Структуризация данных. Общее понятие структуры данных

  • Перевод

Конечно, можно быть успешным программистом и без сакрального знания структур данных, однако они совершенно незаменимы в некоторых приложениях. Например, когда нужно вычислить кратчайший путь между двумя точками на карте, или найти имя в телефонной книжке, содержащей, скажем, миллион записей. Не говоря уже о том, что структуры данных постоянно используются в спортивном программировании. Рассмотрим некоторые из них более подробно.

Очередь

Итак, поздоровайтесь с Лупи!

Лупи обожает играть в хоккей со своей семьей. И под “игрой”, я подразумеваю:

Когда черепашки залетают в ворота, их выбрасывает на верх стопки. Заметьте, первая черепашка, добавленная в стопку - первой ее покидает. Это называется Очередь . Так же, как и в тех очередях, что мы видим в повседневной жизни, первый добавленный в список элемент - первым его покидает. Еще эту структуру называют FIFO (First In First Out).

Как насчет операций вставки и удаления?

Q = def insert(elem): q.append(elem) #добавляем элемент в конец очереди print q def delete(): q.pop(0) #удаляем нулевой элемент из очереди print q

Стек

После такой веселой игры в хоккей, Лупи делает для всех блинчики. Она кладет их в одну стопку.

Когда все блинчики готовы, Лупи подает их всей семье, один за одним.

Заметьте, что первый сделанный ею блинчик - будет подан последним. Это называется Стек . Последний элемент, добавленный в список - покинет его первым. Также эту структуру данных называют LIFO (Last In First Out).

Добавление и удаление элементов?

S = def push(elem): #Добавление элемента в стек - Пуш s.append(elem) print s def customPop(): #удаление элемента из стека - Поп s.pop(len(s)-1) print s

Куча

Вы когда-нибудь видели башню плотности?

Все элементы сверху донизу расположились по своим местам, согласно их плотности. Что случится, если бросить внутрь новый объект?

Он займет место, в зависимости от своей плотности.

Примерно так работает Куча .

Куча - двоичное дерево. А это значит, что каждый родительский элемент имеет два дочерних. И хотя мы называем эту структуру данных кучей, но выражается она через обычный массив.
Также куча всегда имеет высоту logn, где n - количество элементов

На рисунке представлена куча типа max-heap, основанная на следующем правиле: дочерние элементы меньше родительского. Существуют также кучи min-heap, где дочерние элементы всегда больше родительского.

Несколько простых функций для работы с кучами:

Global heap global currSize def parent(i): #Получить индекс родителя для i-того элемента return i/2 def left(i): #Получить левый дочерний элемент от i-того return 2*i def right(i): #Получить правый дочерний элемент от i-того return (2*i + 1)

Добавление элемента в существующую кучу
Для начала, мы добавляем элемент в самый низ кучи, т.е. в конец массива. Затем мы меняем его местами с родительским элементом до тех пор, пока он не встанет на свое место.

Алгоритм:

  1. Добавляем элемент в самый низ кучи.
  2. Сравниваем добавленный элемент с родительским; если порядок верный - останавливаемся.
  3. Если нет - меняем элементы местами, и возвращаемся к предыдущему пункту.
Код:

Def swap(a, b): #меняем элемент с индексом a на элемент с индексом b temp = heap[a] heap[a] = heap[b] heap[b] = temp def insert(elem): global currSize index = len(heap) heap.append(elem) currSize += 1 par = parent(index) flag = 0 while flag != 1: if index == 1: #Дошли до корневого элемента flag = 1 elif heap > elem: #Если индекс корневого элемента больше индекса нашего элемента - наш элемент на своем месте flag = 1 else: #Меняем местами родительский элемент с нашим swap(par, index) index = par par = parent(index) print heap
Максимальное количество проходов цикла while равно высоте дерева, или logn, следовательно, трудоемкость алгоритма - O(logn).

Извлечение максимального элемента кучи
Первый элемент в куче - всегда максимальный, так что мы просто удалим его (предварительно запомнив), и заменим самым нижним. Затем мы приведем кучу в правильный порядок, используя функцию:

MaxHeapify().

Алгоритм:

  1. Заменить корневой элемент самым нижним.
  2. Сравнить новый корневой элемент с дочерними. Если они в правильном порядке - остановиться.
  3. Если нет - заменить корневой элемент на одного из дочерних (меньший для min-heap, больший для max-heap), и повторить шаг 2.

Def extractMax(): global currSize if currSize != 0: maxElem = heap heap = heap #Заменяем корневой элемент - последним heap.pop(currSize) #Удаляем последний элемент currSize -= 1 #Уменьшаем размер кучи maxHeapify(1) return maxElem def maxHeapify(index): global currSize lar = index l = left(index) r = right(index) #Вычисляем, какой из дочерних элементов больше; если он больше родительского - меняем местами if l <= currSize and heap[l] > heap: lar = l if r <= currSize and heap[r] > heap: lar = r if lar != index: swap(index, lar) maxHeapify(lar)
И вновь максимальное количество вызовов функции maxHeapify равно высоте дерева, или logn, а значит трудоемкость алгоритма - O(logn).

Делаем кучу из любого рандомного массива
Окей, есть два пути сделать это. Первый - поочередно вставлять каждый элемент в кучу. Это просто, но совершенно неэффективно. Трудоемкость алгоритма в этом случае будет O(nlogn), т.к. функция O(logn) будет выполняться n раз.

Более эффективный способ - применить функцию maxHeapify для ‘под-кучи ’, от (currSize/2) до первого элемента.

Сложность получится O(n), и доказательство этого утверждения, к сожалению, выходит за рамки данной статьи. Просто поймите, что элементы, находящиеся в части кучи от currSize/2 до currSize, не имеют потомков, и большинство образованных таким образом ‘под-куч’ будут высотой меньше, чем logn.

Def buildHeap(): global currSize for i in range(currSize/2, 0, -1): #третий агрумент в range() - шаг перебора, в данном случае определяет направление. print heap maxHeapify(i) currSize = len(heap)-1

Действительно, зачем это все?

Кучи нужны для реализации особого типа сортировки, называемого, как ни странно, “сортировка кучей ”. В отличие от менее эффективных “сортировки вставками” и “сортировки пузырьком”, с их ужасной сложностью в O(n 2), “сортировка кучей” имеет сложность O(nlogn).

Реализация до неприличия проста. Просто продолжайте последовательно извлекать из кучи максимальный (корневой) элемент, и записывайте его в массив, пока куча не опустеет.

Def heapSort(): for i in range(1, len(heap)): print heap heap.insert(len(heap)-i, extractMax()) #вставляем максимальный элемент в конец массива currSize = len(heap)-1
Чтобы обобщить все вышесказанное, я написала несколько строчек кода, содержащего функции для работы с кучей, а для фанатов ООП оформила все в виде класса .

Легко, не правда ли? А вот и празднующая Лупи!

Хеш

Лупи хочет научить своих детишек различать фигуры и цвета. Для этого она принесла домой огромное количество разноцветных фигур.

Через некоторое время черепашки окончательно запутались

Поэтому она достала еще одну игрушку, чтобы немного упростить процесс

Стало намного легче, ведь черепашки уже знали, что фигуры рассортированы по форме. А что, если мы пометим каждый столб?

Черепашкам теперь нужно проверить столб с определенным номером, и выбрать из гораздо меньшего количества фигурок нужную. А если еще и для каждой комбинации формы и цвета у нас отдельный столб?

Допустим, номер столба вычисляется следующим образом:

Фио летовый тре угольник
ф+и+о+т+р+е = 22+10+16+20+18+6 = Столб 92

Кра сный пря моугольник
к+р+а+п+р+я = 12+18+1+17+18+33 = Столб 99

Мы знаем, что 6*33 = 198 возможных комбинаций, значит нам нужно 198 столбов.

Назовем эту формулу для вычисления номера столба - Хеш-функцией .

Код:
def hashFunc(piece): words = piece.split(" ") #разбиваем строку на слова colour = words shape = words poleNum = 0 for i in range(0, 3): poleNum += ord(colour[i]) - 96 poleNum += ord(shape[i]) - 96 return poleNum
(с кириллицей немного сложнее, но я оставил так для простоты . - прим.пер. )

Теперь, если нам нужно будет узнать, где хранится розовый квадрат, мы сможем вычислить:
hashFunc("розовый квадрат")

Это пример хеш-таблицы, где местоположение элементов определяется хеш-функцией.
При таком подходе время, затраченное на поиск любого элемента, не зависит от количества элементов, т.е. O(1). Другими словами, время поиска в хеш-таблице - константная величина.

Ладно, но допустим мы ищем “кар амельный пря моугольник” (если, конечно, цвет “карамельный” существует).

HashFunc("карамельный прямоугольник")
вернет нам 99, что совпадает с номером для красного прямоугольника. Это называется “Коллизия ”. Для разрешения коллизии мы используем “Метод цепочек ”, подразумевающий, что каждый столб хранит список, в котором мы ищем нужную нам запись.

Поэтому мы просто кладем карамельный прямоугольник на красный, и выбираем один из них, когда хеш-функция указывает на этот столб.

Ключ к хорошей хеш-таблице - выбрать подходящую хеш-функцию. Бесспорно, это самая важная вещь в создании хеш-таблицы, и люди тратят огромное количество времени на разработку качественных хеш-функций.
В хороших таблицах ни одна позиция не содержит более 2-3 элементов, в обратном случае, хеширование работает плохо, и нужно менять хеш-функцию.

Еще раз, поиск, не зависящий от количества элементов! Мы можем использовать хеш-таблицы для всего, что имеет гигантские размеры.

Хеш-таблицы также используются для поиска строк и подстрок в больших кусках текста, используя алгоритм Рабина-Карпа или алгоритм Кнута-Морриса-Пратта , что полезно, например, для определения плагиата в научных работах.

На этом, думаю, можно заканчивать. В будущем я планирую рассмотреть более сложные структуры данных, например Фибоначчиеву кучу и Дерево отрезков . Надеюсь, этот неформальный гайд получился интересным и полезным.

Переведено для Хабра запертым на

  • Перевод
  • Recovery Mode

Екатерина Малахова, редактор-фрилансер, специально для блога Нетологии адаптировала статью Beau Carnes об основных типах структур данных.

«Плохие программисты думают о коде. Хорошие программисты думают о структурах данных и их взаимосвязях», - Линус Торвальдс, создатель Linux.

Структуры данных играют важную роль в процессе разработки ПО, а еще по ним часто задают вопросы на собеседованиях для разработчиков. Хорошая новость в том, что по сути они представляют собой всего лишь специальные форматы для организации и хранения данных.

В этой статье я покажу вам 10 самых распространенных структур данных. Для каждой из них приведены видео и примеры их реализации на JavaScript. Чтобы вы смогли попрактиковаться, я также добавил несколько упражнений из бета-версии новой учебной программы freeCodeCamp.

В статье я привожу примеры реализации этих структур данных на JavaScript: они также пригодятся, если вы используете низкоуровневый язык вроде С. В многие высокоуровневые языки, включая JavaScript, уже встроены реализации большинства структур данных, о которых пойдет речь. Тем не менее, такие знания станут серьезным преимуществом при поиске работы и пригодятся при написании высокопроизводительного кода.

Связные списки

Связный список - одна из базовых структур данных. Ее часто сравнивают с массивом, так как многие другие структуры можно реализовать с помощью либо массива, либо связного списка. У этих двух типов есть преимущества и недостатки.

Так устроен связный список

Связный список состоит из группы узлов, которые вместе образуют последовательность. Каждый узел содержит две вещи: фактические данные, которые в нем хранятся (это могут быть данные любого типа) и указатель (или ссылку) на следующий узел в последовательности. Также существуют двусвязные списки: в них у каждого узла есть указатель и на следующий, и на предыдущий элемент в списке.

Основные операции в связном списке включают добавление, удаление и поиск элемента в списке.

Временная сложность связного списка ╔═══════════╦═════════════════╦═══════════════╗ ║ Алгоритм ║Среднее значение ║ Худший случай ║ ╠═══════════╬═════════════════╬═══════════════╣ ║ Space ║ O(n) ║ O(n) ║ ║ Search ║ O(n) ║ O(n) ║ ║ Insert ║ O(1) ║ O(1) ║ ║ Delete ║ O(1) ║ O(1) ║ ╚═══════════╩═════════════════╩═══════════════╝

Упражнения от freeCodeCamp

Стеки

Стек - это базовая структура данных, которая позволяет добавлять или удалять элементы только в её начале. Она похожа на стопку книг: если вы хотите взглянуть на книгу в середине стека, сперва придется убрать лежащие сверху.

Стек организован по принципу LIFO (Last In First Out, «последним пришёл - первым вышел») . Это значит, что последний элемент, который вы добавили в стек, первым выйдет из него.


Так устроен стек

В стеках можно выполнять три операции: добавление элемента (push), удаление элемента (pop) и отображение содержимого стека (pip).

Временная сложность стека ╔═══════════╦═════════════════╦═══════════════╗ ║ Алгоритм ║Среднее значение ║ Худший случай ║ ╠═══════════╬═════════════════╬═══════════════╣ ║ Space ║ O(n) ║ O(n) ║ ║ Search ║ O(n) ║ O(n) ║ ║ Insert ║ O(1) ║ O(1) ║ ║ Delete ║ O(1) ║ O(1) ║ ╚═══════════╩═════════════════╩═══════════════╝

Упражнения от freeCodeCamp

Очереди

Эту структуру можно представить как очередь в продуктовом магазине. Первым обслуживают того, кто пришёл в самом начале - всё как в жизни.


Так устроена очередь

Очередь устроена по принципу FIFO (First In First Out, «первый пришёл - первый вышел»). Это значит, что удалить элемент можно только после того, как были убраны все ранее добавленные элементы.

Очередь позволяет выполнять две основных операции: добавлять элементы в конец очереди (enqueue ) и удалять первый элемент (dequeue ).

Временная сложность очереди ╔═══════════╦═════════════════╦═══════════════╗ ║ Алгоритм ║Среднее значение ║ Худший случай ║ ╠═══════════╬═════════════════╬═══════════════╣ ║ Space ║ O(n) ║ O(n) ║ ║ Search ║ O(n) ║ O(n) ║ ║ Insert ║ O(1) ║ O(1) ║ ║ Delete ║ O(1) ║ O(1) ║ ╚═══════════╩═════════════════╩═══════════════╝

Упражнения от freeCodeCamp

Множества



Так выглядит множество

Множество хранит значения данных без определенного порядка, не повторяя их. Оно позволяет не только добавлять и удалять элементы: есть ещё несколько важных функций, которые можно применять к двум множествам сразу.

  • Объединение комбинирует все элементы из двух разных множеств, превращая их в одно (без дубликатов).
  • Пересечение анализирует два множества и  создает еще одно из тех элементов, которые присутствуют в обоих изначальных множествах.
  • Разность выводит список элементов, которые есть в одном множестве, но отсутствуют в другом.
  • Подмножество выдает булево значение, которое показывает, включает ли одно множество все элементы другого множества.
Пример реализации на JavaScript

Упражнения от freeCodeCamp

Map

Map - это структура, которая хранит данные в парах ключ/значение, где каждый ключ уникален. Иногда её также называют ассоциативным массивом или словарём. Map часто используют для быстрого поиска данных. Она позволяет делать следующие вещи:
  • добавлять пары в коллекцию;
  • удалять пары из коллекции;
  • изменять существующей пары;
  • искать значение, связанное с определенным ключом.

Так устроена структура map

Упражнения от freeCodeCamp

Хэш-таблицы

Так работают хэш-таблица и хэш-функция

Хэш-таблица - это похожая на Map структура, которая содержит пары ключ/значение. Она использует хэш-функцию для вычисления индекса в массиве из блоков данных, чтобы найти желаемое значение.

Обычно хэш-функция принимает строку символов в качестве вводных данных и выводит числовое значение. Для одного и того же ввода хэш-функция должна возвращать одинаковое число. Если два разных ввода хэшируются с одним и тем же итогом, возникает коллизия. Цель в том, чтобы таких случаев было как можно меньше.

Таким образом, когда вы вводите пару ключ/значение в хэш-таблицу, ключ проходит через хэш-функцию и превращается в число. В дальнейшем это число используется как фактический ключ, который соответствует определенному значению. Когда вы снова введёте тот же ключ, хэш-функция обработает его и вернет такой же числовой результат. Затем этот результат будет использован для поиска связанного значения. Такой подход заметно сокращает среднее время поиска.

Временная сложность хэш-таблицы ╔═══════════╦═════════════════╦═══════════════╗ ║ Алгоритм ║Среднее значение ║ Худший случай ║ ╠═══════════╬═════════════════╬═══════════════╣ ║ Space ║ O(n) ║ O(n) ║ ║ Search ║ O(1) ║ O(n) ║ ║ Insert ║ O(1) ║ O(n) ║ ║ Delete ║ O(1) ║ O(n) ║ ╚═══════════╩═════════════════╩═══════════════╝

Упражнения от freeCodeCamp

Двоичное дерево поиска


Двоичное дерево поиска

Дерево - это структура данных, состоящая из узлов. Ей присущи следующие свойства:

  • Каждое дерево имеет корневой узел (вверху).
  • Корневой узел имеет ноль или более дочерних узлов.
  • Каждый дочерний узел имеет ноль или более дочерних узлов, и так далее.
У двоичного дерева поиска есть два дополнительных свойства:
  • Каждый узел имеет до двух дочерних узлов (потомков).
  • Каждый узел меньше своих потомков справа, а его потомки слева меньше его самого.
Двоичные деревья поиска позволяют быстро находить, добавлять и удалять элементы. Они устроены так, что время каждой операции пропорционально логарифму общего числа элементов в дереве.

Временная сложность двоичного дерева поиска ╔═══════════╦═════════════════╦══════════════╗ ║ Алгоритм ║Среднее значение ║Худший случай ║ ╠═══════════╬═════════════════╬══════════════╣ ║ Space ║ O(n) ║ O(n) ║ ║ Search ║ O(log n) ║ O(n) ║ ║ Insert ║ O(log n) ║ O(n) ║ ║ Delete ║ O(log n) ║ O(n) ║ ╚═══════════╩═════════════════╩══════════════╝


Упражнения от freeCodeCamp

Префиксное дерево

Префиксное (нагруженное) дерево - это разновидность дерева поиска. Оно хранит данные в метках, каждая из которых представляет собой узел на дереве. Такие структуры часто используют, чтобы хранить слова и выполнять быстрый поиск по ним - например, для функции автозаполнения.

Так устроено префиксное дерево

Каждый узел в языковом префиксном дереве содержит одну букву слова. Чтобы составить слово, нужно следовать по ветвям дерева, проходя по одной букве за раз. Дерево начинает ветвиться, когда порядок букв отличается от других имеющихся в нем слов или когда слово заканчивается. Каждый узел содержит букву (данные) и булево значение, которое указывает, является ли он последним в слове.

Посмотрите на иллюстрацию и попробуйте составить слова. Всегда начинайте с корневого узла вверху и спускайтесь вниз. Это дерево содержит следующие слова: ball, bat, doll, do, dork, dorm, send, sense.

Упражнения от freeCodeCamp

Двоичная куча

Двоичная куча - ещё одна древовидная структура данных. В ней у каждого узла не более двух потомков. Также она является совершенным деревом: это значит, что в ней полностью заняты данными все уровни, а последний заполнен слева направо.


Так устроены минимальная и максимальная кучи

Двоичная куча может быть минимальной или максимальной. В максимальной куче ключ любого узла всегда больше ключей его потомков или равен им. В минимальной куче всё устроено наоборот: ключ любого узла меньше ключей его потомков или равен им.

Порядок уровней в двоичной куче важен, в отличие от порядка узлов на одном и том же уровне. На иллюстрации видно, что в минимальной куче на третьем уровне значения идут не по порядку: 10, 6 и 12.


Временная сложность двоичной кучи ╔═══════════╦══════════════════╦═══════════════╗ ║ Алгоритм ║ Среднее значение ║ Худший случай ║ ╠═══════════╬══════════════════╬═══════════════╣ ║ Space ║ O(n) ║ O(n) ║ ║ Search ║ O(n) ║ O(n) ║ ║ Insert ║ O(1) ║ O(log n) ║ ║ Delete ║ O(log n) ║ O(log n) ║ ║ Peek ║ O(1) ║ O(1) ║ ╚═══════════╩══════════════════╩═══════════════╝

Упражнения от freeCodeCamp

Граф

Графы - это совокупности узлов (вершин) и связей между ними (рёбер). Также их называют сетями.

Графы делятся на два основных типа: ориентированные и неориентированные. У неориентированных графов рёбра между узлами не имеют какого-либо направления, тогда как у рёбер в ориентированных графах оно есть.

Чаще всего граф изображают в каком-либо из двух видов: это может быть список смежности или матрица смежности.


Граф в виде матрицы смежности

Список смежности можно представить как перечень элементов, где слева находится один узел, а справа - все остальные узлы, с которыми он соединяется.

Матрица смежности - это сетка с числами, где каждый ряд или колонка соответствуют отдельному узлу в графе. На пересечении ряда и колонки находится число, которое указывает на наличие связи. Нули означают, что она отсутствует; единицы - что связь есть. Чтобы обозначить вес каждой связи, используют числа больше единицы.

Существуют специальные алгоритмы для просмотра рёбер и вершин в графах - так называемые алгоритмы обхода. К их основным типам относят поиск в ширину (breadth-first search ) и в глубину (depth-first search ). Как вариант, с их помощью можно определить, насколько близко к корневому узлу находятся те или иные вершины графа. В видео ниже показано, как на JavaScript выполнить поиск в ширину.

  • Перевод

Конечно, можно быть успешным программистом и без сакрального знания структур данных, однако они совершенно незаменимы в некоторых приложениях. Например, когда нужно вычислить кратчайший путь между двумя точками на карте, или найти имя в телефонной книжке, содержащей, скажем, миллион записей. Не говоря уже о том, что структуры данных постоянно используются в спортивном программировании. Рассмотрим некоторые из них более подробно.

Очередь

Итак, поздоровайтесь с Лупи!

Лупи обожает играть в хоккей со своей семьей. И под “игрой”, я подразумеваю:

Когда черепашки залетают в ворота, их выбрасывает на верх стопки. Заметьте, первая черепашка, добавленная в стопку - первой ее покидает. Это называется Очередь . Так же, как и в тех очередях, что мы видим в повседневной жизни, первый добавленный в список элемент - первым его покидает. Еще эту структуру называют FIFO (First In First Out).

Как насчет операций вставки и удаления?

Q = def insert(elem): q.append(elem) #добавляем элемент в конец очереди print q def delete(): q.pop(0) #удаляем нулевой элемент из очереди print q

Стек

После такой веселой игры в хоккей, Лупи делает для всех блинчики. Она кладет их в одну стопку.

Когда все блинчики готовы, Лупи подает их всей семье, один за одним.

Заметьте, что первый сделанный ею блинчик - будет подан последним. Это называется Стек . Последний элемент, добавленный в список - покинет его первым. Также эту структуру данных называют LIFO (Last In First Out).

Добавление и удаление элементов?

S = def push(elem): #Добавление элемента в стек - Пуш s.append(elem) print s def customPop(): #удаление элемента из стека - Поп s.pop(len(s)-1) print s

Куча

Вы когда-нибудь видели башню плотности?

Все элементы сверху донизу расположились по своим местам, согласно их плотности. Что случится, если бросить внутрь новый объект?

Он займет место, в зависимости от своей плотности.

Примерно так работает Куча .

Куча - двоичное дерево. А это значит, что каждый родительский элемент имеет два дочерних. И хотя мы называем эту структуру данных кучей, но выражается она через обычный массив.
Также куча всегда имеет высоту logn, где n - количество элементов

На рисунке представлена куча типа max-heap, основанная на следующем правиле: дочерние элементы меньше родительского. Существуют также кучи min-heap, где дочерние элементы всегда больше родительского.

Несколько простых функций для работы с кучами:

Global heap global currSize def parent(i): #Получить индекс родителя для i-того элемента return i/2 def left(i): #Получить левый дочерний элемент от i-того return 2*i def right(i): #Получить правый дочерний элемент от i-того return (2*i + 1)

Добавление элемента в существующую кучу
Для начала, мы добавляем элемент в самый низ кучи, т.е. в конец массива. Затем мы меняем его местами с родительским элементом до тех пор, пока он не встанет на свое место.

Алгоритм:

  1. Добавляем элемент в самый низ кучи.
  2. Сравниваем добавленный элемент с родительским; если порядок верный - останавливаемся.
  3. Если нет - меняем элементы местами, и возвращаемся к предыдущему пункту.
Код:

Def swap(a, b): #меняем элемент с индексом a на элемент с индексом b temp = heap[a] heap[a] = heap[b] heap[b] = temp def insert(elem): global currSize index = len(heap) heap.append(elem) currSize += 1 par = parent(index) flag = 0 while flag != 1: if index == 1: #Дошли до корневого элемента flag = 1 elif heap > elem: #Если индекс корневого элемента больше индекса нашего элемента - наш элемент на своем месте flag = 1 else: #Меняем местами родительский элемент с нашим swap(par, index) index = par par = parent(index) print heap
Максимальное количество проходов цикла while равно высоте дерева, или logn, следовательно, трудоемкость алгоритма - O(logn).

Извлечение максимального элемента кучи
Первый элемент в куче - всегда максимальный, так что мы просто удалим его (предварительно запомнив), и заменим самым нижним. Затем мы приведем кучу в правильный порядок, используя функцию:

MaxHeapify().

Алгоритм:

  1. Заменить корневой элемент самым нижним.
  2. Сравнить новый корневой элемент с дочерними. Если они в правильном порядке - остановиться.
  3. Если нет - заменить корневой элемент на одного из дочерних (меньший для min-heap, больший для max-heap), и повторить шаг 2.

Def extractMax(): global currSize if currSize != 0: maxElem = heap heap = heap #Заменяем корневой элемент - последним heap.pop(currSize) #Удаляем последний элемент currSize -= 1 #Уменьшаем размер кучи maxHeapify(1) return maxElem def maxHeapify(index): global currSize lar = index l = left(index) r = right(index) #Вычисляем, какой из дочерних элементов больше; если он больше родительского - меняем местами if l <= currSize and heap[l] > heap: lar = l if r <= currSize and heap[r] > heap: lar = r if lar != index: swap(index, lar) maxHeapify(lar)
И вновь максимальное количество вызовов функции maxHeapify равно высоте дерева, или logn, а значит трудоемкость алгоритма - O(logn).

Делаем кучу из любого рандомного массива
Окей, есть два пути сделать это. Первый - поочередно вставлять каждый элемент в кучу. Это просто, но совершенно неэффективно. Трудоемкость алгоритма в этом случае будет O(nlogn), т.к. функция O(logn) будет выполняться n раз.

Более эффективный способ - применить функцию maxHeapify для ‘под-кучи ’, от (currSize/2) до первого элемента.

Сложность получится O(n), и доказательство этого утверждения, к сожалению, выходит за рамки данной статьи. Просто поймите, что элементы, находящиеся в части кучи от currSize/2 до currSize, не имеют потомков, и большинство образованных таким образом ‘под-куч’ будут высотой меньше, чем logn.

Def buildHeap(): global currSize for i in range(currSize/2, 0, -1): #третий агрумент в range() - шаг перебора, в данном случае определяет направление. print heap maxHeapify(i) currSize = len(heap)-1

Действительно, зачем это все?

Кучи нужны для реализации особого типа сортировки, называемого, как ни странно, “сортировка кучей ”. В отличие от менее эффективных “сортировки вставками” и “сортировки пузырьком”, с их ужасной сложностью в O(n 2), “сортировка кучей” имеет сложность O(nlogn).

Реализация до неприличия проста. Просто продолжайте последовательно извлекать из кучи максимальный (корневой) элемент, и записывайте его в массив, пока куча не опустеет.

Def heapSort(): for i in range(1, len(heap)): print heap heap.insert(len(heap)-i, extractMax()) #вставляем максимальный элемент в конец массива currSize = len(heap)-1
Чтобы обобщить все вышесказанное, я написала несколько строчек кода, содержащего функции для работы с кучей, а для фанатов ООП оформила все в виде класса .

Легко, не правда ли? А вот и празднующая Лупи!

Хеш

Лупи хочет научить своих детишек различать фигуры и цвета. Для этого она принесла домой огромное количество разноцветных фигур.

Через некоторое время черепашки окончательно запутались

Поэтому она достала еще одну игрушку, чтобы немного упростить процесс

Стало намного легче, ведь черепашки уже знали, что фигуры рассортированы по форме. А что, если мы пометим каждый столб?

Черепашкам теперь нужно проверить столб с определенным номером, и выбрать из гораздо меньшего количества фигурок нужную. А если еще и для каждой комбинации формы и цвета у нас отдельный столб?

Допустим, номер столба вычисляется следующим образом:

Фио летовый тре угольник
ф+и+о+т+р+е = 22+10+16+20+18+6 = Столб 92

Кра сный пря моугольник
к+р+а+п+р+я = 12+18+1+17+18+33 = Столб 99

Мы знаем, что 6*33 = 198 возможных комбинаций, значит нам нужно 198 столбов.

Назовем эту формулу для вычисления номера столба - Хеш-функцией .

Код:
def hashFunc(piece): words = piece.split(" ") #разбиваем строку на слова colour = words shape = words poleNum = 0 for i in range(0, 3): poleNum += ord(colour[i]) - 96 poleNum += ord(shape[i]) - 96 return poleNum
(с кириллицей немного сложнее, но я оставил так для простоты . - прим.пер. )

Теперь, если нам нужно будет узнать, где хранится розовый квадрат, мы сможем вычислить:
hashFunc("розовый квадрат")

Это пример хеш-таблицы, где местоположение элементов определяется хеш-функцией.
При таком подходе время, затраченное на поиск любого элемента, не зависит от количества элементов, т.е. O(1). Другими словами, время поиска в хеш-таблице - константная величина.

Ладно, но допустим мы ищем “кар амельный пря моугольник” (если, конечно, цвет “карамельный” существует).

HashFunc("карамельный прямоугольник")
вернет нам 99, что совпадает с номером для красного прямоугольника. Это называется “Коллизия ”. Для разрешения коллизии мы используем “Метод цепочек ”, подразумевающий, что каждый столб хранит список, в котором мы ищем нужную нам запись.

Поэтому мы просто кладем карамельный прямоугольник на красный, и выбираем один из них, когда хеш-функция указывает на этот столб.

Ключ к хорошей хеш-таблице - выбрать подходящую хеш-функцию. Бесспорно, это самая важная вещь в создании хеш-таблицы, и люди тратят огромное количество времени на разработку качественных хеш-функций.
В хороших таблицах ни одна позиция не содержит более 2-3 элементов, в обратном случае, хеширование работает плохо, и нужно менять хеш-функцию.

Еще раз, поиск, не зависящий от количества элементов! Мы можем использовать хеш-таблицы для всего, что имеет гигантские размеры.

Хеш-таблицы также используются для поиска строк и подстрок в больших кусках текста, используя алгоритм Рабина-Карпа или алгоритм Кнута-Морриса-Пратта , что полезно, например, для определения плагиата в научных работах.

На этом, думаю, можно заканчивать. В будущем я планирую рассмотреть более сложные структуры данных, например Фибоначчиеву кучу и Дерево отрезков . Надеюсь, этот неформальный гайд получился интересным и полезным.

Переведено для Хабра запертым на

Понятие модели данных

Модели данных

Модель данных является инструментом моделирования произвольной предметной области.

Модель данных – это совокупность правил порождения структур данных в базе данных, операций над ними, а также ограничений целостности, определяющих допустимые связи и значения данных, последовательность их изменения . Итак, модель данных состоит из трёх частей:

  1. Набор типов структур данных.

Здесь можно провести аналогию с языками программирования, в которых тоже есть предопределённые типы структур данных, такие как скалярные данные, вектора, массивы, структуры (например, тип struct в языке Си) и т.д.

  1. Набор операторов или правил вывода, которые могут быть применены к любым правильным примерам типов данных, перечисленных в (1), чтобы находить, выводить или преобразовывать информацию, содержащуюся в любых частях этих структур в любых комбинациях.

Такими операциями являются: создание и модификация структур данных, внесение новых данных, удаление и модификация существующих данных, поиск данных по различным условиям.

  1. Набор общих правил целостности, которые прямо или косвенно определяют множество непротиворечивых состояний базы данных и/или множество изменений её состояния.

Правила целостности определяются типом данных и предметной областью. Например, значение атрибута Счётчик является целым числом, т.е. может состоять только из цифр. А ограничения предметной области таковы, что это число не может быть меньше нуля.

Теперь рассмотрим подробнее наборы, составляющие модель данных.

Структуризация данных базируется на использовании концепций "агрегации" и "обобщения". Один из первых вариантов структуризации данных был предложен Ассоциацией по языкам обработки данных (Conference on Data Systems Languages, CODASYL) (рис. 2.1).

Рис.2.1 Композиция структур данных по версии CODASYL

Элемент данных – наименьшая поименованная единица данных, к которой СУБД может обращаться непосредственно и с помощью которой выполняется построение всех остальных структур. Для каждого элемента данных должен быть определён его тип.

Агрегат данных – поименованная совокупность элементов данных внутри записи, которую можно рассматривать как единое целое. Агрегат может быть простым (включающим только элементы данных, рис. 2.2,а) и составным (включающим наряду с элементами данных и другие агрегаты, рис. 2.2,б).

Рис.2.2 Примеры агрегатов: а) простой и б) составной агрегат

Запись – поименованная совокупность элементов данных или эле-ментов данных и агрегатов. Запись – это агрегат, не входящий в состав никакого другого агрегата; она может иметь сложную иерархическую структуру, поскольку допускается многократное применение агрегации. Различают тип записи (её структуру) и экземпляр записи, т.е. запись с конкретными значениями элементов данных. Одна запись описывает свойства одной сущности ПО (экземпляра). Иногда термин "запись" за-меняют термином "группа".


Пример записи, содержащей сведения о сотруднике, приведён на рис. 2.3.

Рис.2.3 Пример записи типа СОТРУДНИК

Эта запись имеет несколько элементов данных (Номер пропуска, Должность, Пол и т.д.) и три агрегата: простые агрегаты ФИО и Адрес и повторяющийся агрегат Телефоны . (Повторяющийся агрегат может включаться в запись произвольное число раз).

Среди элементов данных (полей записи) выделяются одно или несколько ключевых полей . Значения ключевых полей позволяют классифицировать сущность, к которой относится конкретная запись. Ключи с уникальными значениями называются потенциальными . Каждый ключ может представлять собой агрегат данных. Один из ключей назначается первичным, остальные являются вторичными. Первичный ключ идентифицирует экземпляр записи, его значение должно быть уникальным и обязательным для записей одного типа. Для примера на рис. 2.3 потенциальными ключами являются поля № пропуска и Паспорт , а первичным ключом целесообразнее выбрать поле № пропуска , т.к. оно явно занимает меньше памяти, чем паспортные данные.

Набор (или групповое отношение ) – поименованная совокупность записей, образующих двухуровневую иерархическую структуру. Каждый тип набора представляет собой связь между двумя или несколькими типами записей. Для каждого типа набора один тип записи объявляется владельцем набора, остальные типы записи объявляются членами набора. Каждый экземпляр набора должен содержать только один экземпляр записи типа владельца и столько экземпляров записей типа членов набора, сколько их связано с владельцем. Для группового отношения также различают тип и экземпляр.

Групповые отношения удобно изображать с помощью диаграммы Бахмана, которая названа так по имени одного из разработчиков сетевой модели данных. Диаграмма Бахмана – это ориентированный граф, вершины которого соответствуют группам (типам записей), а дуги – групповым отношениям (рис. 2.4).

Рис. 2.4 Пример диаграммы Бахмана для фрагмента БД "Город"

Здесь запись типа ПОЛИКЛИНИКА является владельцем записей типа ЖИТЕЛЬ диспансеризация . Запись типа ОРГАНИЗАЦИЯ также является владельцем записей типа ЖИТЕЛЬ и они связаны групповым отношением работают . Записи типа РЭУ и типа ЖИТЕЛЬ являются владельцами записей типа КВАРТИРА с отношениями соответственно обслуживают и проживают . Таким образом, запись одного и того же типа может быть членом одного отношения и владельцем другого.

База данных – поименованная совокупность экземпляров групп и групповых отношений. Это самый высокий уровень структуризации данных.

Примечание : структуризация данных по версии CODASYL используется в сетевой и иерар-хической моделях данных. В реляционной модели принята другая структуризация данных, основанная на теории множеств.

Структура данных - программная единица, позволяющая сберегать и обрабатывать массу однотипных или же логически связанных сведений в вычислительных устройствах. Если требуется добавить, найти, изменить или удалить сведения, структура предоставит определенный пакет опций, что составляет ее интерфейс.

Что включает в себя понятие структуры данных?

Этот термин может иметь несколько близких, но все же отличительных значений. Это:

  • абстрактный тип;
  • реализация абстрактного вида информации;
  • экземпляр типа данных, к примеру, определенный список.

Если говорить о структуре данных в контексте функционального программирования, то это особенная единица, что сберегается при изменениях. О ней неформально можно сказать как о единой структуре, несмотря на то что могут иметься различные версии.

Что формирует структуру?

Формируется с помощью ссылок и операций над ними в определенном языке программирования. Стоит сказать, что разные виды структур подходят для осуществления разных приложений, некоторые, к примеру, обладают совершенно узкой специализацией и подходят только для производства установленных задач.

Если взять B-деревья, то они обычно подходят для формирования баз данных и только для них. В этот же час хеш-таблички применяются еще повсеместно на практике для создания различных словарей, к примеру, для демонстрации доменных наименований в интернет-адресах ПК, а не только для формирования баз.

Во время разработки того или иного программного обеспечения сложность реализации и качество функциональности программ напрямую зависят от правильного применения структур данных. Такое понимание вещей дало толчок к разработке формальных методик разработки и языков программирования, где структуры, а не алгоритмы ставятся на лидирующие позиции в архитектуре программы.

Стоит отметить, что многие языки программирования обладают установленным типом модульности, что позволяет структурам с данными безопасно использоваться в различных приложениях. Яркими примерами являются языки Java, C# и C++. Сейчас классическая структура используемых данных представлена в стандартных библиотеках языков программирования или непосредственно она встроена уже в сам язык. К примеру, хэш-таблицы встроена в Lua, Python, Perl, Ruby, Tcl и другие. Широко применяется стандартная библиотека шаблонов в C++.

Сравниваем структуру в функциональном и императивном программировании

Стоит сразу оговорится, что проектировать структуры для функциональных языков сложнее, чем для императивных, как минимум на это есть две причины:

  1. Фактически все структуры часто применяют на практике присваивание, которое в чисто функциональном стиле не используется.
  2. Функциональные структуры - это гибкие системы. В императивном программировании старые версии просто заменяются на новые, а в функциональном все работает, как работало. Иными словами, в императивном программировании структуры являются эфемерными, а в функциональном они постоянные.

Что включает в себя структура?

Часто данные, с которыми работают программы, сберегаются во встроенных в применяемом языке программирования массивах, константе или в переменной длине. Массив - это простейшая структура со сведениями, однако для решения некоторых задач требуется большая эффективность некоторых операций, потому применяются иные структуры (сложнее).

Простейший массив подходит для частого обращения к установленным компонентам по индексам и их изменению, а удаление элементов из средины функционирует за принципом O(N)O(N). Если вам требуется удалить элементы, чтобы разрешить определенные задачи, то придется воспользоваться иной структурой. К примеру, бинарное дерево (std::set) позволяет делать это по O(logN)O(log⁡N), однако оно не поддерживает работу с индексами, выполняется исключительно поочередный обход элементов и их поиск по значению. Таким образом, можно сказать, что структура отличается операциями, что она способна выполнять, а также скоростью их проделывания. Для примера стоит рассмотреть простейшие структуры, что не дают выгоды в эффективности, но имеют точно установленный набор поддерживаемых операций.

Стек

Это один из типов структур данных, представленный в виде ограниченного простейшего массива. Классический стек поддерживает всего лишь три опции:

  • Внести элемент в стек (Сложность: O(1)O(1)).
  • Извлечение элемента из стека (Сложность: O(1)O(1)).
  • Проверка, пустой ли стек или нет (Сложность: O(1)O(1)).

Чтобы пояснить принцип работы стека, можно применить на практике аналогию с банкой печенья. Представьте, что на дне посудины лежит несколько печенюшек. Наверх вы можете положить еще пару кусочков или же вы можете, наоборот, взять одну печеньку сверху. Остальные печеньки будут закрыты верхними, и вы про них ничего не будете знать. Вот так дела обстоят и со стеком. Для описания понятия применяется аббревиатура LIFO (Last In, First Out), которая подчеркивает, что компонент, попавший внутрь стека последним, будет первым же и извлечен из него.

Очередь

Это еще один тип структуры данных, что поддерживает тот же набор опций, что и стек, однако у него противоположная семантика. Для описания очереди применяется аббревиатура FIFO (First In, First Out), потому как вначале извлекается элемент, что добавлен был раньше всех. Название структуры говорит за себя - принцип работы полностью совпадает с очередями, что можно увидеть в магазине, супермаркете.

Дек

Это еще один вид структуры данных, который еще называют очередью с двумя концами. Опция поддерживает следующий набор операций:

  • Внести элемент в начало (Сложность: O(1)O(1)).
  • Извлечь компонент из начала (Сложность: O(1)O(1)).
  • Внесение элемента в конец (Сложность: O(1)O(1)).
  • Извлечение элемента из конца (Сложность: O(1)O(1)).
  • Проверка, пустой ли дек (Сложность: O(1)O(1)).

Списки

Данная структура данных определяет последовательность линейно связанных компонентов, для которых разрешены операции добавления компонентов в любое место списка и его удаление. Линейный список задается указателем на начало списка. Типичные операции над списками: обход, поиск конкретного компонента, вставка элемента, удаление компонента, объединение двух списков в единое целое, разбивка списка на пару и так далее. Стоит оговориться, что в линейном списке, помимо первого, имеется предыдущий компонент для каждого элемента, не включая последний. Это означает, что компоненты списка находятся в упорядоченном состоянии. Да, обработка такого списка не всегда удобна, ведь нет возможности продвижения в противоположную сторону — от конца списка к началу. Однако в линейном списке можно поэтапно пройтись по всем составляющим.

Еще существуют кольцевые списки. Это такая же структура, что и линейный список, однако она имеет дополнительную связь между первым и последним компонентами. Другими словами, следующим за последним элементом является первый компонент.

В этом списке элементы равноправны. Выделение первого и последнего - это условность.

Деревья

Это совокупность компонентов, что именуются узлами, в котором есть главный (один) компонент в виде корня, а все остальные разбиты на множество непересекающихся элементов. Каждое множество является деревом, а корень каждого древа - потомком корня дерева. Другими словами, все компоненты соединены между собой отношениями предок-потомок. Как результат можно наблюдать иерархическую структуру узлов. Если узлы не имеют потомка, то они называются листьями. Над деревом определены такие операции, как: добавление компонента и его удаление, обход, поиск компонента. Особую роль в информатике играют бинарные деревья. Что это такое? Это частный случай дерева, где каждый узел может иметь не больше пары потомков, являющихся корнями левого и правого поддерева. Если дополнительно для узлов дерева выполняется еще условие, что все значения компонентов левого поддерева меньше значений корня, а значения компонентов правого поддерева больше корня, то такое дерево именуется деревом бинарного поиска, и предназначается оно для быстрого нахождения элементов. Как же работает алгоритм поиска в таком случае? Искомое значение сравнивается со значением корня, и в зависимости от результата поиск либо завершается, либо продолжается, но исключительно в левом или правом поддереве. Общее число операций сравнения не станет превосходить высоту дерева (это наибольшее число компонентов на пути от корня до одного из листьев).

Графы

Графы - это совокупность компонентов, что именуются вершинами вместе с комплексом отношений между данными вершинами, которые называются ребрами. Графическая интерпретация данной структуры представлена в виде множества точек, что отвечают за вершины, а некоторые пары соединены линиями или стрелками, что соответствует ребрам. Последний случай говорит о том, что граф нужно называть ориентированным.

Графами можно описывать объекты какой угодно структуры, они являются главным средством для описания сложных структур и функционирования всех систем.

Детальней об абстрактной структуре

Для построения алгоритма требуется провести формализацию данных или, иными словами, необходимо привести данные к определенной информационной модели, что уже исследована и написана. Как только модель будет найдена, то можно утверждать, что установлена абстрактная структура.

Это основная структура данных, демонстрирующая признаки, качества объекта, взаимосвязь между компонентами объекта и операции, что возможно осуществить над ним. Основная задача - поиск и отображение форм представления сведений, комфортных для компьютерной корректировки. Стоит оговориться сразу, что информатика как точная наука действует с формальными объектами.

Анализ структур данных производится следующими объектами:

  • Целые и вещественные числа.
  • Логические значения.
  • Символы.

Для обработки на компьютере всех элементов существуют соответствующие алгоритмы и структуры данных. Типичные объекты можно объединить в сложные структуры. Можно добавить операции над ними, правила к определенным компонентам этой структуры.

Структура организации данных включает в себя:

  • Векторы.
  • Динамические структуры.
  • Таблицы.
  • Многомерные массивы.
  • Графы.

Если все элементы выбраны удачно, то это будет залогом формирования эффективных алгоритмов и структур данных. Если применять на практике аналогию структур и реальных объектов, то можно эффективно разрешать существующие задачи.

Стоит заметить, что все структуры организации данных существуют и по отдельности в программировании. Над ними много трудились еще в восемнадцатых и девятнадцатых веках, когда еще и в помине не было вычислительной машины.

Возможно разрабатывать алгоритм в понятиях абстрактной структуры, однако для реализации алгоритма на определенном языке программирования потребуется отыскать методику для ее представления в типах данных, операторах, что поддерживаются конкретным языком программирования. Для создания структур, таких как вектор, табличка, строка, последовательность, во многих языках программирования имеются классические типы данных: одномерный или двухмерный массив, строка, файл.

Мы разобрались с характеристиками структур данных, теперь стоит уделить больше внимания пониманию понятия структуры. При решении абсолютно любой задачи требуется работать с какими-то данными, чтобы произвести операции над информацией. У каждой задачи есть свой набор операций, однако некоторый набор применяется на практике чаще для решения разнообразных заданий. В таком случае полезно придумать определенный способ организации информации, что позволит выполнять эти операции как можно эффективнее. Как только такой способ появился, можно считать, что у вас появился «черный ящик», в котором будут сберегаться данные определенного рода и который станет выполнять те или иные операции с данными. Это позволит отвлечься от деталей и полностью сконцентрироваться на характерных особенностях задачи. Данный «черный ящик» может быть реализован любым образом, при этом необходимо стремиться к как можно более продуктивной реализации.

Кому это необходимо знать?

Ознакомится с информацией стоит начинающим программистам, которые желают отыскать свое место в этой сфере, но не знают, куда податься. Это основы в каждом языке программирования, потому будет не лишним узнать сразу же о структурах данных, а после работать с ними на конкретных примерах и с определенным языком. Не следует забывать, что каждую структуру возможно охарактеризовать логическими и физическими представлениями, а также совокупностью операций над этими представлениями.

Не забывайте: если говорите о той или иной структуре, то имейте в виду ее логическое представление, ведь физическое представление полностью сокрыто от «внешнего наблюдателя».

Кроме того, имейте в виду, что логическое представление совершенно не зависит от языка программирования и от вычислительной машины, а физическое, наоборот, зависит от трансляторов и вычислительной техники. К примеру, двумерный массив в "Фортране" и "Паскале" можно представить идентичным образом, а физическое представление в одной и той же вычислительной машине на этих языках будет отличаться.

Не спешите начинать учить конкретные структуры, лучше всего понять их классификацию, ознакомиться со всеми в теории и желательно на практике. Стоит помнить, что изменчивость - это важный признак структуры, и он указывает на статическое, динамическое или же полустатическое положение. Изучайте основы, прежде чем приступить к более глобальным вещам, это вам поможет в дальнейшем развитии.