Определение сложности алгоритма с использованием о нотации. Оценка временной сложности алгоритмов

При проектировании алгоритмов, как правило, не представляет интереса точное число шагов, необходимых для решения задачи на конкретном наборе данных. Гораздо важнее знать, как будет изменяться время решения задачи T, если размер входа n растёт.

Класс алгоритмов, время работы которых растёт, по крайней мере, так же быстро, как некоторая функция f(n), обозначается как Ω(f(n)). Это означает, что при всех n, превышающих порог n 0 , T(n) ≥C . f(n) для некоторого положительного числаC. Оценка времени работы снизу может представлять интерес только как теоретическая нижняя граница эффективности любого алгоритма для некоторой задачи, которую преодолеть невозможно.

Класс алгоритмов, время работы которых растёт не быстрее функции f(n), обозначается O (f(n)), что означает существование положительных чисел n 0 и c таких, что при n > n 0 T(n) ≤C . f(n). Этот класс - важнейшая характеристика алгоритма, еговременная сложность . По скорости роста этого времени в зависимости от размера входа алгоритмы делятся на следующие классы временной сложности:

Алгоритмы константной сложности - T(n) ∈ O(1);

Логарифмической сложности - T(n) ∈ O(log n);

Линейной сложности - T(n) ∈ O(n);

Квадратичной сложности - T(n) ∈ O(n 2);

Кубической сложности - T(n) ∈ O(n 3);

Полиномиальной сложности - T(n) ∈ O(n k), где k = const; k = 0, 1, 2 или 3 - это частные случаи классов полиномиальной сложности;

Экспоненциальной сложности - T(n) ∈ O(a n).

Очевидно, что классы в этом перечне упорядочены по возрастанию мощности. Так, класс O (1) является подмножеством любого из остальных классов. Задача программиста - найти или разработать алгоритм класса минимально возможной мощности и реализовать его так, чтобы оценка временной сложности не ухудшилась.

Алгоритм, для которого оценки Ω(f(n) и O (f(n)) совпадают, называетсяоптимальным . Так, очевидно, что алгоритм, имеющий на входе некоторое множество, будет оптимальным, если его временная сложностьO (1). Такой алгоритм можно попытаться найти, если задача не требует рассмотреть множество целиком. Если же требуется что-то сделать с каждым элементом множества мощностью n, оптимальный алгоритм будет иметь сложностьO (n). Если имеется два множества, и нужно обработать все возможные пары их элементов, можно ожидать сложностиO (n 2), для трёх множеств, если обрабатываются все тройки -O (n 3), и т. д.

Если же для получения результата необходимо рассмотреть все подмножества исходного множества или все перестановки его элементов - это задача на полный перебор, принадлежащая классу экспоненциальной сложности. В таких случаях говорят об отсутствии эффективного алгоритма.

Время работы программы часто зависит не только от мощности входных данных, но и от того, какие именно данные поступили на вход. В таких случаях делаются две оценки временной сложности:

Для самого неудобного набора данных - сложность «в худшем случае»;

Для типового набора данных - сложность «в среднем».

Тривиальные входные данные («лучший случай») обычно интереса не представляют.

Для оценки временной сложности по реализации алгоритма (тексту программы) можно руководствоваться следующими соображениями:

Операции присваивания (копирования) и проверки условия для базовых типов данных выполняются за константное время. Если при этом вызывается функция, сложность шага алгоритма определяется сложностью функции (в операциях с объектами функции могут вызываться неявно);

Сложность алгоритма, состоящего из последовательности шагов, определяется по самому сложному шагу;

Сложность выбора по условию определяется по самой сложной из альтернатив. В порядке исключения можно не принимать во внимание альтернативы, выбираемые очень редко. Можно учесть такие альтернативы, как «худший случай»;

Если какие-то шаги являются внутренней частью цикла с количеством повторений, зависящим от размера входа n, в оценку сложности циклического шага добавляется множитель n. Если же количество повторений не зависит от n, цикл игнорируется, поскольку его можно рассматривать просто как повторение некоторого количества одинаковых шагов алгоритма;

Рекурсия рассматривается как тот же цикл. Её сложность определяется как произведение сложности одного вызова функции на количество вызовов.

Пример 1. Вычислить b = (a∈A), где множество A мощностью nA представлено массивом целых чисел.

Решение : b = false; for (i = 0; !b && (i < nA); i++) b |= (a == A[i]);

Временная сложность алгоритма - O (nA). Если элемент a найден, алгоритм прекращает работу, выполнив от 1 до nA шагов. В среднем количество шагов будет nA / 2, в худшем случае (a∉A) - nA.

Пример 2. Вычислить C = A⋂B для множеств, представленных неупорядоченными массивами.

Решение : проверяем все возможные пары элементов двух множеств и отбираем совпадения.

for (i = k = 0; i < nA; i++)

for (j = 0; j < nB; j++) if (A[ i ] == B[ j ]) C[ k++ ] = A[ i ];

Проверка на совпадение и присваивание выполняются за константное время, поэтому сложность алгоритма - O (nA × nB), илиO (n 2), где n - средняя мощность множеств.

Пример 3. Вычислить D = A⋂ B⋂ C.

Очевидное решение

for (i = k = 0; i < nA; i++)

for (j = 0; j < nB; j++)

for (r = 0; r

if ((A[ i ] == B[ j ]) && (A[ i ] == C[ r ])) D[ k++ ] = A[ i ];

имеет временную сложность O (n 3), поскольку перебираются все возможные тройки. Однако перебирать все тройки никакой необходимости нет.

Модифицируем алгоритм:

for(i=k= 0;i

for (j = 0; j < nB; j++)

if (A[i] == B[j]) for (r = 0; r

if (A[i] == C[r]) D = A[i];

В алгоритме по-прежнему три вложенных цикла, но внутренний цикл теперь зависит от условия A[ i ] == B[ j ], которое проверяется n 2 раз, но удовлетворяется не более чем n раз, т. е. рассматриваются только такие тройки, у которых первые два элемента совпадают. Проверка A[i] == C[r] выполняется, таким образом, не более n 2 раз, и общая сложность алгоритма - O (n 2).

Пример 4. Вычислить C = A⋂B для множеств, представленных строками символов.

Решение :

for(i = k = 0; i < strlen(A); i++)

for (j = 0; j < strlen(B); j++) if (A[ i ] == B[ j ]) C[ k++ ] = A[ i ];

По аналогии с примером 2 можно оценить сложность как O (n 2). Однако это неверно, так как в обоих циклах по n раз вычисляется функция определения длины строки strlen(), которая, очевидно, подсчитывает в строке количество символов до ближайшего нуля перебором, т. е. имеет линейную сложность. Вычисление этой функции - один из шагов внутренней части обоих циклов. Таким образом, внутренняя часть вложенного цикла состоит из трёх шагов, двух константных (проверка и присваивание) и линейного (вычисление функции). С учётом n повторений сложность всего цикла -O (n 2). Внешний цикл добавляет сюда ещё шаг вычисления функции сложностьюO (n). Сложность его внутренней части -O (n 2), а всего алгоритма -O (n 3)! Это - цена экономии двух целых переменных. На самом деле нужно вычислить nA = strlen(A); nB = strlen(B), а затем использовать алгоритм из примера 2.

Редактор Г. Г. Петров

Подписано в печать. Формат 60×84 1/16.

Бумага офсетная. Печать офсетная. Печ. л. 4,0.

Гарнитура «Times». Тираж экз. Заказ

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Издательство СПбГЭТУ «ЛЭТИ»

Типы алгоритмов. Сложность алгоритмов.

Алгоритмы

Под алгоритмом понимается описание последовательностидействий,необходимых для решения задачи (алгоритм не содержит описания данных и их структур, а описывает только действия).

Существует несколько форм описания алгоритмов:

1. словесное (для решения неформализованных задач)

2. запись с использованием математической либо другой специальной нотации

3. графическое изображение алгоритма

4. запись на метаязыке

5. запись на алгоритмическом языке

Название алгоритма может указывать либо на его назначение, либо на метод решения задачи.

Существует 2 типа алгоритмов: детерминированные и недетерминированные.

Детерминированные алгоритмы предполагают прямое решение задачи без использования повторов и выбора вариантов. Такой алгоритм не содержит элементов неопределённости. (Они всегда простые.)

Недетерминированные алгоритмы допускают повторы, выборы вариантов и использование метода проб и ошибок. Т.е. они содержат некоторый элемент неопределённости. Может использоваться такое понятие, как случайный выбор. Например, поиск оптимального маршрута через лабиринт, поисковый алгоритм нахождения экстремума ф-ции n переменных. (Это сложные алгоритмы.)

Для такого алгоритма невозможно даже сказать наперёд,будет ли получено решение при данном наборе входных данных.

Некоторые задачи могут быть решены с использованием обоих типов алгоритмов. Например, задача нахождения нужной строки в таблице. Если индекс строки известен, то алгоритм обращения к этой строке является детерминированным. Если индекс строки неизвестен заранее, то для нахождения строки может быть применён алгоритм случайного поиска (недетерминированный) (строка ищется по какому-то признаку и строки перебираются случайным образом). Такой способ эффективен для больших таблиц. Также может использоваться последовательный поиск перебором (II-й недетерминированный алгоритм). При таком методе строка будет найдена за 2n итераций (n-число строк). Последовательный поиск эффективен для малых объёмов.

Сложность алгоритма определяет зависимость времени работы алгоритма от объёма обрабатываемых данных.

Основные типы сложности алгоритмов:

1. Постоянная сложность – имеют алгоритмы, рассчитанные на обработку фиксированного объёма данных.

2. Линейная сложность (например, алгоритм обработки массива в памяти). Время работы такого алгоритма может быть оценено так: an+b, где n – количество элементов массива, a – время, необходимое для выполнения операций над отдельным элементом массива, b – время, затрачиваемое на выполнение вспомогательных операций.



3. Квадратичная сложность (например, алгоритм пузырьковой сортировки). (n-1) сравнений для определения I-го элемента,(n-2) – II-го элемента, (n-1)+(n-2)+…+3+2+1=. Для больших n время работы алгоритма ~.

Сложность алгоритма может оцениваться по уже написанной программе, для чего определяется число внутренних циклов.

Пример оценки сложности по тексту программы (алгоритм сортировки) :

Procedure сортировка;

For k:=1 to n-1 do

Min:=A(k); lok:=k;

For i:=k+1 to n do

If min>A(i) then

Min:=A(i); loc:=I;

A(loc):=A(k); A(k):=min

В данной прог-е внешний цикл исполняется n-1 раз, а внутренний исполняется в среднем раз.Общее число исполнений внутреннего цикла = . Для больших n количество исполнений ~. Т.е. алгоритм обладает квадратичной сложностью.

Оценка сложности алгоритма умножения 2-х матриц размерности n*n:

For i:=1 to n do

For j:=1 to n do

C(i,j):=0;

For k:=1 to n do

C(i,j):=C(i,j)+A(i,k)*B(k,j);

Сложность ~ (т.к. 3 цикла).

Замечание: Использование различных усовершенствований алгоритма не может привести к существенному изменению его оценки сложности. Изменение оценки сложности – индикатор того, что алгоритм изменился.

Можно дать формальное определение сложности алгоритма, используя нотацию «большого О» и понятие порядка функции. Считается, что 2 ф-ции f(n) и g(n) одного порядка, если для больших n существует константа k : . И формально такое высказывание записывается так: f(n)=O(g(n)).

Сложность алгоритмов обозначается:

O(n) – для алгоритмов линейного поиска

O() - для пузырьковой сортировки

O() - для перемножения матриц

O() - для двоичного поиска

Не так давно мне предложили вести курс основ теории алгоритмов в одном московском лицее. Я, конечно, с удовольствием согласился. В понедельник была первая лекция на которой я постарался объяснить ребятам методы оценки сложности алгоритмов. Я думаю, что некоторым читателям Хабра эта информация тоже может оказаться полезной, или по крайней мере интересной.
Существует несколько способов измерения сложности алгоритма. Программисты обычно сосредотачивают внимание на скорости алгоритма, но не менее важны и другие показатели – требования к объёму памяти, свободному месте на диске. Использование быстрого алгоритма не приведёт к ожидаемым результатам, если для его работы понадобится больше памяти, чем есть у компьютера.

Память или время

Многие алгоритмы предлагают выбор между объёмом памяти и скоростью. Задачу можно решить быстро, использую большой объём памяти, или медленнее, занимая меньший объём.
Типичным примером в данном случае служит алгоритм поиска кратчайшего пути. Представив карту города в виде сети, можно написать алгоритм для определения кратчайшего расстояния между двумя любыми точками этой сети. Чтобы не вычислять эти расстояния всякий раз, когда они нам нужны, мы можем вывести кратчайшие расстояния между всеми точками и сохранить результаты в таблице. Когда нам понадобится узнать кратчайшее расстояние между двумя заданными точками, мы можем просто взять готовое расстояние из таблицы.
Результат будет получен мгновенно, но это потребует огромного объёма памяти. Карта большого города может содержать десятки тысяч точек. Тогда, описанная выше таблица, должна содержать более 10 млрд. ячеек. Т.е. для того, чтобы повысить быстродействие алгоритма, необходимо использовать дополнительные 10 Гб памяти.
Из этой зависимости проистекает идея объёмно-временной сложности. При таком подходе алгоритм оценивается, как с точки зрении скорости выполнения, так и с точки зрения потреблённой памяти.
Мы будем уделять основное внимание временной сложности, но, тем не менее, обязательно будем оговаривать и объём потребляемой памяти.

Оценка порядка

При сравнении различных алгоритмов важно знать, как их сложность зависит от объёма входных данных. Допустим, при сортировке одним методом обработка тысячи чисел занимает 1 с., а обработка миллиона чисел – 10 с., при использовании другого алгоритма может потребоваться 2 с. и 5 с. соответственно. В таких условиях нельзя однозначно сказать, какой алгоритм лучше.
В общем случае сложность алгоритма можно оценить по порядку величины. Алгоритм имеет сложность O(f(n)), если при увеличении размерности входных данных N, время выполнения алгоритма возрастает с той же скоростью, что и функция f(N). Рассмотрим код, который для матрицы A находит максимальный элемент в каждой строке.
for i:=1 to N do
begin
max:=A;
for j:=1 to N do
begin
if A>max then
max:=A
end;
writeln(max);
end;
В этом алгоритме переменная i меняется от 1 до N. При каждом изменении i, переменная j тоже меняется от 1 до N. Во время каждой из N итераций внешнего цикла, внутренний цикл тоже выполняется N раз. Общее количество итераций внутреннего цикла равно N*N. Это определяет сложность алгоритма O(N^2).
Оценивая порядок сложности алгоритма, необходимо использовать только ту часть, которая возрастает быстрее всего. Предположим, что рабочий цикл описывается выражением N^3+N. В таком случае его сложность будет равна O(N^3). Рассмотрение быстро растущей части функции позволяет оценить поведение алгоритма при увеличении N. Например, при N=100, то разница между N^3+N=1000100 и N=1000000 равна всего лишь 100, что составляет 0,01%.
При вычислении O можно не учитывать постоянные множители в выражениях. Алгоритм с рабочим шагом 3N^3 рассматривается, как O(N^3). Это делает зависимость отношения O(N) от изменения размера задачи более очевидной.

Определение сложности

Наиболее сложными частями программы обычно является выполнение циклов и вызов процедур. В предыдущем примере весь алгоритм выполнен с помощью двух циклов.
Если одна процедура вызывает другую, то необходимо более тщательно оценить сложность последней. Если в ней выполняется определённое число инструкций (например, вывод на печать), то на оценку сложности это практически не влияет. Если же в вызываемой процедуре выполняется O(N) шагов, то функция может значительно усложнить алгоритм. Если же процедура вызывается внутри цикла, то влияние может быть намного больше.
В качестве примера рассмотрим две процедуры: Slow со сложностью O(N^3) и Fast со сложностью O(N^2).
procedure Slow;
var
i,j,k: integer;
begin
for i:=1 to N do
for j:=1 to N do
for k:=1 to N do
{какое-то действие}
end;
procedure Fast;
var
i,j: integer;
begin
for i:=1 to N do
for j:=1 to N do
Slow;
end;
procedure Both;
begin
Fast;
end;
Если во внутренних циклах процедуры Fast происходит вызов процедуры Slow, то сложности процедур перемножаются. В данном случае сложность алгоритма составляет O(N^2)*O(N^3)=O(N^5).
Если же основная программа вызывает процедуры по очереди, то их сложности складываются: O(N^2)+O(N^3)=O(N^3). Следующий фрагмент имеет именно такую сложность:
procedure Slow;
var
i,j,k: integer;
begin
for i:=1 to N do
for j:=1 to N do
for k:=1 to N do
{какое-то действие}
end;
procedure Fast;
var
i,j: integer;
begin
for i:=1 to N do
for j:=1 to N do
{какое-то действие}
end;
procedure Both;
begin
Fast;
Slow;
end;
Сложность рекурсивных алгоритмов
Простая рекурсия
Напомним, что рекурсивными процедурами называются процедуры, которые вызывают сами себя. Их сложность определить довольно тяжело. Сложность этих алгоритмов зависит не только от сложности внутренних циклов, но и от количества итераций рекурсии. Рекурсивная процедура может выглядеть достаточно простой, но она может серьёзно усложнить программу, многократно вызывая себя.
Рассмотрим рекурсивную реализацию вычисления факториала:
function Factorial(n: Word): integer;
begin
if n > 1 then
Factorial:=n*Factorial(n-1)
else
Factorial:=1;
end;
Эта процедура выполняется N раз, таким образом, вычислительная сложность этого алгоритма равна O(N).
Многократная рекурсия
Рекурсивный алгоритм, который вызывает себя несколько раз, называется многократной рекурсией. Такие процедуры гораздо сложнее анализировать, кроме того, они могут сделать алгоритм гораздо сложнее.
Рассмотрим такую процедуру:
procedure DoubleRecursive(N: integer);
begin
if N>0 then
begin
DoubleRecursive(N-1);
DoubleRecursive(N-1);
end;
end;
Поскольку процедура вызывается дважды, можно было бы предположить, что её рабочий цикл будет равен O(2N)=O(N). Но на самом деле ситуация гораздо сложнее. Если внимательно исследовать этот алгоритм, то станет очевидно, что его сложность равна O(2^(N+1)-1)=O(2^N). Всегда надо помнить, что анализ сложности рекурсивных алгоритмов весьма нетривиальная задача.
Объёмная сложность рекурсивных алгоритмов
Для всех рекурсивных алгоритмов очень важно понятие объёмной сложности. При каждом вызове процедура запрашивает небольшой объём памяти, но этот объём может значительно увеличиваться в процессе рекурсивных вызовов. По этой причине всегда необходимо проводить хотя бы поверхностный анализ объёмной сложности рекурсивных процедур.
Средний и наихудший случай
Оценка сложности алгоритма до порядка является верхней границей сложности алгоритмов. Если программа имеет большой порядок сложности, это вовсе не означает, что алгоритм будет выполняться действительно долго. На некоторых наборах данных выполнение алгоритма занимает намного меньше времени, чем можно предположить на основе их сложности. Например, рассмотрим код, который ищет заданный элемент в векторе A.
function Locate(data: integer): integer;
var
i: integer;
fl: boolean;
begin
fl:=false; i:=1;
while (not fl) and (i<=N) do
begin
if A[i]=data then
fl:=true
else
i:=i+1;
end;
if not fl then
i:=0;
Locate:=I;
end;
Если искомый элемент находится в конце списка, то программе придётся выполнить N шагов. В таком случае сложность алгоритма составит O(N). В этом наихудшем случае время работы алгоритма будем максимальным.
С другой стороны, искомый элемент может находится в списке на первой позиции. Алгоритму придётся сделать всего один шаг. Такой случай называется наилучшим и его сложность можно оценить, как O(1).
Оба эти случая маловероятны. Нас больше всего интересует ожидаемый вариант. Если элемента списка изначально беспорядочно смешаны, то искомый элемент может оказаться в любом месте списка. В среднем потребуется сделать N/2 сравнений, чтобы найти требуемый элемент. Значит сложность этого алгоритма в среднем составляет O(N/2)=O(N).
В данном случае средняя и ожидаемая сложность совпадают, но для многих алгоритмов наихудший случай сильно отличается от ожидаемого. Например, алгоритм быстрой сортировки в наихудшем случае имеет сложность порядка O(N^2), в то время как ожидаемое поведение описывается оценкой O(N*log(N)), что много быстрее.
Общие функции оценки сложности
Сейчас мы перечислим некоторые функции, которые чаще всего используются для вычисления сложности. Функции перечислены в порядке возрастания сложности. Чем выше в этом списке находится функция, тем быстрее будет выполняться алгоритм с такой оценкой.
1. C – константа
2. log(log(N))
3. log(N)
4. N^C, 0 5. N
6. N*log(N)
7. N^C, C>1
8. C^N, C>1
9. N!
Если мы хотим оценить сложность алгоритма, уравнение сложности которого содержит несколько этих функций, то уравнение можно сократить до функции, расположенной ниже в таблице. Например, O(log(N)+N!)=O(N!).
Если алгоритм вызывается редко и для небольших объёмов данных, то приемлемой можно считать сложность O(N^2), если же алгоритм работает в реальном времени, то не всегда достаточно производительности O(N).
Обычно алгоритмы со сложностью N*log(N) работают с хорошей скоростью. Алгоритмы со сложностью N^C можно использовать только при небольших значениях C. Вычислительная сложность алгоритмов, порядок которых определяется функциями C^N и N! очень велика, поэтому такие алгоритмы могут использоваться только для обработки небольшого объёма данных.
В заключение приведём таблицу, которая показывает, как долго компьютер, осуществляющий миллион операций в секунду, будет выполнять некоторые медленные алгоритмы.

Наверняка вы не раз сталкивались с обозначениями вроде O(log n) или слышали фразы типа «логарифмическая вычислительная сложность» в адрес каких-либо алгоритмов. И если вы так и не понимаете, что это значит, - эта статья для вас.

Оценка сложности

Сложность алгоритмов обычно оценивают по времени выполнения или по используемой памяти. В обоих случаях сложность зависит от размеров входных данных: массив из 100 элементов будет обработан быстрее, чем аналогичный из 1000. При этом точное время мало кого интересует: оно зависит от процессора, типа данных, языка программирования и множества других параметров. Важна лишь асимптотическая сложность, т. е. сложность при стремлении размера входных данных к бесконечности.

Допустим, некоторому алгоритму нужно выполнить 4n 3 + 7n условных операций, чтобы обработать n элементов входных данных. При увеличении n на итоговое время работы будет значительно больше влиять возведение n в куб, чем умножение его на 4 или же прибавление 7n . Тогда говорят, что временная сложность этого алгоритма равна О(n 3) , т. е. зависит от размера входных данных кубически.

Использование заглавной буквы О (или так называемая О-нотация) пришло из математики, где её применяют для сравнения асимптотического поведения функций. Формально O(f(n)) означает, что время работы алгоритма (или объём занимаемой памяти) растёт в зависимости от объёма входных данных не быстрее, чем некоторая константа, умноженная на f(n) .

Примеры

O(n) - линейная сложность

Такой сложностью обладает, например, алгоритм поиска наибольшего элемента в не отсортированном массиве. Нам придётся пройтись по всем n элементам массива, чтобы понять, какой из них максимальный.

O(log n) - логарифмическая сложность

Простейший пример - бинарный поиск. Если массив отсортирован, мы можем проверить, есть ли в нём какое-то конкретное значение, методом деления пополам. Проверим средний элемент, если он больше искомого, то отбросим вторую половину массива - там его точно нет. Если же меньше, то наоборот - отбросим начальную половину. И так будем продолжать делить пополам, в итоге проверим log n элементов.

O(n 2) - квадратичная сложность

Такую сложность имеет, например, алгоритм сортировки вставками. В канонической реализации он представляет из себя два вложенных цикла: один, чтобы проходить по всему массиву, а второй, чтобы находить место очередному элементу в уже отсортированной части. Таким образом, количество операций будет зависеть от размера массива как n * n , т. е. n 2 .

Бывают и другие оценки по сложности, но все они основаны на том же принципе.

Также случается, что время работы алгоритма вообще не зависит от размера входных данных. Тогда сложность обозначают как O(1) . Например, для определения значения третьего элемента массива не нужно ни запоминать элементы, ни проходить по ним сколько-то раз. Всегда нужно просто дождаться в потоке входных данных третий элемент и это будет результатом, на вычисление которого для любого количества данных нужно одно и то же время.

Аналогично проводят оценку и по памяти, когда это важно. Однако алгоритмы могут использовать значительно больше памяти при увеличении размера входных данных, чем другие, но зато работать быстрее. И наоборот. Это помогает выбирать оптимальные пути решения задач исходя из текущих условий и требований.