Что такое конденсатор? Что такое конденсатор и для чего он нужен

Конденсаторы представляют собой электронные компоненты, используемые для хранения электрического заряда. Конденсаторы могут иметь различную форму, но всегда похожи друг на друга внутри.

Конденсатор, как правило, состоит из двух электропроводящих пластин (электродов), которые изолированы друг от друга диэлектриком.
Величина (емкость) накопленного заряда определяется поверхностью электродов и расстояния между ними. Большая площадь и меньшее расстояние обеспечивает более высокую емкость.

Для расчета емкости мы используем следующее соотношение:

С = e х A / d

  • C = емкость в фарадах
  • A = площадь в м2
  • d = расстояние между электродами
  • е = диэлектрическая проницаемость диэлектрика

Единицей измерения емкости является фарад. Один фарад — это такая емкость, при которой заряд в 1 кулон создает напряжение между обкладками в 1 вольт.

Обозначение конденсатора на схемах:

Для того, чтобы лучше понять взаимосвязь между параметрами конденсатора, рассмотрим следующую упрощенную эквивалентную схему:

  • Rs — последовательное сопротивление выводов и электродов, электролита, а также потери в диэлектрике.
  • Ls — индуктивность выводов и электрод.
  • C – емкость.
  • Rр — сопротивление изоляции в диэлектрике.

Виды конденсаторов

Постоянные конденсаторы

Бумажные конденсаторы (KLMP, KSMP) в большинстве заменены пластиковыми. Несмотря на высокую диэлектрическую проницаемость бумажных конденсаторов они крупнее и дороже, чем пластиковые.

Преимущества бумажных конденсаторов — устойчивость к импульсному напряжению, низкое содержание углерода (приблизительно 3%, для сравнения у пластиковых 40…70%) приводит к хорошему самовосстановлению и небольшой риск возгорания. В настоящее время бумажные конденсаторы используются исключительно для подавления помех.

Конденсаторы полистирольные и полиэфирные (KSF, MKSE, MKSF, MKSP) конденсаторы изготавливаются из металлизированной полиэфирной пленки.

Слюдяные конденсаторы (КСО) многослойные, построены так же, как и керамические конденсаторы, электрод может быть выполнен из серебра. Слюда является минералом, добываемым в шахтах Индии, где его качество особенно высоко.

Этот материал очень твердый и прочный, отличается тем, что он разделяется на тонкие пластины, которые могут быть оснащены электродами.
Электрические свойства, например, сопротивление изоляции, потери и стабильность вполне сопоставимы с лучшими искусственными диэлектриками и керамикой.

Слюдяные конденсаторы, тем не менее, являются относительно крупными и дорогими, в результате чего в значительной степени подлежат замене полипропиленовыми конденсаторами. Слюдяные конденсаторы часто используется в высокочастотных схемах, которые требуют не только низкие потери, но и высокую стабильность частоты и температуры. Они изготавливаются емкостью от 1 пФ и до 0,1 мкФ.

Керамические конденсаторы (KCP, КФП, КЧР, KFR) производятся из одной или нескольких керамических пластин с нанесением металлического напыления (электроды). Керамический конденсатор с одним слоем диэлектрика называется «однослойным». Когда конденсатор состоит из нескольких слоев диэлектрика, его называют многослойный. Керамические конденсаторы изготавливаются емкостью от 0,5 пФ и до нескольких сотен микрофарад. Конденсаторы емкостью больше чем 10 мкФ достаточно редки из-за высокой цены.

Электролитические конденсаторы (KEN, KEO, SME, T, UL, KERMS) имеют алюминиевые или танталовые электроды. Поверхность анода (положительный полюс) покрыт очень тонким слоем оксида, который действует в качестве диэлектрика. Для того чтобы уменьшить расстояние между оксидным слоем и катодом (отрицательный полюс) используют электролит с низким сопротивлением.

Алюминиевые влажные электролитические конденсаторы . Они содержат электролит, состоящий из борной кислоты, этиленгликоля, соли и растворителя. Электроды вытравливаются в кислотной ванне, чтобы получить пористую поверхность. Таким образом, поверхность возрастает до 300 раз.

Танталовые конденсаторы . Они имеют в качестве диэлектрика оксид тантала с превосходными электрическими свойствами. Анод конденсатора выполнен путем спеканием порошка тантала. Около 50% объема состоит из пор, в результате чего внутренняя поверхность в 100 раз больше, чем внешняя.

После нанесения покрытия на слой оксида тантала, образующегося в кислотной ванне, конденсатор погружают в раствор диоксида марганца, заполняющий все поры. Контакт с катодом, который состоит из электропроводной серебряной краски, получается путем покрытия слоем углерода в виде графита.

Переменные конденсаторы

Эти конденсаторы имеют переменную емкость с воздушным диэлектриком (AM, FM) или керамические оборотные конденсаторы.
Воздушный конденсатор выполнен из двух параллельных сборок пластин (ротора и статора), которые изменяют свое положение из-за чего меняется и емкость такого конденсатора.

Параметры конденсаторов

  • Номинальная емкость — значение емкости. Фактическая емкость на практике равна номинальной емкости с учетом допусков связанных с изменением диэлектрической проницаемости диэлектрика вследствие изменения окружающей температуры. Значения допусков зависят от типа диэлектрика.
  • Номинальное напряжение — максимально допустимое напряжение, которое может быть на конденсаторе. Это напряжение, как правило, является суммой постоянного напряжения и пикового значения переменного напряжения.
  • Сопротивление изоляции конденсатора — это электрическое сопротивление конденсатора постоянному току определенного напряжения. Оно характеризует качество диэлектрика и качество его изготовления.

В мощных автомобильных аудиосистемах нередко можно встретить такой элемент как буферный конденсатор. Зачем он нужен и что собой представляет? Давайте разбираться.

А ОНО ВООБЩЕ НАДО?
Для начала давайте вспомним, что такое конденсатор вообще. Конденсатор - это устройство, которое может накапливать электрический заряд, держать его в себе, и при необходимости отдавать. Емкость конденсаторов измеряется в Фарадах. 1 Фарад - это, кстати, весьма приличная величина. Чтобы конденсатор работал, его необходимо подключить параллельно аккумулятору (плюс к плюсу и минус к минусу). Про такое подключение обычно говорят "включен в буфер с аккумулятором", отсюда и название - буферный конденсатор. Ставят их, как правило, поближе к усилителям.
Итак, зачем он нужен? Он не является дополнительным источником питания, а просто держит в себе электрический заряд, поэтому на первый взгляд вроде бы абсолютно бесполезен. Но, тем не менее, польза от него есть, и немалая.
В каждый момент времени усилитель потребляет разный ток. Например, когда лабух по бас-бочке шарахает или в клубной музыке сочные басовые удары отбивают ритм, то это сопровождается скачками потребления тока. Поскольку питающие кабели имеют определенное сопротивление (это мы подробно разжевали в прошлом номере), то из-за него в эти моменты напряжение на клеммах усилителя неизбежно подсаживается. Такая нестабильность питания - причина искажений звукового сигнала и всех остальных сопутствующих неприятностей.
Что же изменится, если мы подключим параллельно клеммам усилителя конденсатор? А изменится следующее - конденсатор будет накапливать от аккумулятора заряд в те моменты, когда усилитель потребляет маленький ток, и будет быстро отдавать его, когда усилителю понадобится большой ток, компенсируя этим самым просадку напряжения на кабеле. В итоге усилитель получает более стабильное питание, а, значит, и искажений становится меньше, бас сочнее, все счастливы.
Впрочем, тут, наверняка, последуют возражения, мол, если провод будет достаточно толстый, то и потерь на нем будет мало, и зачем тогда конденсатор? Но конденсатор и в этом случае окажется нелишним. Токопотребление усилителя обычно изменяется очень резко, а любой обычный аккумулятор относительно инертен. Он, несомненно, способен отдать большой заряд, но он не может делать это мгновенно, так, как это бывает нужно усилителю. Следствие этой тормознутости - опять же нехватка питания в самые начальные моменты резких пиков токопотребления. Конденсатор же способен отдавать заряд очень быстро, гораздо быстрее, чем аккумулятор. Он компенсирует эту аккумуляторную медлительность, и усилитель снова получает полноценное питание.

Конденсатор компенсирует негативное влияние сопротивления питающего кабеля, но для этого он должен быть установлен как можно ближе к самому усилителю, в идеале между ним и усилителем вообще должно быть не больше 10-20 см питающего провода. Иначе эффект от его применения сводится практически к нулю.


ИЗ ИСТОРИИ

Прародитель современных конденсаторов - лейденская банка, изобретенная в 1745 году голландским ученым Мушенбруком и его учеником Кюнеусом, живших в городе Лейден. Параллельно и независимо от них похожее устройство под названием „медицинская банка"изобрел немецкий учёный Клейст. Устройства были способны накапливать заряд, и с их помощью впервые удалось получить искусственным путем электрическую искру.

КСТАТИ
В одной из инсталляций мной было подсмотрено одно интересное решение - в непосредственной близости к усилителю установлена самодельная батарея из конденсаторов небольшой емкости. Для еще большего улучшения скорострельности они были шунтированы совсем мелкими конденсаторами, емкостью всего лишь 0,1-1 микрофарад. Система была рассчитана не на громкость, а на качество звука. Результат весьма впечатлил, конденсатор повлиял на звучание не только низких, но и даже средних частот.


Выбирая конденсатор для своей аудиосистемы, придерживайтесь правила - 1 фарад на каждые 1000 Вт RMS мощности усилителя.

Емкость конденсаторов измеряется в фарадах. 1 фарад - это очень большая емкость. Такой емкостью обладал бы шар, радиус которого был бы равен 13 (!) радиусам Солнца. Для сравнения, емкость нашей Земли (вернее шара размером с Землю, как отдельного уединенного проводника) составляет всего около 700 микрофарад.

ЛУЧШЕ МЕНЬШЕ, ДА ЛУЧШЕ
Рынок предлагает немало моделей -от относительно небольших „кондеров", емкостью 0,5 фарад, до монструозных агрегатов емкостью в десятки фарад. Какой выбрать? Всегда ли большая емкость - это хорошо?
Выбирать подходящий конденсатор нужно в соответствии с мощностью усилителей. Можно исходить из экспериментально установленного правила „1 фарад на 1000 Вт" (естественно, имеются ввиду не какие-нибудь максимальные 1000 Вт, измеренные черт знает как, а 1000 Вт RMS мощности). Скажем, питание одноканального басового усилителя мощностью 700 Вт вполне можно подпереть 1-фарадным конденсатором, а к 4-канальнику с номиналом 4x100 Вт вполне подойдет емкость 0,5 фарад.
А можно ли установить конденсатор большей емкости? Можно, но все дело в том, что большие конденсаторы обычно менее скорострельны - они больше будут похожи просто на еще один дополнительный медлительный аккумулятор, чем на быстрый конденсатор. Поэтому их есть смысл использовать, только если вы строите действительно мощную аудиосистему, рассчитанную на „колбасную" музыку с тяжелыми басами и не слишком быстрой атакой звука, например, клубной музыки. Способность конденсатора быстро отдавать заряд при этом отходит на второй план.
Правда, если вы собираетесь на соревнования по SPL (неограниченному звуковому давлению) или просто любитель громкой музыки с очень низкими и протяжными басами, то особо на поддержку конденсатора можете не рассчитывать. Ведь весь принцип его работы заключается в отдаче накопленного заряда в самый первый момент токопотребления усилителя. Дальше „пустая банка", включенная параллельно усилителю, может принести больше вреда, чем пользы.
Если же вы считаете, что большой конденсатор вам ну просто ужас как необходим, но вы не хотите терять в скорости его реакции на изменения сигнала, то нужную емкость можно набрать параллельным включением нескольких небольших конденсаторов.

КСТАТИ


В продаже можно встретить не только „чистые" конденсаторы, но и гибриды „конденсатор плюс небольшой аккумулятор". По задумке разработчиков аккумулятор должен обеспечить емкость как у больших конденсаторов, а входящий в состав устройства небольшой конденсатор должен обеспечить быстроту реакции устройства на изменяющееся токопотребление усилителя.

КАК ПРАВИЛЬНО ЗАРЯДИТЬ КОНДЕНСАТОР?
Не секрет, что ковыряться в проводке и подключать всякие девайсы нужно при скинутых с аккумулятора клеммах, это обычное правило безопасности. Но допустим, вы все установили, подключили и решили, что пора уже включать. И все бы ничего, но многие при этом забывают, что при самом первом включении конденсатор пока еще разряжен. А ведь это устройство, которое способно не только отдавать, но и накапливать заряд очень быстро. Так что как только клеммы коснутся аккумулятора, пустая „банка" сразу же начнет заряжаться, через конденсатор лотечет огромный ток, и на несколько секунд он просто станет перемычкой, закоротив „+" и „-" аккумулятора. Как минимум, пострадают клеммы, став на время подобием сварочных электродов, ну а о предохранителях, наверное, и вовсе уж говорить не стоит. Что же делать? Как правильно зарядить конденсатор, чтобы избежать этого?
Самый простой вариант- использовать любую 12-вольтовую лампочку. Перед тем, как накидывать клемму, просто на несколько секунд включите ее между аккумуляторной и накидываемой клеммами. Конденсатор начнет заряжаться, но резкого броска тока уже не произойдет. Конденсатор будет спокойно заряжаться через лампочку, по мере заряда она будет светить все тусклее и тусклее, и когда совсем погаснет, то это и будет означать, что конденсатор зарядился, и можно спокойно одевать и фиксировать клемму.


При параллельном включении конденсаторов их емкость складывается

КСТАТИ

Многие конденсаторы оснащены схемами „мягкого заряда". Они имеют неоспоримое преимущество -их не нужно заряжать через лампочку, схема исключает бросок тока при подключении „пустого" конденсатора. Удобно? Безусловно. Но такая схема - это лишнее сопротивление в силовой цепи, которое делает конденсатор, к сожалению, практически бесполезным. Однажды для журнала Car Music мы проводили сравнительный тест конденсаторов. Брали усилитель, подключали его заведомо тонким проводом, „грузили" его сложным сигналом (кому интересно - последовательности 50-герцовых импульсов с частотой 130 ударов в минуту) и следили, при каком уровне этого сигнала напряжение питания усилителя „просядет" до порога его отключения. Так вот, когда мы подключали конденсаторы с такой схемой soft charge, то разницы практически не было. Зато аскетичные „банки", у которых не было вообще ничего лишнего, позволяли повысить уровень сигнала, прежде, чем усилитель начнет вырубаться, до 2,5-3 дБ, а это почти в два раза! Так что десять раз подумайте, прежде чем купить „удобный кондер с наворотами", эти навороты могут принести больше вреда, чем пользы.

Текст и рисунки Антон Николаев, фото из разных источников.

В электротехнике и радиоэлектронике широкое распространение получили различные виды конденсаторов. Каждый из них представляет собой устройство с двумя полюсами, имеющее определенное или переменное значение емкости и очень малую проводимость. Самый простой вариант конденсатора включает в себя два электрода в виде пластин или обкладок, где накапливаются разряды с противоположным значением. Чтобы избежать замыкания, они разделяются между собой тонкими .

Стандартный выпускаемый конденсатор состоит из электродов в виде многослойного рулона лент, разделяемых диэлектриком. Конфигурация конденсатора, чаще всего, представляет собой параллелепипед или цилиндр.

Как работает конденсатор

В сравнении с обычной батареей, конденсатор имеет существенные отличия. У него совершенно другая максимальная емкость, а также скорость зарядки и разрядки.

При подключении к источнику питания в самом начале ток зарядки будет иметь максимальное значение. Однако, по мере того, как заряд накапливается, наблюдается постепенное уменьшение тока, который полностью пропадает при полном заряде. Напряжение во время зарядки, наоборот, увеличивается и по окончании процесса становится равным напряжению в источнике питания.

Обозначение конденсаторов на схеме.

В случае подключения нагрузки при отключенном источнике питания, конденсатор сам становится источником тока. В этот момент, между пластинами происходит образование цепи. Через нагрузку происходит движение отрицательно заряженных электронов к ионам, обладающим положительным зарядом. В данном случае, вступает в силу закон притяжения разноименных зарядов. При прохождении тока через нагрузку происходит постепенная потеря заряда и, в конечном итоге, разрядка конденсатора. Одновременно, снижается напряжение и ток. Процесс разрядки считается завершенным, когда напряжение на электродах будет равным нулю.

Время зарядки полностью зависит от величины , а время его разрядки находится в зависимости от величины подключаемой нагрузки.

Применение конденсаторов

Конденсаторы, так же как транзисторы и , нашли широкое применение для электронных и радиотехнических схем. В электрических цепях они играют роль емкостного сопротивления. Благодаря способности к быстрой разрядке и созданию импульсов, они применяются в конструкциях фотовспышек, лазерах и ускорителях электромагнитного типа.

Очень эффективны конденсаторы при переключении электродвигателя с 380 на 220 вольт. Во время переключения к третьему выводу, происходит сдвиг фазы на 90 градусов. Таким образом, появляется возможность подключения трехфазного двигателя в однофазную сеть.

Конденсатор – распространенное двухполюсное устройство, применяемое в различных электрических цепях. Он имеет постоянную или переменную ёмкость и отличается малой проводимостью, он способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейшие примеры состоят из двух пластинчатых электродов, разделенных диэлектриком и накапливающих противоположные заряды. В практических условиях мы используем конденсаторы с большим числом разделенных диэлектриком пластин.


Заряд конденсатора начинается при подключении электронного прибора к сети. В момент подключения прибора на электродах конденсатора много свободного места, потому электрический ток , поступающий в цепь, имеет наибольшую величину. По мере заполнения, электроток будет уменьшаться и полностью пропадет, когда ёмкость устройства будет полностью наполнена.

В процессе получения заряда электрического тока, на одной пластине собираются электроны (частицы с отрицательным зарядом), а на другой – ионы (частицы с положительным зарядом). Разделителем между положительно и отрицательно заряженными частицами выступает диэлектрик, в качестве которого могут использоваться различные материалы.

В момент подключения электрического устройства к источнику питания, напряжение в электрической цепи имеет нулевое значение. По мере заполнения ёмкостей напряжение в цепи увеличивается и достигает величины, равной уровню на источнике тока.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам. Нагрузка образует цепь между его пластинами, потому в момент отключения питания положительно заряженные частицы начнут двигаться по направлению к ионам.

Начальный ток в цепи при подключении нагрузки будет равняться напряжению на отрицательно заряженных частицах, разделенному на величину сопротивления нагрузки. При отсутствии питания конденсатор начнет терять заряд и по мере убывания заряда в ёмкостях, в цепи будет снижаться уровень напряжения и величины тока. Этот процесс завершится только тогда, когда в устройстве не останется заряда.

На рисунке выше представлена конструкция бумажного конденсатора:
а) намотка секции;
б) само устройство.
На этой картинке:

  1. Бумага;
  2. Фольга;
  3. Изолятор из стекла;
  4. Крышка;
  5. Корпус;
  6. Прокладка из картона;
  7. Оберточная бумага;
  8. Секции.

Ёмкость конденсатора считается важнейшей его характеристикой, от него напрямую зависит время полной зарядки устройства при подключении прибора к источнику электрического тока. Время разрядки прибора также зависит от ёмкости, а также от величины нагрузки. Чем выше будет сопротивление R, тем быстрее будет опустошаться ёмкость конденсатора.

В качестве примера работы конденсатора можно рассмотреть функционирование аналогового передатчика или радиоприемника. При подключении прибора к сети, конденсаторы, подключенные к катушке индуктивности, начнут накапливать заряд, на одних пластинах будут собираться электроды, а на других – ионы. После полной зарядки ёмкости устройство начнет разряжаться. Полная потеря заряда приведет к началу зарядки, но уже в обратном направлении, то есть, пластины имевшие положительный заряд в этот раз будут получать отрицательный заряд и наоборот.

Назначение и использование конденсаторов

В настоящее время их используют практически во всех радиотехнических и различных электронных схемах.
В электроцепи переменного тока они могут выступать в качестве ёмкостного сопротивления. К примеру, при подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет. Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора. Благодаря этим особенностям, они сегодня повсеместно применяются в цепях в качестве фильтров, подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных электромагнитных ускорителях, фотовспышках и лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, за счет чего создается мощный импульс.

Во вторичных источниках электрического питания их применяют для сглаживания пульсаций при выпрямлении напряжения.

Способность сохранять заряд длительное время дает возможность использовать их для хранения информации.

Использование резистора или генератора тока в цепи с конденсатором позволяет увеличить время заряда и разряда ёмкости устройства, благодаря чему эти схемы можно использовать для создания времязадающих цепей, не предъявляющих высоких требований к временной стабильности.

В различной электрической технике и в фильтрах высших гармоник данный элемент применяется для компенсации реактивной мощности.

Конденсатор в цепи постоянного и переменного тока ведет себя абсолютно по разному.

Итак, берем постоянного напряжения и выставляем на его крокодилах напряжение в 12 Вольт. Лампочку тоже берем на 12 Вольт. Теперь между одним щупом блока питания и лампочки вставляем конденсатор:

Не-а, не горит.

А вот если напрямую сделать, то горит:


Отсюда напрашивается вывод: постоянный ток через конденсатор не течет!

Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доли секунды. Все зависит от емкости конденсатора.

Конденсатор в цепи переменного тока

Итак, чтобы узнать, течет ли переменный ток через конденсатор, нам нужен генератор переменного тока. Думаю, этот генератор частоты вполне сойдет:


Так как китайский генератор у меня очень слабенький, то мы вместо нагрузки-лампочки будем использовать простой на 100 Ом. Также возьмем и конденсатор емкостью в 1 микрофарад:


Спаиваем как-то вот так и подаем сигнал с генератора частоты:


Далее за дело берется Цифровой осциллограф OWON SDS6062 . Что такое осциллограф и с чем его едят, читаем здесь . Будем использовать сразу два канала. На одном экране будут высвечиваться сразу два сигнала. Здесь на экранчике уже видны наводки от сети 220 Вольт. Не обращайте внимание.


Будем подавать переменное напряжение и смотреть сигналы, как говорят профессиональные электронщики, на входе и на выходе. Одновременно.

Все это будет выглядеть примерно вот так:


Итак, если у нас частота нулевая, то это значит постоянный ток. Постоянный ток, как мы уже видели, конденсатор не пропускает. С этим вроде бы разобрались. Но что будет, если подать синусоиду с частотой в 100 Герц?

На дисплее осциллографа я вывел такие параметры, как частота сигнала и его амплитуда: F — это частота, Ma — амплитуда (эти параметры пометил белой стрелочкой). Первый канал помечен красным цветом, а второй канал — желтым, для удобства восприятия.


Красная синусоида показывает сигнал, который выдает нам китайский генератор частоты. Желтая синусоида — это то, что мы уже получаем на нагрузке. В нашем случае нагрузкой является резистор. Ну вот, собственно, и все.

Как вы видите на осциллограмме выше, с генератора я подаю синусоидальный сигнал с частотой в 100 Герц и амплитудой в 2 Вольта. На резисторе мы уже видим сигнал с такой же частотой (желтый сигнал), но его амплитуда составляет каких-то 136 милливольт. Да еще и сигнал получился какой-то «лохматый». Это связано с так называемыми « «. Шум — это сигнал с маленькой амплитудой и беспорядочным изменением напряжения. Он может быть вызван самими радиоэлементами, а также это могут быть помехи, которые ловятся из окружающего пространства. Например очень хорошо «шумит» резистор. Значит «лохматость» сигнала — это сумма синусоиды и шума.

Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается влево, то есть опережает красный сигнал, или научным языком, появляется сдвиг фаз . Опережает именно фаза, а не сам сигнал. Если бы опережал сам сигнал, то у нас бы тогда получилось, что сигнал на резисторе появлялся бы по времени раньше, чем сигнал, поданный на него через конденсатор. Получилось бы какое-те перемещение во времени:-), что конечно же, невозможно.

Сдвиг фаз — это разность между начальными фазами двух измеряемых величин . В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота . Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз :

Давайте увеличим частоту на генераторе до 500 Герц


На резисторе уже получили 560 милливольта. Сдвиг фаз уменьшается.

Увеличиваем частоту до 1 КилоГерца


На выходе у нас уже 1 Вольт.

Ставим частоту 5 Килогерц


Амплитуда 1,84 Вольта и сдвиг фаз явно стает меньше

Увеличиваем до 10 Килогерц


Амплитуда уже почти такая же как и на входе. Сдвиг фаз менее заметен.

Ставим 100 Килогерц:


Сдвига фаз почти нет. Амплитуда почти такая же, как и на входе, то есть 2 Вольта.

Отсюда делаем глубокомысленные выводы:

Чем больше частота, тем меньшее сопротивление конденсатор оказывает переменному току. Сдвиг фаз убывает с увеличением частоты почти до нуля. На бесконечно низких частотах его величина составляет 90 градусов или π/2 .

Если построить обрезок графика, то получится типа что-то этого:


По вертикали я отложил напряжение, по горизонтали — частоту.

Итак, мы с вами узнали, что сопротивление конденсатора зависит от частоты. Но только ли от частоты? Давайте возьмем конденсатор емкостью в 0,1 микрофарад, то есть номиналом в 10 раз меньше, чем предыдущий и снова прогоним по этим же частотам.

Смотрим и анализируем значения:







Внимательно сравните амплитудные значения желтого сигнала на одной и той же частоте, но с разными номиналами конденсатора. Например, на частоте в 100 Герц и номиналом конденсатора в 1 мкФ амплитуда желтого сигнала равнялась 136 милливольт, а на этой же самой частоте амплитуда желтого сигнала, но с конденсатором в 0,1 мкФ уже была 101 милливольт(в реальности еще меньше из за помех). На частоте 500 Герц — 560 милливольт и 106 милливольт соответственно, на частоте в 1 Килогерц — 1 Вольт и 136 милливольт и так далее.

Отсюда вывод напрашивается сам собой: при уменьшении номинала конденсатора его сопротивление стает больше.

С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:

где, Х С — это сопротивление конденсатора, Ом

П — постоянная и равняется приблизительно 3,14

F — частота, измеряется в Герцах

С — емкость, измеряется в Фарадах

Так вот, поставьте в эту формулу частоту в ноль Герц. Частота в ноль Герц — это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.

Заключение

Забегая вперед, могу сказать, что в данном опыте мы получили (ФВЧ). С помощью простого конденсатора и резистора, применив где-нибудь в звуковой аппаратуре такой фильтр на динамик, в динамике мы будет слышать только писклявые высокие тона. А вот частоту баса как раз и заглушит такой фильтр. Зависимость сопротивления конденсатора от частоты очень широко используется в радиоэлектронике, особенно в различных фильтрах, где надо погасить одну частоту и пропустить другую.