maximize(<функция>, <система ограничений>, <опции>);

    При этом условие неотрицательности переменных удобно указать опцией NONNEGATIVE.

    > optimum:=maximize(f,syst_ogr,NONNEGATIVE);

      Используйте команду subs, которая позволяет подставить значения переменных x 1 и x 2 в функцию f .

    > fmax:=subs(x1=83/17,x2=19/17,f);

      Примените функцию evalf для представления ответа в форме действительного числа с 4 значащими цифрами.

    > fmax:=evalf(fmax,4);

    Ознакомиться с вариантом решения задачи ЛП без пояснений можно в приложении.

    Решение оптимизационных задач в специализированном пакете SimplexWin. Http://www.Simplexwin.Narod.Ru/

    Данная программа предназначена для решения задач линейного программирования симплекс методом.

    Задача . Найти значения переменных x 1 и x 2 , при которых

    при ограничениях

    Порядок выполнения работы :

      Запустите программу SimplexWin и установите требуемый размер матрицы ограничений, выбрав в меню команду Настройки – Размер матрицы (рис. 13).

    Рис. 13 . Определение размера матрицы.

      Введите данные (рис. 14). Если задача вводится не в канонической форме, то дополнительные переменные и искусственные базисы (а также соответствующие им коэффициенты целевой функции) добавляются автоматически.

    Рис.14 . Ввод данных.

    II. Нахождение оптимального плана и оптимального значения целевой функции.


    Рис. 15 . Форма Результаты.

      В форме Результаты нажмите кнопку Результат, которая позволяет произвести решение задачи в автоматическом режиме и отобразить на экране последнюю симплексную таблицу и результат (рис. 16).

    Рис. 16 . Решение задачи.

    Решение оптимизационных задач в Excel

    Рассмотрим пример нахождения для следующей задачи линейного программирования.

    Задача . Найти значения переменных x 1 и x 2 , при которых

    при ограничениях

    Порядок выполнения работы :

    I. Оформление исходных данных.

      Создайте экранную форму для ввода условий задачи (переменных, целевой функции, ограничений) и введите в нее исходные данные (коэффициенты целевой функции, коэффициенты при переменных в ограничениях, правые части ограничений) (рис. 17).

    Рис. 17 . Экранная форма задачи (курсор в ячейке D6).

    Замечание : В экранной форме на рис. 17 каждой переменной и каждому коэффициенту задачи поставлена в соответствие конкретная ячейка в Excel. Так, например, переменным задачи соответствуют ячейки B3 (), C3 (),коэффициентам целевой функции соответствуют ячейки B6 (
    ), C6 (
    ), правым частям ограничений соответствуют ячейки F10 (
    ), F11 (
    ),F12 (
    )и т.д.

      Введите зависимости из математической модели в экранную форму, т.е. введите формулу для расчета целевой функции и формулу для расчета значений левых частей ограничений.

    Согласно условию задачи значение целевой функции определяется выражением
    . Используя обозначения соответствующих ячеек вExcel, формулу для расчета целевой функции можно записать как сумму произведений каждой из ячеек, отведенных для значений переменных задачи (B3, C3), на соответствующие ячейки, отведенные для коэффициентов целевой функции (B6, C6).

    Для того чтобы задать формулу зависимости для целевой функции проделайте следующее :

    – поставьте курсор в ячейку D6 ;

    – вызовите окно Мастер функций – шаг 1 из 2 , нажав кнопку на стандартной панели инструментов;

    – в окне Функция выберите функцию СУММПРОИЗВ ;

    – в появившемся окне СУММПРОИЗВ в строку Массив 1 введите выражение B$3:C$3 , а в строку Массив 2 – выражение B6 :С6 ;

    – нажмите кнопку OK .

    Рис. 18 . Ввод формулы для расчета ЦФ в окне Мастер функций.

    После ввода ячеек в строки Массив 1 и Массив 2 в окне СУММПРОИЗВ появятся числовые значения введенных массивов (рис. 18), а в экранной форме появится текущее значение, вычисленное по введенной формуле, то есть 0 (так как в момент ввода формулы значения переменных задачи нулевые) (рис. 19).

    Замечание : Символ $ перед номером строки означает, что при копировании этой формулы в другие места листа Excel номер строки 3 не изменится. Символ : означает, что в формуле использованы все ячейки, расположенные между ячейками, указанными слева и справа от двоеточия.

    Левые части ограничений задачи представляют собой сумму произведений каждой из ячеек, отведенных для значений переменных задачи (B3, C3), на соответствующую ячейку, отведенную для коэффициентов конкретного ограничения (B10, C10 – 1 ограничение; B11, C11 – 2 ограничение; B12, C12 – 3 ограничение).

    Формулы, задающие левые части ограничений задачи, отличаются друг от друга и от формулы в целевой ячейке D6 только номером строки во втором массиве. Этот номер определяется той строкой, в которой ограничение записано в экранной форме. Поэтому для задания зависимостей для левых частей ограничении достаточно скопировать формулу из целевой ячейки в ячейки левых частей ограничений.

    Для расчета значений левых частей ограничений выполните следующее:

    – поставьте курсор в ячейку D6 и скопируйте в буфер содержимое ячейки (клавишами Ctrl+C);

    – поставьте курсор поочередно в поля левой части каждого из ограничений, то есть D 10 ,D 11 , D 12 , и вставляйте в эти поля содержимое буфера (клавишами Ctrl+V) (при этом номер ячеек во втором массиве формулы будет меняться на номер той строки, в которую была произведена вставка из буфера).

    После ввода на экране в полях D 10 ,D 11 , D 12 появится 0 (нулевое значение) (рис. 19).

    Рис. 19 . Экранная форма задачи после вода

    всех необходимых формул.

      Проверьте правильность введения формул.

    Для этого:

    – произведите поочередно двойное нажатие левой клавиши мыши на ячейки с формулами, при этом на экране рамкой будут выделяться ячейки, используемые в формуле (рис. 20 и рис. 21).

    Рис. 20

    формулы в целевую ячейку D6.

    Рис. 20 . Проверка правильности введения

    формулы в ячейку D10 для левой части ограничений.

      Задайте целевую функцию и введите ограничения в окне Поиск решения (рис. 21).

    Для этого:

    – поставьте курсор в ячейку D6 ;

    – вызовите окно Поиск решения , выбрав на панели инструментов Данные – Поиск решения ;

    – поставьте курсор в поле Установить целевую ячейку ;

    – введите адрес целевой ячейки $D$6 или сделайте одно нажатие левой клавишей мыши на целевую ячейку в экранной форме, что будет равносильно вводу адреса с клавиатуры;

    – укажите направление оптимизации целевой функции, щелкнув один раз левой клавишей мыши по селекторной кнопке максимальному значению ;

    – в окне Поиск решений в поле Изменяя ячейки введите ячейки со значениями переменных $B$3:$C$3 , выделив их в экранной форме, удерживая левую кнопку мыши;

    Рис. 21 . Окно Поиск решения.

    – нажмите кнопку Добавить ;

    – в соответствии с условием задачи выберите в поле знака необходимый знак, например, для 1 ограничения это знак ;

    – в поле Ограничение введите адрес ячейки правой части, рассматриваемого ограничения, например $F$10 ;

    – аналогичным образом установите соотношения между правыми и левыми частями других ограничений ($D$ 11$F$1 1 , $D$ 12$F$1 2) ;

    – подтвердите ввод всех перечисленных условий нажатием кнопки OK (рис. 22 и рис. 23).

    Рис. 22 . Добавления условия.

    Замечание : Если при вводе условия задачи возникает необходимость в изменении или удалении внесенных ограничений, то это можно сделать на жав на кнопки Изменить или Удалить .