Активная реактивная и полная мощность переменного тока. Что такое активная и реактивная электроэнергия? Отличие реактивной мощности от активной

Из письма клиента:
Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
Алексей. 21 июнь 2007

В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:

Мощность не всех приборов указана в Вт, например:

  • Мощность трансформаторов указывается в ВА:
    http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
    http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение)
  • Мощность конденсаторов указывается в Варах:
    http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
    http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение)
  • Примеры других нагрузок - см. приложения ниже.

Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.

Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

  1. Активная мощность: обозначение P , единица измерения: Ватт
  2. Реактивная мощность: обозначение Q , единица измерения: ВАр (Вольт Ампер реактивный)
  3. Полная мощность: обозначение S , единица измерения: ВА (Вольт Ампер)
  4. Коэффициент мощности: обозначение k или cosФ , единица измерения: безразмерная величина

Эти параметры связаны соотношениями: S*S=P*P+Q*Q, cosФ=k=P/S

Также cosФ называется коэффициентом мощности (Power Factor PF )

Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

Например, электромоторы, лампы (разрядные) - в тех. данных указаны P[кВт] и cosФ:
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
(примеры технических данных разных нагрузок см. приложение ниже)

То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.

Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

См. учебники по электротехнике, например:

1. Евдокимов Ф. Е. Теоретические основы электротехники. - М.: Издательский центр "Академия", 2004.

2. Немцов М. В. Электротехника и электроника. - М.: Издательский центр "Академия", 2007.

3. Частоедов Л. А. Электротехника. - М.: Высшая школа, 1989.

Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
(перевод: http://electron287.narod.ru/pages/page1.html)

Приложение

Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)

http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)

Однофазные автотрансформаторы

TDGC2-0.5 kVa, 2A
АОСН-2-220-82
TDGC2-1.0 kVa, 4A Латр 1.25 АОСН-4-220-82
TDGC2-2.0 kVa, 8A Латр 2.5 АОСН-8-220-82
TDGC2-3.0 kVa, 12A

TDGC2-4.0 kVa, 16A

TDGC2-5.0 kVa, 20A
АОСН-20-220
TDGC2-7.0 kVa, 28A

TDGC2-10 kVa, 40A
АОМН-40-220
TDGC2-15 kVa, 60A

TDGC2-20 kVa, 80A

http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)

Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)

http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)


http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)

Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ

Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. - в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности) .

http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)

http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)

Дополнение 1

Если нагрузка имеет высокий коэффициент мощности (0.8 ... 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.

Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.

Дополнение 2

Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др.) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 ... 1.0, что соответствует нормативным стандартам.

Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения

Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.

В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.

Дополнение 4

Наглядные примеры чистой активной и чистой реактивных нагрузок:

  • К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
  • К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.
Дополнение 5

Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:

+ (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.

- (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.

Дополнение 6

Дополнительные вопросы

Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?

Ответ:
Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными .

Замечание:
Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:

  1. Полное сопротивление (импеданс) Z=R+iX
  2. Полная мощность S=P+iQ
  3. Диэлектрическая проницаемость e=e"+ie"
  4. Магнитная проницаемость m=m"+im"
  5. и др.

Вопрос 2:

На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?

Ответ:
Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.

Вопрос 3:
Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.

Ответ:
Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:

См. дополнительную литературу, например:

Евдокимов Ф. Е. Теоретические основы электротехники. - М.: Издательский центр "Академия", 2004.

Немцов М. В. Электротехника и электроника. - М.: Издательский центр "Академия", 2007.

Частоедов Л. А. Электротехника. - М.: Высшая школа, 1989.

AC power, Power factor, Electrical resistance, Reactance
http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)

Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013

В квартирах и частных домах установлен один электросчетчик, по которому производится расчет оплаты за потребленную энергию. Упрощенно считается, что в быту используется только ее активная составляющая, хотя это не совсем так. Современное жилище насыщено устройствами, в схемах которых присутствуют элементы, сдвигающие фазу. Однако реактивная мощность, которую потребляют бытовые приборы, несравнимо меньше, чем у промышленных предприятий, поэтому при расчете оплаты ею традиционно пренебрегают.

Нагрузка индуктивная и емкостная

Если взять обычный нагревательный прибор или электрическую лампочку, то мощность, указанная в соответствующей надписи на колбе или табличке-шильдике, будет соответствовать произведению величин тока, проходящего через это устройство, и напряжения сети (у нас это 220 Вольт). Ситуация меняется, если прибор содержит трансформатор, другие элементы, содержащие или конденсаторы. Эти детали обладают особыми свойствами, график протекающего в них тока отстает или опережает синусоиду питающего напряжения - другими словами, происходит сдвиг фазы. Идеальная емкостная нагрузка сдвигает вектор на -90, а индуктивная - на +90 градусов. Мощность в этом случае становится результатом не только произведения тока на напряжение, добавляется некий поправочный коэффициент. К чему это приводит?

Геометрическое отражение процесса

Из школьного курса геометрии всем известно, что гипотенуза длиннее любого из катетов в прямоугольном треугольнике. Если активная, реактивная и полная мощность образуют его стороны, то токи, потребляемые катушкой и емкостью, будут находиться под прямым углом к резистивной составляющей, но с направлениями в противоположные стороны. При сложении (или, если угодно, вычитании, они разнознаковые) величин суммарный вектор, то есть полная реактивная мощность, в зависимости от того, какой характер нагрузки преобладает в схеме, будет направлен вверх или вниз. По его направлению можно судить, какой характер нагрузки преобладает.

Реактивная мощность при векторном сложении с активной составляющей даст полную величину потребляемой мощности. Она графически изображается как гипотенуза треугольника мощности. Чем более эта линия будет полого располагаться по отношению к оси абсцисс, тем лучше.

Косинус фи

Теория и практика

Все теоретические выкладки имеют ценность тем большую, чем применимее они на практике. Картина на любом развитом промышленном предприятии следующая: большая часть электроэнергии потребляется двигателями (синхронными, асинхронными, однофазными, трехфазными) и прочими машинами. А ведь есть еще и трансформаторы. Вывод простой: в реальных производственных условиях преобладает реактивная мощность индуктивного характера. Следует отметить, что на предприятиях устанавливают не один электросчетчик, как в домах и квартирах, а два, один из которых активный, а другой - несложно догадаться какой. И за перерасход напрасно «гоняемой» по линиям электропередач энергии соответствующие органы беспощадно штрафуют, так что администрация кровно заинтересована в том, чтобы произвести расчет реактивной мощности и принять меры к ее снижению. Ясно, что без электрической емкости при решении этой задачи не обойтись.

Компенсация по теории

Расчет производится по формуле:

  • C = 1 / (2πFX), где X - полное реактивное сопротивление всех включенных в сеть устройств; F - частота напряжения питания (у нас - 50 Hz);

Вроде бы - чего проще? Перемножить «X» и число «пи» на 50 да поделить. Однако все несколько сложнее.

А как на практике?

Формула несложна, но определить и рассчитать X не так-то просто. Для этого нужно взять все данные об устройствах, узнать их реактивное сопротивление, причем в векторном виде, и уже тогда… На самом деле, никто этим не занимается, кроме студентов на лабораторных работах.

Определить реактивную мощность можно и иначе, при помощи специального прибора - фазометра, указывающего косинус фи, или сравнив показания ваттметра, амперметра и вольтметра.

Осложняется дело тем, что в условиях реального производственного процесса величина нагрузки постоянно меняется, так как одни машины в процессе работы включаются, другие, напротив, отключаются от сети, как того требует технологический регламент. Соответственно, необходимы постоянные меры по отслеживанию ситуации. Во время ночных смен работает освещение, зимой в цехах может осуществляться нагрев воздуха, а летом - его охлаждение. Так или иначе, но компенсация реактивной мощности производится на основе теоретических расчетов с большой долей практических замеров cos φ.

Подключая и отключая конденсаторы

Наиболее простой и очевидный способ решить проблему - посадить возле фазометра специального работника, который бы включал или выключал нужное количество конденсаторов, добиваясь минимальной величины отклонения стрелки от единицы. Так вначале и делали, но практика показала, что пресловутый человеческий фактор не всегда позволяет добиваться нужного эффекта. В любом случае компенсация реактивной мощности, имеющей чаще всего индуктивный характер, производится подключением электрической емкости соответствующей величины, но делать это лучше в автоматическом режиме, иначе нерадивый работник может подвести родное предприятие под крупный штраф. Опять же, труд этот квалифицированным назвать нельзя, автоматизации он вполне поддается. Простейшая схема включает оптическую электронную пару из излучателя и приемника света. Стрелка перекрыла минимальное значение - значит, нужно добавить емкости.

Автоматика и интеллектуальные алгоритмы

В настоящее время есть системы, позволяющие надежно удерживать cos φ в пределах от 0,9 до 1. Так как подключение конденсаторов в них происходит дискретно, то идеального результата добиться невозможно, но экономический эффект автоматический компенсатор реактивной мощности все равно дает очень хороший. В основе работы этого прибора лежат интеллектуальные алгоритмы, обеспечивающие работу сразу после включения, чаще всего даже без дополнительных настроек. Технологические достижения в области вычислительной техники позволяют добиваться равномерного подключения всех ступеней конденсаторных батарей для того, чтобы избежать преждевременного выхода из строя одной или двух из них. Время срабатывания также минимизировано, а дополнительные дроссели снижают величину перепада напряжения во время переходных процессов. Современный питанием предприятия обладает соответствующей эргономической компоновкой, которая создает условия для быстрой оценки оператором ситуации, а в случае аварии или выхода из строя он получит немедленный тревожный сигнал. Цена такого шкафа немалая, но заплатить за него стоит, пользу он приносит.

Устройство компенсатора

Обычный компенсатор реактивной мощности представляет собой металлический шкаф стандартных размеров с панелью контроля и управления на лицевой панели, обычно открываемой. В нижней части его располагаются наборы конденсаторов (батареи). Такое расположение обусловлено простым соображением: электрические емкости довольно тяжелые, и вполне логично стремление сделать конструкцию более устойчивой. В верхней части, на уровне глаз оператора, находятся необходимые контрольные приборы, в том числе и фазоуказатель, при помощи которого можно судить о величине коэффициента мощности. Имеется также различная индикация, в том числе и аварийная, органы управления (включения и выключения, перехода на ручной режим и проч.). Оценку сравнения показаний измерительных датчиков и выработку управляющих воздействий (подключение конденсаторов нужного номинала) выполняет схема, основой которой служит микропроцессор. Исполнительные устройства работают быстро и бесшумно, они, как правило, построены на мощных тиристорах.

Примерный расчет конденсаторных батарей

На относительно небольших предприятиях реактивная мощность цепи может примерно оцениваться по количеству подключенных устройств с учетом их фазосдвигающих характеристик. Так, обычный асинхронный электродвигатель (главный «работяга» фабрик и заводов) при нагрузке, равной половине его обладает cos φ, равным 0,73, а люминесцентный светильник - 0,5. Параметр контактного сварочного аппарата колеблется в пределах от 0,8 до 0,9, дуговая печь работает с косинусом φ, равным 0,8. Таблицы, имеющиеся в распоряжении практически каждого главного энергетика, содержат сведения о практически всех видах промышленного оборудования, и предварительная установка компенсации реактивной мощности может производиться при помощи них. Однако такие данные служат лишь базой, на основании которой необходимо вносить коррективы, добавляя или отключая конденсаторные батареи.

В масштабах страны

Может сложиться впечатление о том, что всю заботу о параметрах электросетей и равномерности нагрузки на нее государство возложило на фабрики, заводы и прочие промышленные предприятия. Это не так. Энергосистема страны контролирует сдвиг фаз в общегосударственном и региональном масштабе, прямо на выходе своего особого товара из электростанций. Другой вопрос в том, что компенсация реактивной составляющей осуществляется не подключением конденсаторных батарей, а иным методом. Для обеспечения качества отпускаемой потребителям энергии в роторных обмотках регулируется ток подмагничивания, что в синхронных генераторах не составляет большой проблемы.

Мгновенная мощность p произвольного участка цепи, напряжение и ток которого изменяются по законуu =U m sin(t ), i = I m sin(t– ), имеет вид

p = ui= U m sin(t )I m sin(t– ) = U m I m /2 =

= U i cos - UI cos(2t - ) = (UI cos – UI cos cos2t ) – UI sin sin2t . (1)

Активная мощность цепи переменного тока P определяется как среднее значение мгновенной мощностиp (t ) за период:

так как среднее за период значение гармонической функции равно 0.

Из этого следует, что средняя за период мощность зависит от угла сдвига фаз между напряжением и током и не равна нулю, если участок цепи имеет активное сопротивление. Последнее объясняет ее название активная мощность . Подчеркнем еще раз, что в активном сопротивлении происходит необратимое преобразование электрической энергии в другие виды энергии, например в тепловую. Активная мощность может быть определена как средняя за период скорость поступления энергии в участок цепи. Активная мощность измеряется в ваттах (Вт).

Реактивная мощность

При расчетах электрических цепей находит широкое применение так называемая реактивная мощность. Она характеризует процессы обмена энергией между реактивными элементами цепи и источниками энергии и численно равна амплитуде переменной составляющей мгновенной мощности цепи. В соответствии с этим реактивная мощность может быть определена из (1) как

Q = UI sin.

В зависимости от знака угла реактивная мощность может быть положительной или отрицательной. Единицу реактивной мощности, чтобы отличить ее от единицы активной, называют не ватт, а вольт-ампер реактивныйвар. Реактивные мощности индуктивного и емкостного элементов равны амплитудам их мгновенных мощностейp L иp C . С учетом сопротивленийэтих элементов реактивные мощности катушки индуктивности и конденсатора равныQ L =UI =x L I 2 иQ C =UI = x C I 2 , соответственно.

Результирующая реактивная мощность разветвленной электрической цепи находится как алгебраическая сумма реактивных мощностей элементов цепи с учетом их характера (индуктивный или емкостный): Q =Q L –Q С. ЗдесьQ L есть суммарная реактивная мощность всех индуктивных элементов цепи, аQ С представляет собой суммарную реактивную мощность всех емкостных элементов цепи.

Полная мощность

Кроме активной и реактивной мощностей цепь синусоидального тока характеризуется полной мощностью, обозначаемой буквой S . Под полной мощностью участка понимают максимально возможную активную мощность при заданных напряженииU и токеI . Очевидно, что максимальная активная мощность получается при cos= 1, т. е. при отсутствии сдвига фаз между напряжением и током:

S = UI.

Необходимость во введении этой мощности объясняется тем, что при конструировании электрических устройств, аппаратов, сетей и т. п. их рассчитывают на определенное номинальное напряжение U ном и определенный номинальный токI ном и их произведениеU ном I ном = S ном дает максимально возможную мощность данного устройства (полная мощность S ном указывается в паспорте большинства электрических устройств переменного тока.). Для отличия полной мощности от других мощностей ее единицу измерения называют вольт-ампер и сокращенно обозначают ВА. Полная мощность численно равна амплитуде переменной составляющей мгновенной мощности.

Из приведенных соотношений можно найти связь между различными мощностями:

P = S cos, Q = S sin, S = UI =

и выразить угол сдвига фаз через активную и реактивную мощности:

.

Рассмотрим простой прием, который позволяет найти активную и реактивную мощности участка цепи по комплексным напряжению и току. Он заключается в том, что нужно взять произведение комплексного напряжения и тока, комплексно сопряженного току рассматриваемого участка цепи. Операция комплексного сопряжения состоит в смене знака на противоположный перед мнимой частью комплексного числа либо в смене знака фазы комплексного числа, если число представлено в экспоненциальной форме записи. В результате получим величину, которая называетсяполной комплексной мощностью и обозначается. Если
, то для полной комплексной мощности получаем:

Отсюда видно, что активная и реактивная мощности представляют собой вещественную и мнимую части полной комплексной мощности, соответственно. Для облегчения запоминания всех формул, связанных с мощностями, на рис. 7, б (с. 38) построен треугольник мощностей.

Мощность бывает активная, а бывает полная. Спрашивается, полная чем? А вот, мол, тем, что нам служит на пользу, что делает нам полезную работу, но и… оказывается, это еще не все. Еще есть вторая составляющая, которая получается этаким довеском, и она просто сжигает энергию. Греет то что не надо, а нам от этого ни жарко, ни холодно.

Такая мощность называется реактивной. Но виноваты, как это ни странно, мы сами. Вернее, наша система выработки, передачи и потребления электроэнергии.

Мощность активная, реактивная и полная

Мы пользуемся электричеством с помощью сетей переменного тока. Напряжение у нас в сетях каждую секунду колеблется 50 раз от минимального значения до максимального. Это так получилось. Когда изобретали электрический генератор, который механическое движение преобразует в электричество, то оказалось, что perpetuum mobile, или, переведя с латинского, вечное движение, легче всего устроить по кругу. Изобрели когда-то колесо, и с тех пор знаем, что если его подвесить на оси, то можно вращать долго-долго, а оно будет оставаться все на том же месте - на оси.

Почему у нас в сети напряжение переменное

И электрический генератор имеет ось и нечто, на ней вращающееся. А в результате и получается электрическое напряжение. Только генератор состоит из двух частей: вращающейся, ротора, и неподвижной, статора. И обе они участвуют в выработке электроэнергии. А когда одна часть крутится около другой, то неизбежно точки поверхности вращающейся части то приближаются к точкам поверхности неподвижной, то от них отдаляются. И это совместное их положение с неизбежностью описывается только одной математической функцией - синусоидой. Синусоида есть проекция вращения по кругу на одну из геометрических осей. Но осей таких можно построить много. Обычно наши координаты друг другу перпендикулярны. И тогда при вращении по кругу некоторой точки на одной оси проекцией вращения будет синусоида, а по другой - косинусоида, или та же синусоида, только смещенная относительно первой на четверть поворота, или на 90°.

Вот нечто такое и представляет собой напряжение, которое доводит до нашей квартиры электрическая сеть.

угол поворота здесь разбит не на 360 градусов,
а на 24 деления. То есть одно деление соответствует 15°
6 делений = 90°

Итак, напряжение в нашей сети синусоидальное с частотой 50 герц и амплитудой 220 вольт, потому что удобнее было делать генераторы, которые вырабатывают напряжение именно переменное.

Выгода от переменного напряжения - выгода системы

А чтобы сделать напряжение постоянным, надо специально его выпрямить. И это можно делать либо прямо в генераторе (специально сконструированном - тогда он станет генератором постоянного тока), либо когда-нибудь потом. Вот это «когда-нибудь» и получилось снова очень кстати, потому что переменное напряжение можно преобразовывать трансформатором - повышать или понижать. Это оказалось вторым удобством переменного напряжения. А повысив его трансформаторами до напряжений буквально ЗАПРЕДЕЛЬНЫХ (полмиллиона вольт и больше), можно передавать на гигантские расстояния по проводам без гигантских при этом потерь. И это тоже пришлось вполне кстати в нашей большой стране.

Вот, доведя, все-таки, напряжение до нашей квартиры, понизив его до хоть сколько-то мыслимой (хотя все еще и опасной) величины в 220 вольт, преобразовать его в постоянное опять забыли. Да и зачем? Лампочки горят, холодильник работает, телевизор показывает. Хотя в телевизоре этих постоянных/переменных напряжений… но, не будем тут еще и об этом.

Убытки от переменного напряжения

И вот мы пользуемся сетью переменного напряжения.

А в ней присутствует «плата за забывчивость» - реактивное сопротивление наших потребляющих сетей и их реактивная мощность. Реактивное сопротивление - это сопротивление переменному току. И мощность, которая просто-напросто уходит мимо наших потребляющих электроприборов.

Ток, идя по проводам, создает вокруг них электрическое поле. Электростатическое поле притягивает к себе заряды со всего, что источник поля, то есть ток, окружает. А изменение тока создает еще и поле электромагнитное, которое начинает бесконтактно наводить во всех проводниках вокруг электрические токи. Так, наша токовая синусоида, как только мы что-то у себя включаем, есть не просто ток, а непрерывное его изменение. Проводников вокруг хватает, начиная от металлических корпусов тех же электроприборов, металлических труб водоснабжения, отопления, канализации и кончая прутами арматуры в железобетонных стенах и перекрытиях. Вот во всем этом и наводится электричество. Даже вода в бачке унитаза, и та участвует во всеобщем веселье - в ней тоже индуцируются токи наводки. Такое электричество нам совсем не нужно, мы его «не заказывали». Но оно эти проводники пытается разогреть, а значит, уносит из нашей квартирной сети электроэнергию.

Чтобы охарактеризовать соотношение мощностей в сети нашего переменного тока, рисуют треугольник.

S – полная мощность, расходуемая нашей сетью,
P – активная мощность, она же полезная активная нагрузка,
Q – мощность реактивная.

Мощность полную можно замерить ваттметром, а активная мощность получается расчетом нашей сети, в которой мы учитываем только полезные для нас нагрузки. Естественно, сопротивлением проводов мы пренебрегаем, считая их малыми относительно полезных сопротивлений электроприборов.

Полная мощность

S = U x I = U a x I f

То есть, чем «тупее» этот острый угол, тем хуже у нас работает внутренняя квартирная потребляющая сеть - много энергии уходит в потери.

Что такое активная, реактивная и полная мощности

Угол j можно еще назвать углом фазового сдвига между током и напряжением в нашей сети. Ток является результатом приложения к нашей сети исходного напряжения в 220 вольт частотой в 50 герц. Когда нагрузка активна, то фаза тока совпадает с фазой напряжения в ней. А реактивные нагрузки эту фазу сдвигают на этот угол.

Собственно говоря, угол и характеризует степень эффективности нашего потребления энергии. И надо стараться его уменьшить. Тогда S будет приближаться к P.

Только удобнее оперировать не с углом, а с косинусом угла. Это как раз и есть соотношение двух мощностей:

Косинус угла приближается к единице, когда угол приближается к нулю. То есть, чем острее угол j, тем лучше, эффективнее работает электрическая потребляющая сеть. На практике, если добиться величины косинуса фи (а его можно выразить в процентах) порядка 70–90%, то это уже считается неплохо.

Часто используется другое отношение, связывающее активную мощность и реактивную:

Из диаграммы тока и напряжения можно найти выражения для мощностей: активной, реактивной и полной.

Если более привычная нам активная мощность измеряется в ваттах, то полная мощность измеряется в вольт-амперах (вар). Ватт из вара можно посчитать умножением на косинус фи.

Что такое реактивная мощность

Реактивная мощность бывает индуктивная и емкостная. Они ведут себя в электрической цепи по-разному. На постоянном токе индуктивность - это просто кусок провода, имеющий какое-то очень малое сопротивление. А конденсатор на постоянном напряжении - просто разрыв в цепи.

И когда мы их включаем в цепь, подводим к ним напряжение, во время переходного процесса они ведут себя тоже прямо противоположно. Конденсатор заряжается, при этом возникающий ток сначала большой, потом, по мере зарядки, маленький, уменьшающийся до нуля.

В индуктивности, катушке с проводом, возникающее магнитное поле после включения в самом начале сильно препятствует прохождению тока, и он сначала маленький, потом увеличивается до своего стационарного значения, определяемого активными элементами схемы.

Конденсаторы, таким образом, способствуют изменению тока в цепи, а индуктивности препятствуют изменению тока.

Индуктивная и емкостная составляющие сопротивления сети

Таким образом, реактивные элементы имеют свои разновидности сопротивления - емкостное и индуктивное. С полным сопротивлением, включающим активную и реактивную составляющие, это связывается следующей формулой:

Z – полное сопротивление,

R – активное сопротивление,

X – реактивное сопротивление.

В свою очередь, реактивное сопротивление состоит из двух частей:

X L – индуктивной и X C – емкостной.

Отсюда мы видим, что вклад в реактивную составляющую у них разный.

Все, что в сети индуктивно, увеличивает реактивное сопротивление сети, все, что в сети имеет емкостной характер, уменьшает реактивное сопротивление.

Электроприборы, влияющие на качество потребления

Если бы все приборы у нас в сети были, как лампочки, то есть являлись чисто активной нагрузкой, проблем бы не было. Была бы активная потребляющая сеть, одна сплошная активная нагрузка, и, как говорится, в чистом поле - вокруг ничего, то все легко бы подсчитывалось по законам Ома и Кирхгофа, и было справедливо - сколько потребил, за столько и заплатил. Но вот имея и вокруг себя загадочную токопроводящую «инфраструктуру», и в самой сети множество неучтенных емкостей и индуктивностей, мы и получаем, кроме полезной нам, еще и реактивную, ненужную нам нагрузку.

Как от нее избавиться? Когда электрическая потребляющая сеть уже создана, то можно проводить мероприятия по уменьшению реактивной составляющей. Компенсация и строится на «антагонизме» индуктивностей и емкостей.

То есть, в сложившейся сети следует измерить ее составляющие, а потом придумать компенсацию.

Особенно хороший эффект от таких мероприятий достигается в больших потребляющих сетях. Например, на уровне заводского цеха, имеющего большое количество постоянно работающего оборудования.

Для компенсации реактивной составляющей используются специальные компенсаторы реактивной мощности (КРМ), содержащие в своей конструкции конденсаторы, меняющие суммарный сдвиг фаз в сети в лучшую сторону.

Еще приветствуется использование в сетях синхронных двигателей переменного тока, так как они способны компенсировать реактивную мощность. Принцип простой: в сети они способны работать в режиме двигателя, а когда при сдвиге фаз наблюдается «завал» электроэнергии (других слов язык уже не находит), они способны компенсировать это, «подрабатывая» в сети в режиме генератора.