Перевод чисел из одной системы в другую. Применение правил в математике: двоичная система счисления – перевод чисел

Способы перевода чисел из одной системы счисления в другую.

Перевод чисел из одной позиционной системы счисления в другую: перевод целых чисел.

Чтобы перевести целое число из одной системы счисления с основанием d1 в другую с основанием d2 необходимо последовательно делить это число и получаемые частные на основание d2 новой системы до тех пор, пока не получится частное меньше основания d2. Последнее частное - старшая цифра числа в новой системе счисления с основанием d2, а следующие за ней цифры - это остатки от деления, записываемые в последовательности, обратной их получению. Арифметические действия выполнять в той системе счисления, в которой записано переводимое число.

Пример 1. Перевести число 11(10) в двоичную систему счисления.

Ответ: 11(10)=1011(2).

Пример 2. Перевести число 122(10) в восьмеричную систему счисления.


Ответ: 122(10)=172(8).

Пример 3. Перевести число 500(10) в шестнадцатеричную систему счисления.


Ответ: 500(10)=1F4(16).

Перевод чисел из одной позиционной системы счисления в другую: перевод правильных дробей.

Чтобы перевести правильную дробь из системы счисления с основанием d1 в систему с основанием d2, необходимо последовательно умножать исходную дробь и дробные части получающихся произведений на основание новой системы счисления d2. Правильная дробь числа в новой системе счисления с основанием d2 формируется в виде целых частей получающихся произведений, начиная с первого.
Если при переводе получается дробь в виде бесконечного или расходящегося ряда, процесс можно закончить при достижении необходимой точности.

При переводе смешанных чисел, необходимо в новую систему перевести отдельно целую и дробную части по правилам перевода целых чисел и правильных дробей, а затем оба результата объединить в одно смешанное число в новой системе счисления.

Пример 1. Перевести число 0,625(10) в двоичную систему счисления.


Ответ: 0,625(10)=0,101(2).

Пример 2. Перевести число 0,6(10) в восьмеричную систему счисления.


Ответ: 0,6(10)=0,463(8).

Пример 2. Перевести число 0,7(10) в шестнадцатеричную систему счисления.


Ответ: 0,7(10)=0,В333(16).

Перевод двоичных, восьмеричных и шестнадцатеричных чисел в десятичную систему счисления.

Для перевода числа P-ичной системы в десятичную необходимо использовать следующую формулу разложения:
аnan-1…а1а0=аnPn+ аn-1Pn-1+…+ а1P+a0 .

Пример 1. Перевести число 101,11(2) в десятичную систему счисления.

Ответ: 101,11(2)= 5,75(10) .

Пример 2. Перевести число 57,24(8) в десятичную систему счисления.

Ответ: 57,24(8) = 47,3125(10) .

Пример 3. Перевести число 7A,84(16) в десятичную систему счисления.

Ответ: 7A,84(16)= 122,515625(10) .


Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему счисления и обратно.

Для перевода числа из восьмеричной системы счисления в двоичную необходимо каждую цифру этого числа записать трехразрядным двоичным числом (триадой).

Пример: записать число 16,24(8) в двоичной системе счисления.


Ответ: 16,24(8)= 1110,0101(2) .

Для обратного перевода двоичного числа в восьмеричную систему счисления, необходимо исходное число разбить на триады влево и вправо от запятой и представить каждую группу цифрой в восьмеричной системе счисления. Крайние неполные триады дополняют нулями.

Пример: записать число 1110,0101(2) в восьмеричной системе счисления.


Ответ: 1110,0101(2)= 16,24(8) .

Для перевода числа из шестнадцатеричной системы счисления в двоичную необходимо каждую цифру этого числа записать четырехразрядным двоичным числом (тетрадой).

Пример: записать число 7A,7E(16) в двоичной системе счисления.


Ответ: 7A,7E(16)= 1111010,0111111(2) .

Примечание: незначащие нули слева для целых чисел и справа для дробей не записываются.

Для обратного перевода двоичного числа в шестнадцатеричную систему счисления, необходимо исходное число разбить на тетрады влево и вправо от запятой и представить каждую группу цифрой в шестнадцатеричной системе счисления. Крайние неполные триады дополняют нулями.

Пример: записать число 1111010,0111111(2) в шестнадцатеричной системе счисления.

В повседневной жизни мы привыкли пользоваться десятичной системой счисления, знакомой нам еще со школьной скамьи. Однако помимо нее, существует и множество других систем. Как записывать цифры не в десятичной, а, например, в ?

Как перевести в двоичную любое число из десятичной системы

Необходимость перевести десятичное число в двоичный вид выглядит пугающей только на первый взгляд. На самом деле это довольно просто - необязательно искать даже онлайн-сервисы для совершения операции.

  • Для образца возьмем число 156, записанное в привычной нам десятичной форме, и попробуем перевести его в двоичный вид.
  • Алгоритм будет выглядеть следующим образом - начальное число понадобится разделить на два, затем еще раз на 2, и еще раз на 2 до тех пор, пока в ответе не останется единица.
  • При совершении деления для перевода в двоичный код имеют значения не целые числа - а остатки. Если при делении в ответе получилось четное число, то остаток записывается в виде цифры 0, если нечетное - то в виде цифры 1.
  • На практике можно легко убедиться, что начальный двоичный ряд остатков для числа 156 будет выглядеть следующим образом - 00111001. Для того, чтобы превратить его в полноценный двоичный код, этот ряд понадобится записать в обратном порядке - то есть, 10011100.

Двоичное число 10011100, полученное в результате нехитрой операции, и будет двоичным выражением числа 156.

Ещё один пример, но уже на картинке

Перевод двоичного числа в десятичную систему

Обратный перевод - из двоичной в десятичную систему - может показаться чуть более сложным. Но если использовать простой метод удвоения, то и с этой задачей получится справиться за пару минут. Для примера возьмем все то же число, 156, но в двоичном виде - 10011100.

  • Метод удвоения основан на том, что при каждом шаге вычисления берут так называемый предыдущий итог и прибавляют к нему следующую цифру.
  • Поскольку на первом шаге предыдущего итога еще не существует, здесь всегда берут 0, удваивают его и прибавляют к нему первую цифру выражения. В нашем примере это будет 0 * 2 + 1 = 1.
  • На втором шаге мы уже располагаем предыдущим итогом - он равен 1. Это цифру нужно удвоить, а потом прибавить к ней следующую по порядку, то есть - 1 * 2 + 0 = 2.
  • На третьем, четвертом и последующем шагах все так же берутся предыдущие итоги и складываются с последующей цифрой в выражении.

Когда в двоичной записи останется только одна последняя цифра, и прибавлять больше будет нечего, операция будет завершена. При помощи нехитрой проверки можно убедиться, что в ответе получится нужное десятичное число 156.

При переводе чисел из десятичной системы счисления в любую другую, всегда отдельно (по разным правилам) переводится целая и дробная части.

Перевод целой части

Для того, чтобы перевести число из десятичной системы счисления, в любую другую, нужно выполнять целочисленное деление исходного числа на основание той системы счисления, в которую нужно перевести число. При этом важен остаток от деления и частное. Частное нужно делить на основание до тех пор, пока не останется 0. После этого все остатки нужно выписать в обратном порядке - это и будет число в новой системе счисления.

Например, перевод - числа 25 из десятичной системы счисления в двоичную будет выглядеть следующим образом:

Выписав остатки в обратном порядке, получим 25 10 =11001 2 .

Если Вы задумаетесь, то можете легко заметить, что при переводе абсолютно любого числа в двоичную систему счисления самый последний остаток (то есть, самая первая цифра в результате) всегда будет равен самому последнему частному, которое оказалось меньше основания той системы счисления, в которую мы переводим число. Поэтому, деление часто останавливают раньше, чем частное станет равным нулю - в тот момент, когда частное станет просто меньше основания. Например:

Перевод из десятичной системы счисления в любую другую систему счисления производится по абсолютно точно таким же правилам. Вот пример перевода 393 10 в шестнадцатеричную систему счисления:

Выписав остатки в обратном порядке, получим 393 10 =189 16 .

Нужно понимать, что остатки получаются в десятичной системе счисления. При делении на 16 могут появиться остатки не только от 0 до 9, но также и остатки от 10 до 15. Каждый остаток - это всегда ровно одна цифра в той системе счисления, в которую осуществляется перевод.

Например, если при переводе в шестнадцатеричную систему счисления Вы получили такие остатки (выписаны в порядке, как они должны быть записаны в числе): 10, 3, 15, 7, то в шестнадцатеричной системе счисления этой последовательности остатков будет соответствовать число A3F7 16 (некоторые по ошибке записывают число как 103157 16 - понято же, что это совсем другое число, и что если так делать, то получится, что ни в каком шестнадцатеричном числе не появится цифры от A до F).

Перевод дробной части

При переводе дробной части, в отличие от перевода целой части - нужно не делить, а умножать на основание той системы счисления, в которую мы переводим. При этом каждый раз отбрасываются целые части, а дробные части - снова умножаются. Собрав целые части в том порядке, как они были получены - получается дробная часть числа в нужной системе счисления.

Одна операция умножения даёт ровно один дополнительный знак в системе счисления, в которую осуществляется перевод.

При этом существует два условия завершения процесса:

1) в результате очередного умножения Вы получили ноль в дробной части. Понятно, что дальше этот ноль сколько ни умножай - он всё равно останется нулём. Это означает, что число перевелось из десятичной системы счисления в нужную точно.

2) не все числа возможно перевести точно. В таком случае обычно переводят с некоторой точностью. При этом сначала определяют, сколько знаков после запятой будет нужно - именно такое количество раз и нужно будет выполнить операцию умножения.

Вот пример перевода числа 0.39 10 в двоичную систему счисления. Точность - 8 разрядов (в данном случае точность перевода выбрана произвольно):

Если выписать целые части в прямом порядке, то получим 0.39 10 =0.01100011 2 .

Самый первый ноль (на рисунке перечёркнут синим) выписывать не нужно - так как он относится не к дробной части, а к целой. Некоторые по ошибке записывают этот ноль после запятой, когда выписывают результат.

Вот так будет выглядеть перевод числа 0.39 10 в шестнадцатеричную систему счисления. Точность - 8 разрядов в данном случае точность снова выбрана произвольно:

Если выписать целые части в прямом порядке, то получим 0.39 10 =0.63D700A3 16 .

При этом Вы, наверное, заметили, что целые части при умножении получаются в десятичной системе счисления. Эти целые части, полученные при переводе дробной части числа следует интерпретировать точно так же, как и остатки при переводе целой части числа. То есть, если при переводе в шестнадцатеричную систему счисления целые части получились в таком порядке: 3, 13, 7, 10, то соответствующее число будет равно 0.3D7A 16 (а не 0.313710 16 , как некоторые иногда ошибочно записывают).

Перевод числа с целой и дробной частью

Чтобы выполнить перевод числа с целой и дробной частью, нужно отдельно перевести целую часть, а отдельно - дробную, и поэтом эти две части записать вместе.

Например, 25.39 10 =11001.01100011 2 (переводы целой и дробной части - смотрите выше).

Перевод небольших целых чисел из десятичной системы счисления в двоичную в уме

Поскольку при работе с различными системами счисления, особенно при разработке программ, очень часто возникает необходимость перевода небольших целых чисел, то, вообще говоря, имеет смысл запомнить для первых 16 чисел (от 0 до 15).

Но если разобраться, как легко в уме переводить небольшие целые числа от 0 до 15 из десятичной системы счисления в двоичную, то значительную часть таблицы Вы сможете просто вычислять в уме каждый раз, когда это будет нужно. Проделывайте эту операцию много раз, и в какой-то момент Вы сами не сможете понять - Вы уже запомнили таблицу или всё ещё вычисляете.

Итак, чтобы перевести небольшое положительное целое число от 0 до 15 из десятичной системы счисления в двоичную, первое, что нужно понять - это что каждой позиции в двоичном числе соответствует степень двойки. При этом степени двойки для позиций от 0 до 3 запомнить очень просто - это числа 1, 2, 4 и 8:

А число 10 - это 2 плюс 8:

Ну а число 0 - грех не запомнить, так как, чтобы его получить, ничего не нужно складывать.

Результат уже получен!

Системы счисления

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

Ц n ·s n +Ц n-1 ·s n-1 +...+Ц 1 ·s 1 +Ц 0 ·s 0 +Д -1 ·s -1 +Д -2 ·s -2 +...+Д -k ·s -k

где Ц n -целое число в позиции n , Д -k - дробное число в позиции (-k), s - система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления - из множества цифр {0,1}, в шестнадцатеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1 ·2 6 +0 ·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B - на 11, C - на 12, F - на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления (для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4 . Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
0 2 1
0

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111 . Следовательно можно записать:

159 10 =10011111 2 .

Пример 5 . Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147 (см. Рис. 2). Следовательно можно записать:

615 10 =1147 8 .

Пример 6 . Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 - D. Следовательно наше шестнадцатеричное число - это 4CD9.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7 . Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0 0.428
x 2
0 0.856
x 2
1 0.712
x 2
1 0.424
x 2
0 0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011 .

Следовательно можно записать:

0.214 10 =0.0011011 2 .

Пример 8 . Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0 0.25
x 2
0 0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.125 10 =0.001 2 .

Пример 9 . Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.214 10 =0.36C8B4 16 .

Пример 10 . Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0 0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Получили:

0.512 10 =0.406111 8 .

Пример 11 . Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.125 10 =10011111.001 2 .

Пример 12 . Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим.

Замечание 1

Если вы хотите перевести число из одной системы счисления в другую, то удобнее для начала перевести его в десятичную систему счисления, и уже только потом из десятичной перевести в любую другую систему счисления.

Правила перевода чисел из любой системы счисления в десятичную

В вычислительной технике, использующей машинную арифметику, большую роль играет преобразование чисел из одной системы счисления в другую. Ниже приведем основные правила таких преобразований (переводов).

    При переводе двоичного числа в десятичное требуется представить двоичное число в виде многочлена , каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $2$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_2=A_n \cdot 2^{n-1} + A_{n-1} \cdot 2^{n-2} + A_{n-2} \cdot 2^{n-3} + ... + A_2 \cdot 2^1 + A_1 \cdot 2^0$

Рисунок 1. Таблица 1

Пример 1

Число $11110101_2$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $1$ степеней основания $2$, представим число в виде многочлена:

$11110101_2 = 1 \cdot 27 + 1 \cdot 26 + 1 \cdot 25 + 1 \cdot 24 + 0 \cdot 23 + 1 \cdot 22 + 0 \cdot 21 + 1 \cdot 20 = 128 + 64 + 32 + 16 + 0 + 4 + 0 + 1 = 245_{10}$

    Для перевода числа из восьмеричной системы счисления в десятичную требуется представить его в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $8$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_8 = A_n \cdot 8^{n-1} + A_{n-1} \cdot 8^{n-2} + A_{n-2} \cdot 8^{n-3} + ... + A_2 \cdot 8^1 + A_1 \cdot 8^0$

Рисунок 2. Таблица 2

Пример 2

Число $75013_8$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $2$ степеней основания $8$, представим число в виде многочлена:

$75013_8 = 7\cdot 8^4 + 5 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 3 \cdot 8^0 = 31243_{10}$

    Для перевода числа из шестнадцатеричной системы счисления в десятичную необходимо его представить в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $16$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_{16} = A_n \cdot 16^{n-1} + A_{n-1} \cdot 16^{n-2} + A_{n-2} \cdot 16^{n-3} + ... + A_2 \cdot 16^1 + A_1 \cdot 16^0$

Рисунок 3. Таблица 3

Пример 3

Число $FFA2_{16}$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $3$ степеней основания $8$, представим число в виде многочлена:

$FFA2_{16} = 15 \cdot 16^3 + 15 \cdot 16^2 + 10 \cdot 16^1 + 2 \cdot 16^0 =61440 + 3840 + 160 + 2 = 65442_{10}$

Правила перевода чисел из десятичной системы счисления в другую

  • Для перевода числа из десятичной системы счисления в двоичную его необходимо последовательно делить на $2$ до тех пор, пока не останется остаток, меньший или равный $1$. Число в двоичной системе представить как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример 4

Число $22_{10}$ перевести в двоичную систему счисления.

Решение:

Рисунок 4.

$22_{10} = 10110_2$

  • Для перевода числа из десятичной системы счисления в восьмеричную его необходимо последовательно делить на $8$ до тех пор, пока не останется остаток, меньший или равный $7$. Число в восьмеричной системе счисления представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 5

Число $571_{10}$ перевести в восьмеричную систему счисления.

Решение:

Рисунок 5.

$571_{10} = 1073_8$

  • Для перевода числа из десятичной системы счисления в шестнадцатеричную систему его необходимо последовательно делить на $16$ до тех пор, пока не останется остаток, меньший или равный $15$. Число в шестнадцатеричной системе представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 6

Число $7467_{10}$ перевести в шестнадцатеричную систему счисления.

Решение:

Рисунок 6.

$7467_{10} = 1D2B_{16}$

    Для того чтобы перевести правильную дробь из десятичной системы счисления в недесятичную, необходимо дробную часть преобразуемого числа последовательно умножить на основание той системы, в которую ее требуется перевести. Дробь в новой системе будет представлена в виде целых частей произведений, начиная с первого.

    Например: $0,3125_{(10)}$ в восьмеричной системе счисления будет выглядеть как $0,24_{(8)}$.

    В данном случае можно столкнуться с проблемой, когда конечной десятичной дроби может соответствовать бесконечная (периодическая) дробь в недесятичной системе счисления. В данном случае количество знаков в дроби, представленной в новой системе, будет зависеть от требуемой точности. Также нужно отметить, что целые числа остаются целыми, а правильные дроби - дробями в любой системе счисления.

Правила перевода чисел из двоичной системы счисления в другую

  • Чтобы перевести число из двоичной системы счисления в восьмеричную, его необходимо разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, затем каждую триаду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Рисунок 7. Таблица 4

Пример 7

Число $1001011_2$ перевести в восьмеричную систему счисления.

Решение . Используя таблицу 4, переведем число из двоичной системы счисления в восьмеричную:

$001 001 011_2 = 113_8$

  • Чтобы перевести число из двоичной системы счисления в шестнадцатеричную, его следует разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, затем каждую тетраду заменить соответствующей восьмеричной цифрой согласно таблице 4.