Определение переменной состояния. Методом переменных состояния

Уравнениями состояния электрической цепи называют любую систему дифференциальных уравнений, которая описывает состояние (режим) данной цепи. Например, система уравнений Кирхгофа является уравнениями состояния цепи, для которой она составлена.

В более узком смысле в математике уравнениями состояния называют систему дифференциальных уравнений 1-го порядка, разрешенных относительно производных (форма Коши). Система уравнений состояния в обобщенной форме имеет вид:

Та же система уравнений в матричной форме:

или в обобщённой матричной форме:

Система уравнений состояния формы Коши решается методом численного интегрирования (метод Эйлера или метод Рунге-Кутта) на ЭВМ по стандартной программе, которая должна быть в пакете стандартных программ. При отсутствии такой программы в пакете она легко может быть составлена по следующему алгоритму (метод Эйлера) для к-го шага:

Значения производных на к-ом шаге:

Значения переменных на к-ом шаге:

Для определения значений переменных и их производных на 1-м шаге ин¬тегрирова¬ния используются их значения на момент t=0, т.е. их начальные условия x1(0), x2(0)...xn(0).

Уравнения состояния формы Коши для заданной схемы могут быть получены из системы уравнений Кирхгофа путем их преобразования. Для этой цели: а) из системы уравнений Кирхгофа методом подстановки исключаются ""лишние"" переменные, имеющие зависимые начальные условия, и оставляют переменные iL(t) и uC(t), которые не изменяются скачком и имеют независи-мые начальные условия iL(0) и uC(0); б) оставшиеся уравнения решаются относительно производных и приводятся их к форме Коши.

В случае сложных схем уравнения состояния формы Коши могут быть составлены топологическими методами с использованием матриц соединений [A] и [B].

Последовательность расчета переходного процесса методом переменных состояния выглядит так:

1. Производится расчет схемы в установившемся режиме до коммутации и определяются независимые начальные условия iL(0) и uC(0).

2. Составляется система дифференциальных уравнений по законам Кирхгофа для схемы после коммутации.

3. Методом исключения ""лишних"" переменных система уравнений Кирхгофа преобразуется в систему уравнений Коши, составляются матрицы коэффициентов.

4. Выбирается расчетное время (продолжительность переходного процесса) и число шагов интегрирования N.

5. Решение задачи выполняется на ЭВМ по стандартной программе. Выходную функцию получают в виде графической диаграммы x=f(t)или в виде таблицы координат функций для заданных моментов времени.

Пример. Для схемы рис. 74.1 с заданными параметрами элементов (e(t)=Emsin(ωt+ψE), R, R1, R2, R3, L1, L2, C) выполнить расчет переходного процесса и определить функцию uab(t).


1. Выполняется расчет схемы в установившемся режиме переменного тока до коммутации и определяются начальные условия i1(0), i2(0), uC(0).

2. Составляется система дифференциальных уравнений по законам Кирхгофа:

3. Система уравнений Кирхгофа преобразуется в систему уравнений Коши.

Для этой цели из (1) выражаем

и делаем подстановку в (1) и (2), а из (4) делаем подстановку в (1). Тогда получим:


Введем обозначения.

Изучите теоретический материал по учебной литературе: ; и ответьте на следующие вопросы:

1. Какие переменные в электрической цепи обычно принимают за переменные состояния?

2. Сколько систем уравнений составляют при решении задачи методом переменных состояния?

3. Какие зависимости устанавливаются в первой и во второй системах уравнений при решении задачи методом переменных состояния?

4. Какая из двух систем является системой дифференциальных уравнений, алгебраических?

5. Какие способы используются для получения уравнений состояния и уравнений выходных параметров?

При расчете переходного процесса методом переменных состояния рекомендуется следующий порядок:

1. Выбрать переменные состояния. В предложенных для расчета схемах это напряжения на емкостных элементах и токи в индуктивных катушках .

2. Составить систему дифференциальных уравнений для первых производных от переменных состояния.

Для этого описать послекоммутационную схему с помощью законов Кирхгофа и решить ее относительно первых производных от переменных состояния и в зависимости от переменных , и источников э.д.с. (в предлагаемых схемах источник э.д.с. – единственный).

В матричной форме эта система дифференциальных уравнений 1-го порядка будет иметь вид:

, (8.1)

где – столбец производных , ;

Х – вектор - столбец переменных состояния.

В цепях второго порядка:

– квадратная матрица порядка n , определяемая топологией электрической цепи и параметрами ее элементов. В цепях второго порядка эта матрица имеет порядок 2´2.

Матрица – прямоугольная матрица порядка , где n – порядок цепи.

Матрица – столбец – определяется источниками э.д.с. и источниками токов схемы и называется вектором входных величин .

3. Составить систему алгебраических уравнений для искомых переменных, которые называются выходными . Это токи в любых ветвях схемы (кроме тока ) и напряжения на любых элементах схемы (кроме напряжения ). Полученные алгебраические уравнения устанавливают связи между выходными переменными, с одной стороны, и переменными состояния и источниками напряжения и тока схемы – с другой. В матричной форме эта система алгебраических уравнений имеет вид

,

где – вектор выходных величин;

– матрицы, определяемые топологией электрической цепи, параметрами ее элементов и количеством искомых переменных.

В. Н. Непопалов

Метод переменных состояния

Учебное пособие

Челябинск 2003

УДК 621.3.011(075.8)

Непопалов В. Н. Метод переменных состояния: Учебное пособие. – Нижневартовск, Изд. 2003.– 26 с.

Рассматривается метод переменных состояния расчета переходных процессов в линейных электрических цепях. Учебное пособиепредназначено в помощь студентам при самостоятельной работе по курсу «Дополнительные главы электротехники».

1. Нормальная форма уравнений состояния 4

2. Получение нормальной формы уравнений состояния 5

3. Примеры получения нормальной формы уравнений состояния 6

4. Решение уравнений состояния классическим методом 9

5. Использование элементов теории матриц для решения уравнений состояния 15

6. Применение к расчету переходных процессов 22

7. Контрольные вопросы 24

Метод переменных состояния

Переменными состояния будем называть определенный в момент времени t 0 набор функций (напряжений, потокосцеплений, токов или зарядов), значений которого вместе с заданными для t t 0 входными воздействиями, достаточно для однозначного определения выходных функций для любого момента времени t t 0 .

В качестве переменных состояния электрической цепи можно выбрать некоторый набор напряжений, зарядов, токов или потокосцеплений, определенных строго для момента времени , т. е. в момент непосредственно после коммутации. Это обстоятельство ограничивает возможность выбора переменных состояния напряжениями или зарядами на емкостях и токами или потокосцеплениями в индуктивностях, так как значения этих величин не изменяются в момент коммутации t  0:

,,,.

Число величин, определяющих количество переменных состояния, равно числу независимых физических начальных условий.

1. Нормальная форма уравнений состояния

Переменные состояния в момент времени t определяются матрицей-столбцом
, размерностью

С помощью переменных состояния математическая модель линейной электрической цепи, с независящими от времени параметрами, определяется совокупностью дифференциальных уравнений:

и алгебраических уравнений:

где X (t )– матрица-столбец переменных состояния размерностью
;

матрица-столбец производных переменных состояния;

F (t )– матрица-столбец заданных входных переменных или входных воздействий;

Y (t )матрица-столбец выходных переменных;

А ,В ,С ,D – матрицы известных величин, причем,А – квадратная матрица порядкаn . Размерности матрицВ, С , D определяются условиями конкретной задачи.

Дифференциальные уравнения вида

будем называть нормальной формой уравнений состояния, а алгебраические уравнения вида

уравнениями выходных функций.

2. Получение нормальной формы уравнений состояния

Для получения нормальной формы уравнений состояния

1. Нарисовать направленный граф схемы электрической цепи. Составить для этого графа нормальное дерево. В нормальное дерево необходимо включить все ветви с емкостями и источниками э. д. с . Если этого недостаточно для получения дерева, добавить ветви с резисторами, если и этого недостаточно для получения дерева, добавить ветви с индуктивностями. Связями (хордами) графа должны быть ветви с индуктивностями, источниками тока и резистивными ветвями, не вошедшими в дерево графа.

2. Для каждой ветви дерева определить сечение, в которое входит только одна ветвь дерева и некоторый набор связей графа (хорд). Число независимых сечений равно числу ветвей дерева: b t q – 1, где –q число узлов. Записать уравнения Кирхгофа для токов каждого главного сечения и выразить токи ветвей дерева через токи ветвей хорд. Основными из уравнений являются те, в которые входят токи емкостей (если они есть).

3. Для каждой связи определить контур, в который входит только одна связь и некоторый набор ветвей дерева. Число независимых контуров равно числу связей: b l b – q+ 1, гдеb число ветвей графа. Записать уравнения по второму закону Кирхгофа для каждого контура и выразить напряжения на индуктивностях (если они есть) через напряжения на других элементах. Если связями является ветви с источниками тока, то при составлении уравнений состояния уравнения по второму закону Кирхгофа для этих контуров не записываются. Основными являются те уравнения, в которые входят напряжения на индуктивностях.

4. С помощью оставшихся уравнений исключить из основных уравнений напряжения и токи резистивных ветвей. Выразить токов емкостей и напряжения на индуктивностях через напряжения на емкостях и токи в индуктивностях.

5. Подставить в основные уравнений уравнения элементов:

;
.

6. Преобразовать полученную систему в нормальную форму уравнений состояния.

7. Записать алгебраические уравнения выходных функций.

Как указывалось выше САУ, независимо от природы составляющих его звеньев, может быть описана подобными дифференциальными уравнениями (2.1). Эти способы относятся к так называемым внешним описаниям системы. Наоборот, внутреннее описание дается в переменных состояния, предпочтительно используется для тех систем, которые имеют более одного входа и выхода. При этом под переменными состояния системы понимается набор переменных , производные первого порядка от которых входят в математическую модель САУ. С другой стороны, под переменными состояния понимается совокупность переменных, значения которых наряду с входным воздействием позволяет определить будущее состояние системы и выходные величины . Математическая модель системы в переменных состояния удобна для компьютерного анализа.

Пусть линейная система, характеризуется вектором состояния , составленным из n -переменных состояния. На вход системы поступают входные управляющие сигналы . Система описывается следующими уравнениями состояния в векторном виде:

(3.2)

где и - матрицы, составленные из постоянных коэффициентов, имеют вид:

, .

Кроме уравнения (3.2) для системы можно составить следующее матричное уравнение:

(3.3)

Здесь - вектор выходных величин. Матрицы постоянных величин имеют вид

.

Решение систем уравнений (3.2) и (3.3) для некоторого момента времени t = t 0 позволяет найти для времени t>t 0 , т. е. определить будущее состояние системы, а также дает возможность определить выходные величины .

Из системы уравнений (3.2) и (3.3) можно исключить вектор . В этом случае преобразование «вход-выход» может быть описан линейными дифференциальными уравнениями n-го порядка с постоянными коэффициентами в виде (2.1).

Все рассматриваемые виды описаний тесно взаимосвязаны, поэтому, зная одно из них, можно получить остальные. Например, связь между матрицами , , описания в пространстве состояний и комплексной передаточной функцией системы W(s) задается уравнением

W(s)= (sE- ) -1

где s  оператор Лапласа, E  единичная матрица.

Управляемость и наблюдаемость

В п-мерном пространстве состояний каждому состоянию системы соответствует не­которое положение изображающей точки, определяемое значениями переменные состояния (i = 1, 2,... п).

Пусть в пространстве состояний заданы два множества и . Рассматриваемая система будет управляемой, если существует управление , определенное на конечном интерва­ле времени 0, переводящее изображающую точку в пространстве из подобласти G 1 в подобласть G 2 .

Система называется наблюдаемой, если в формирова­нии вектора выходных координат участвуют все состав­ляющие вектора переменных состояния . Если ни одна из составляющих вектора не влияет на формирование выхода системы , то такая система будет ненаблюдаемой.

Анализ управляемости и наблюдаемости выполняется с помощью матриц управляемости и наблюдаемости или с помощью грамианов управляемости и наблюдаемости .

Сформируем на основе матриц , , две вспомогательные матрицы

R = [ , , ..., n -1 ], D = [ , ,…, n -1 ]

Mатрицы R и D называются соответственно матрицей управляемости и матрицей наблюдаемости системы. В пакете MATLAB их можно построить с помощью команд ctrb и obsv .

Для того чтобы система (3.2) была управляемой, необходимо и

достаточно, чтобы матрица управляемости имела полный ранг rankR = n.

Для того чтобы система (3.2) была наблюдаемой, необходимо и достаточно, чтобы матрица наблюдаемости имела полный ранг rankD=n.

В случае систем с одним входом и одним выходом матрицы R и D квадратные, поэтому для проверки управляемости и наблюдаемости достаточно вычислить определители матриц R и D. Если они не равны нулю, то матрицы имеют полный ранг.

Лекция 4. Оценка функционирования САУ

Оценка статических свойств

В зависимости от процессов, происходящих в САУ различают два режима функционирования работы САУ и их элементов: динамический и статический.

Переходному процессу соответствует динамический режим функционирования САУ и их элементов. Этому режиму в ТАУ уделяется наибольшее время. В динамическом режиме величины, определяющие состояние САУ и их элементов изменяется во времени. Выше были представлены математические модели САУ в динамическом режиме в виде дифференциальных уравнений n -го (2.1) или в виде уравнений состояния (3.2, 3.3).

Наоборот, установившийся процесс в САУ соответствует статическему режиму функционирования, при котором величины, характеризующие состояние САУ не изменяются во времени. Для оценки САУ в статическом (установившемся) режиме используется показатель называемый точностью управления. Этот показатель определяется по статической характеристике САУ.

Рис. 4.1. Статические характеристики статических и астатических систем

Статическая характеристика САУ представляет зависимость установившегося значения выходного параметра – y 0 от входного параметра – u 0 при постоянном возмущении или же зависимость выходного параметра - y 0 в установившемся режиме от возмущения–f при постоянном входном параметре. Уравнения статики САУ имеют вид или . В общем случае уравнения могут быть нелинейным. Рассмотрим статическую характеристику элементов или САУ в целом (рис. 4.1) построенную по второму уравнению. Если установившееся значение ошибки в системе зависит от установившегося значения возмущения f , то система называ­ется статической (Рис.4.1,а), а если не зависит - то астатической (Рис.4.1,б).

Относительная статическая ошибка, или статизм, системы равен

Также, статизм можно характеризовать коэффициентом статизма , равным тангенсу угла наклона статической характеристики (Рис. 3.1, а).

Эффективность статического регулирования САУ в установившемся режиме оценива­ют по так называемой степени точности управления, равной отношению абсолютной статической ошибки неавтоматизированного объек­та управления (без регулятора) к абсо­лютной статической ошибке автоматической системы.

В некоторых случаях статическая ошибка нежелательна, тогда переходят к астатическому регулированию или вводят компенсирующие воздействия на возмущения.

Метод переменных состояния (называемый иначе методом пространства состояний) основывается на двух уравнениях, записываемых в матричной форме.

Структура первого уравнения определяется тем, что оно связывает матрицу первых производных по времени переменных состояния с матрицами самих переменных состояния и внешних воздействий и, в качестве которых рассматриваются э. д. с. и токи источников.

Второе уравнение по своей структуре является алгебраическим и связывает матрицу выходных величин у с матрицами переменных состояния и внешних воздействий и.

Определяя переменные состояния, отметим следующие их свойства

1. В качестве переменных состояния в электрических цепях следует выбирать токи в индуктивностях и напряжения на емкостях, причем не во всех индуктивностях и не на всех емкостях, а только для независимых, т. е. таких, которые определяют общий порядок системы дифференциальных уравнений цепи.

2. Дифференциальные уравнения цепи относительно переменных состояния записываются в канонической форме, т. е. представляются решенными относительно первых производных переменных состояния по времени.

Отметим, что только при выборе в качестве переменных состояния токов к в независимых индуктивностях и напряжений на независимых емкостях первое уравнение метода переменных состояния будет иметь указанную выше структуру.

Если в качестве переменных состояния выбрать токи в ветвях с емкостями или токи в ветвях с сопротивлениями, а также напряжения на индуктивностях или напряжения на сопротивлениях то первое уравнение метода переменных состояния также можно представить в канонической форме, т. е. решенным относительно первых производных по времени этих величин. Однако структура их правых частей не будет соответствовать данному выше определению, так как в них будет еще входить матрица первых производных от внешних воздействий

3. Число переменных состояния равно порядку системы дифференциальных уравнений исследуемой электрической цепи.

4. Выбор в качестве переменных состояния токов и напряжений удобен еще и потому, что именно эти величины согласно законам коммутации (§ 13-1) в момент коммутации не изменяются скачком, т. е. одинаковы для моментов времени

5. Переменные состояния потому так и называются, что в каждый момент времени задают энергетическое состояние электрической цепи, так как последнее определяется суммой выражений

6. Представление уравнений в канонической форме очень удобно при их решении на аналоговых вычислительных машинах и для программирования при их решении на цифровых вычислительных машинах. Поэтому такое представление имеет очень важное значение при решении этих уравнений с помощью средств современной вычислительной техники.

Покажем на примере цепи рис. 14-14, как составляются уравнения по методу переменных состояния.

Сначала получим систему дифференциальных уравнений, соответствующую первому матричному уравнению метода, а затем запишем ее в матричной форме. Алгоритм составления этих уравнений для любой электрической цепи следующий. Сначала записываются урэвнения по законам Кирхгофа или по методу контурных токов; затем выбираются переменные состояния и путем дифференцирования исходных уравнений и исключения других переменных получаются

чаются уравнения метода переменных состояния. Этот алгоритм очень напоминает применяемый в классическом методе расчета пере ходных процессов для получения одного результирующего дифференциального уравнения относительно одного из переменных

В частных случаях, когда в цепи нет емкостных контуров т. е. контуров, все ветви которых содержат емкости, и нет узлов с присоединенными ветвями, в каждой из которых включены индуктивности, может быть указан и другой алгоритм. Не останавливая на нем, отметим лишь, что он основан на замене емкостей источниками э. д. с., индуктивностей - источниками тока и применении метода наложения.

Для цепи рис. 14-14 по законам Кирхгофа

(14-36)

Определяя из первого уравнения, подставляя в третье, заменяя и представляя полученное дифференциальное уравнение в канонической форме относительно получаем:

Решая второе уравнение (14-36) относительно , заменяя согласно первому уравнению (14-36) и подставляя , получаем:

Складывая почленно (14-38) с умноженным на уравнением (14-37) и определяя из полученного результата , получаем:

Перепишем уравнения (14-39) и (14-37) в матричной форме:

(14-4°)

где для рассматриваемой цепи имеем:

(14-42а)

В общем случае первое уравнение метода переменных состояния в матричной форме запишется в виде

(14-43)

Матрицы А и В в линейных цепях зависят только от параметров цепи , т. е. являются постоянными величинами. При этом А - квадратная матрица порядка и называется основной матрицей цепи, матрица В - в общем случае прямоугольная, размера называется матрицей связи между входом цепи и переменными состояния, матрицы - матрицы столбцы или векторы переменных состояния (размера и внешних возмущений (размера )

В рассматриваемом примере матрица В получилась квадратной второго порядка, так как число переменных состояния равно числу внешних возмущении

Перейдем к составлению второго уравнения метода В качестве выходных можно выбрать любые из величин. Возьмем, например, в качестве выходных три величины

Значения их запишутся через переменные состояния и внешние возмущения непосредственно из уравнений (14 36)

(14-44)

или в матричнои форме

или сокращенно

(14-46)

где для рассматриваемой цепи

а в общем случае второе уравнение метода переменных состояния

Матрицы С и D зависят только от параметров цепи . В общем случае - это прямоугольные матрицы соответственно размеров , причем С называется матрицей связи переменных состояния с выходом цепи, матрицей непосредственной связи входа и выхода цепи (или системы).

Для ряда физических систем D является нулевой матрицей и второй член в (14-48) обращается в нуль, так как нет непосред. ственной связи между входом и выходом системы.

Если в качестве переменных состояния взять, например, ток i и напряжение и представить дифференциальные уравнения относительно них в канонической форме, то (опуская все промежуточные преобразования) первое из уравнений метода в матричной форме будет иметь вид:

Таким образом, действительно, первое уравнение метода переменных состояния будет в матричной форме иметь вид (14-43) только при выборе в качестве переменных состояния тока и напряжения

Переходя к решению матричного дифференциального уравнения (14-43), прежде всего отметим, что оно особенно упрощается, если квадратная основная матрица А порядка является диагональной. Тогда все линейных дифференциальных уравнений (14-43) развязаны, т. е. производные переменных состояния зависят каждая только от своей переменной состояния.

Рассмотрим сначала решение линейного неоднородного матричного дифференциального уравнения (14-43) операторным методом Для этого преобразуем его по Лапласу:

причем матрица-столбец начальных значений переменных состояния, т. е.

(14-53)

которые в момент коммутации не изменяются скачком, заданы и равны их значениям в момент

Перепишем (14-51):

где - единичная матрица порядка .

Для получения матрицы изображений переменных состояния умножим слева обе части (14-54) на обратную матрицу

Переходя обратно к оригиналам при помощи обратного преобразования Лапласа, получаем:

Из операторного метода известно, что

По аналогии, записывая обратное преобразование Лапласа в матричной форме, будем иметь:

где - переходная матрица состояния системы, называемая иначе фундаментальной.

Таким образом, находим оригинал первого слагаемого правой части (14-56)

Обратная матрица определяется делением присоединенной или взаимной матрицы на определитель основной матрицы:

где уравнение

(14-61)

представляет собой характеристическое уравнение исследуемой цепи.

Оригинал второго слагаемого правой части (14-56) находится при помощи теоремы свертки в матричной форме

если положить

Тогда на основании (14-62)-(14-64)

и общее решение дифференциального неоднородного матричного уравнения (14-43) на основании (14-56), (14-59) и (14-65) будет иметь вид:

(14-66)

Первое слагаемое правой части (14-66) представляет собой значения переменных состояния или реакцию цепи при нулевом входе, т. е. Иначе говоря, оно представляет первую составляющую свободных процессов в цепи обусловленную ненулевыми начальными значениями переменных состояния цепи, и поэтому является решением уравнения . Второе слагаемое представляет собой составляющую реакции цепи при т. е. при нулевом состоянии цепи.

Нулевым состоянием цепи назовем такое ее состояние, когда начальные значения всех переменных состояния равны нулю. Иначе говоря, второе слагаемое (14-66) представляет собой сумму при принужденной реакции цепи возникающей под влиянием внешних воздействий и второй составляющей свободных процессов

Равенство (14-66) означает, что реакция цепи равна сумме реакций при нулевом входе и нулевом состоянии.

На основании (14-48) и (14-66) для выходных величин имеем.

Если состояние цепи задано не в момент , а в момент , то равенства (14-66) и (14-67) обобщаются:

(14-68)

Пример 14-5. Для разветвленной цепи второго порядка составлены уравнения состояния

при ненулевых начальных условиях и при единственном имеющем вней источнике э. д. с.

Найти переменные состояния .

Решение. Перепишем уравнения состояния в матричной форме

Найдем сначала первые свободные составляющие переменных состояния при нулевом входе Для этого составим матрицу

Для нахождения присоединенной или взаимной матрицы заменим в предыдущей матрице каждый элемент его алгебраическим дополнением Получим матрицу

Транспонируем ее, найдя присоединенную или взаимную матрицу:

Найдем определитель матрицы

На основании (14-60) обратная матрица будет равна:

Подвергнем ее обратному преобразованию Лапласа с учетом того, что для этого нужно подвергнуть обратному преобразованию Лапласа каждый ее элемент. На основании (14-73) получим переходную матрицу состояния цепи

Например,

Для переходной матрицы состояния системы получим:

Для первых свободных составляющих переменных состояния будем иметь

Суммируя полученные результаты, находим искомые значения переменных состояния:

Так как решение уравнения (14-43) было получено выше и дано формулой (14-66), то для проверки правильности решения (14-66) и вычисления с его помощью матрицы переменных состояния можно сначала непосредственной подстановкой (14-66) в (14-43) убедиться, что последнее при этом обращается в тождество. Для этого нужно только сначала вычислить дифференцируя (14-66). При этом получаем:

Теперь нетрудно непосредственно убедиться, что (14-66) действительно является решенпем матричного дифференциального уравненения

Отметим, что переходная матрица состояния системы ем позволяет найти в пространстве состояний, т. е. в пространстве, число измерений которого равно числу компонент вектора переменных состояния перемещение, начинающееся из некоторого начального положения (при или при ) причем вектор содержит значительную информацию, так как одновременно описывает все переменные состояния, т. е. функции времени .