Конденсаторное питание. Расчет понижающего конденсатора

Что то часто меня стали спрашивать как подключить микроконтроллер или какую низковольтную схему напрямую в 220 не используя трансформатор. Желание вполне очевидное — трансформатор, пусть даже и импульсный, весьма громоздок. И запихать его, например, в схему управления люстрой размещенной прям в выключателе не получится при всем желании. Разве что нишу в стене выдолбить, но это же не наш метод!

Тем не менее простое и очень компактное решение есть — это делитель на конденсаторе.

Правда конденсаторные блоки питания не имеют развязки от сети, поэтому если вдруг в нем что нибудь перегорит, или пойдет не так, то он запросто может долбануть тебя током, или сжечь твою квартиру, ну а комп угробить это вообще за милое дело, в общем технику безопасности тут надо чтить как никогда — она расписана в конце статьи. В общем, если я тебя не убедил что бестрансформаторные блоки питания это зло — то сам себе злой Буратино, я тут не причем. Ну ладно, ближе к теме.

Помните обычный резистивный делитель?

Казалось бы, в чем проблема, выбрал нужные номиналы и получил искомое напряжение. Потом выпрямил и Profit. Но не все так просто — такой делитель может и сможет дать нужное напряжение, но вот совершенно не даст нужный ток. Т.к. сопротивления сильно велики. А если сопротивления пропорционально уменьшать, то через них насквозь пойдет большой ток, что при напряжении в 220 вольт даст очень большие тепловые потери — резисторы будут греть как печка и в итоге либо выйдут из строя, либо пожар устроят.

Все меняется если один из резисторов заменить на конденсатор. Суть в чем — как вы помните из статьи про конденсаторы, напряжение и ток на конденсаторе не совпадают по фазе. Т.е. когда напряжение в максимуме — ток минимален, и наоборот.

Так как у нас напряжение переменное, то конденсатор будет постоянно разряжаться и заряжаться, а особенность разряда-заряда конденсатора в том, что когда у него максимальный ток (в момент заряда), то минимальное напряжение и наборот. Когда он уже зарядился и напруга на нем максимальная, то ток равен нулю. Соответственно, при таком раскладе, мощность тепловых потерь, выделяемая на конденсаторе (P=U*I) будет минимальной. Т.е. он даже не вспотеет. А рективное сопротивление конденсатора Xc=-1/(2pi*f*C).

Теоретическое отступление

В цепи бывают три вида сопротивлений:

Активное — резистор (R)
Реактивное — конденсатор (X с) и катушка(X L)
Полное же сопротивление цепи (импенданс) Z=(R 2 +(X L +X с) 2) 1/2

Активное сопротивление всегда постоянно, а реактивное зависит от частоты.
X L =2pi*f * L
Xc=-1/(2pi*f*C)
Знак реактивного сопротивления элемента указывает на его характер. Т.е. если больше нуля, то это индуктивные свойства, если меньше нуля то емкостные. Из этого следует, что индуктивность можно скомпенсировать емкостью и наоборот.

f — частота тока.

Соответственно, на постоянном токе при f=0 и X L катушки становится равен 0 и катушка превращается в обычный кусок провода с одним лишь активным сопротивлением, а Xc конденсатора при этом уходит в бесконечность, превращая его в обрыв.

Получается у нас вот такая вот схема:

Все, в одну сторону ток течет через один диод, в другую через второй. В итоге, в правой части цепи у нас уже не переменка, а пульсирующий ток — одна полуволна синусоиды.

Добавим сглаживающий конденсатор, чтобы сделать напряжение поспокойней, микрофарад на 100 и вольт на 25, электролит:

В принципе уже готово, единственно что надо поставить стабилитрон на такой ток, чтобы он не сдох когда нагрузки нет вообще, ведь тогда отдуваться за всех придется ему, протаскивая весь ток который может дать БП.

А можно ему помочь слегонца. Поставить резистор токоограничительный. Правда это сильно снизит нагрузочную способность блока питания, но нам хватит и этого.


Ток который эта схема может отдать можно, ЕМНИП, примерно вычислить по формуле:

I = 2F * C (1.41U — Uвых/2).

  • F — частота питающей сети. У нас 50гц.
  • С — емкость
  • U — напряжение в розетке
  • Uвых — выходное напряжение

Сама формула выводится из жутких интегралов от формы тока и напряжения. В принципе можешь сам ее нагуглить по кейворду «гасящий конденсатор расчет», материала предостаточно.

В нашем случае получается что I = 100 * 0.46E-6 (1.41*U — Uвых/2) = 15мА

Не феерия, но для работы МК+TSOP+оптоинтерфейс какой- нибудь более чем достаточно. А большего обычно и не требуется.

Еще добавить парочку кондеров для дополнительной фильтрации питания и можно использовать:

После чего, как обычно, все вытравил и спаял:



Схема многократно проверена и работает. Я ее когда то пихал в систему управления нагревом термостекла. Места там было со спичечный коробок, а безопасность гарантировалась тотальной остекловкой всего блока.

ТЕХНИКА БЕЗОПАСНОСТИ

В данной схеме нет никакой развязки по напряжению от питающей цепи, а значит схема ОЧЕНЬ ОПАСНА в плане электрической безопасности.

Поэтому надо крайне ответственно подходить к ее монтажу и выбору компонентов. А также внимательно и очень осторожно обращаться с ней при наладке.

Во первых, обратите внимание, что один из выводов идет к GND напрямую из розетки. А это значит что там может быть фаза, в зависимости от того как воткнули вилку в розетку.

Поэтому неукоснительно соблюдайте ряд правил:

  • 1. Номиналы надо ставить с запасом на как можно большее напряжение. Особенно это касается конденсатора. У меня стоит на 400вольт, но это тот что был в наличии. Лучше бы вообще вольт на 600, т.к. в электросети иногда бывают выбросы напряжения намного превышающие номинал. Стандартные блоки питания за счет своей инерционности его переживут запросто, а вот конденсатор может и пробить — последствия представьте себе сами. Хорошо если не будет пожара.
  • 2. Эта схема должна быть тщательным образом заизолирована от окружающей среды. Надежный корпус, чтобы ничего не торчало наружу. Если схема монтируется в стену, то она не должна касаться стен. В общем, пакуем все это дело наглухо в пластик, остекловываем и закапываем на глубине 20метров. :)))))
  • 3. При наладке ни в коем случае не лезть руками ни к одному из элементов цепи. Пусть вас не успокаивает что там на выходе 5 вольт. Так как пять вольт там исключительно относительно самой себя. А вот по отношению к окружающей среде там все те же 220.
  • 4. После отключения крайне желательно разрядить гасящий конденсатор. Т.к. в нем остается заряд вольт на 100-200 и если неосторожно сунуться куда нибудь не туда больно цапнет за палец. Вряд ли смертельно, но приятного мало, а от неожиданности можно и бед натворить.
  • 5. Если используется микроконтроллер, то прошивку его делать ТОЛЬКО при полном выключении из сети. Причем выключать надо выдергиванием из розетки. Если этого не сделать, то с вероятностью близкой к 100% будет убит комп. Причем скорей всего весь.
  • 6. То же касается и связи с компом. При таком питании запрещено подключаться через USART, запрещено обьединять земли.

Если все же хотите связь с компом, то используйте потенциально разделенные интерфейсы. Например, радиоканал, инфракрасную передачу, на худой конец разделение RS232 оптронами на две независимые части.

Питать низковольтную электро- и радиоаппаратуру выгоднее и проще от сети. Для этого наиболее приемлемы трансформаторные блоки питания, поскольку они безопасны в эксплуатации. Однако интерес к бестрансформаторным блокам питания (БТБП) со стабилизированным выходным напряжением не ослабевает. Одна из причин - сложность изготовления трансформатора. А вот для БТБП он не нужен - необходим лишь правильный расчет, но как раз это и пугает малоопытных начинающих электриков. Эта статья поможет сделать расчет и облегчит конструирование бестрансформаторного блока питания.

Упрощенная схема БПТП приведена на рис. 1. Диодный мост VD1 подключен к сети через гасящий конденсатор С гас, включенный последовательно с одной из диагоналей моста. Другая диагональ моста работает на нагрузку блока - резистор R н. Параллельно нагрузке подключены фильтрующий конденсатор С ф и стабилитрон VD2.

Расчет блока питания начинают с задания напряжения U н на нагрузке и силы тока I н. потребляемого нагрузкой. Чем больше будет емкость конденсатора С гас, тем выше энергетические возможности БПТП.

Расчет емкостного сопротивления

В таблице приведены данные по емкостному сопротивлению Х с конденсатора С гас на частоте 50 Гц и среднему значению тока I ср, пропускаемого конденсатором С гас, вычисленные для случая, когда R н =0, то есть при коротком замыкании нагрузки. (Ведь к этому аномальному режиму работы БТБП не чувствителен, и в этом еще одно огромное преимущество перед трансформаторными блоками питания.)

Иные значения емкостного сопротивления Х с (в килоомах) и среднего значения тока I ср (в миллиамперах) можно вычислить по формулам:


С гас - емкость гасящего конденсатора в микрофарадах.

Если исключить стабилитрон VD2, то напряжение U н на нагрузке и ток I н через нее будет зависеть от нагрузки R н. Подсчитать эти параметры легко по формулам:



U н - в вольтах, R н и Х н - в килоомах, I н - в миллиамперах, С гас - в микрофарадах. (Далее в формулах используются те же единицы измерения.)

С уменьшением сопротивления нагрузки напряжение на ней тоже уменьшается, причем по нелинейной зависимости. А вот ток, проходящий через нагрузку возрастает, правда, весьма незначительно. Так, например, уменьшение R н с 1 до 0,1 кОм (ровно в 10 раз) ведет к тому, что U н снижается в 9,53 раза, а ток через нагрузку увеличивается всего лишь в 1,05 раза. Эта "автоматическая" стабилизация тока выгодно отличает БТБП.от трансформаторных источников питания.

Мощность Р н на нагрузке, вычисляемая по формуле:



с уменьшением R н снижается почти столь же интенсивно, как и U н. Для того же примера потребляемая нагрузкой мощность уменьшается в 9,1 раза.

Поскольку ток I н нагрузки при сравнительно небольших значениях сопротивления R н и напряжения U н на ней меняется крайне мало, на практике вполне допустимо пользоваться приближенными формулами:



Восстановив стабилитрон VD2, получим стабилизацию напряжения U н на уровне U ст - значения практически постоянного для каждого конкретного стабилитрона. И при небольшой нагрузке (большом сопротивлении R н) станет выполняться равенство U н =U ст.

Расчет сопротивления нагрузки

До каких же пределов можно уменьшать R н, чтобы равенство U н =U ст было справедливо? До тех, пока выполняется неравенство:



Следовательно, если сопротивление нагрузки окажется меньше рассчитанного R н, напряжение на нагрузке уже не будет равно напряжению стабилизации, а окажется несколько меньше, поскольку ток через стабилитрон VD2 прекратится.


Расчет допустимого тока через стабилитрон

А теперь определим, какой ток I н будет течь через нагрузку R н и какой ток - через стабилитрон VD2. Понятно, что



По мере уменьшения сопротивления нагрузки потребляемая ею мощность P н =I н U н =U 2 ст /R н возрастает. А вот средняя потребляемая БПТП мощность, равная



остается неизменной. Объясняется это тем, что ток I ср разветвляется на два - I н и I ст - и, в зависимости от сопротивления нагрузки, перераспределяется между R н и стабилитроном VD2, причем так, что чем меньше сопротивление нагрузки R н, тем меньший ток идет через стабилитрон, и наоборот. Значит, если нагрузка мала (или вовсе отсутствует), стабилитрон VD2 будет находиться в наиболее тяжелых условиях. Вот почему снимать нагрузку с БПТП не рекомендуется, иначе весь ток пойдет через стабилитрон, что может привести к выходу его из строя.

Амплитудное значение напряжения сети равно 220·√2=311(B). Импульсное значение тока в цепи, если условно пренебречь конденсатором С ф, может достигать



Соответственно, стабилитрон VD2 должен надежно выдерживать этот импульсный ток при случайном отключении нагрузки. Не следует забывать и о возможных перегрузках по напряжению в осветительной сети, составляющих 20...25% от номинала, и рассчитывать ток, проходящий через стабилитрон при отключенной нагрузке с учетом поправочного коэффициента 1,2...1,25.

Если нет мощного стабилитрона

Когда стабилитрона подходящей мощности нет, его полноценно удается заменить диодно-транзисторным аналогом. Но тогда БТБП следует строить по схеме, показанной на рис. 2. Здесь ток, протекающий через стабилитрон VD2, уменьшается пропорционально статическому коэффициенту передачи тока базы мощного n-p-n транзистора VT1. Напряжение UCT аналога будет примерно на 0,7В превышать U ст самого маломощного стабилитрона VD2, если транзистор VT1 кремниевый, или на 0,3В - если он германиевый.

Здесь применим и транзистор структуры p-n-p. Однако тогда используют схему, показанную на рис. 3.

Расчет однополупериодного блока

Наряду с двухполупериодным выпрямителем в БТБП иногда применяют и простейший однополупериодный (рис. 4). В таком случае его нагрузка R н питается лишь положительными полупериодами переменного тока, а отрицательные проходят через диод VD3, минуя нагрузку. Поэтому средний ток I ср через диод VD1 будет вдвое меньше. Значит при расчете блока вместо Х с следует брать в 2 раза большее сопротивление, равное



а средний ток при замкнутой накоротко нагрузке будет равен 9,9·πС гас =31,1 С гас. Дальнейший расчет такого варианта БПТП ведут совершенно аналогично предыдущим случаям.

Расчет напряжения на гасящем конденсаторе

Принято считать, что при напряжении сети 220В номинальное напряжение гасящего конденсатора С гас должно быть не менее 400В, то есть примерно с 30-процентным запасом по отношению к амплитудному сетевому, поскольку 1,3·311=404(В). Однако в некоторых наиболее ответственных случаях его номинальное напряжение должно быть 500 и даже 600В.

И еще. Подбирая подходящий конденсатор С гас, следует учитывать, что применять в БТБП конденсаторы типа МБМ, МБПО, МБГП, МБГЦ-1, МБГЦ-2 нельзя, так как они не рассчитаны на работу в цепях переменного тока с амплитудным значением напряжения, превышающим 150В.

Наиболее надежно в БТБП работают конденсаторы МБГЧ-1, МБГЧ-2 на номинальное напряжение 500В (от старых стиральных машин, люминесцентных светильников и т.п.) или КБГ-МН, КБГ-МП, но на номинальное напряжение 1000В.

Фильтрующий конденсатор

Емкость Фильтрующего конденсатора С ф аналитическим путем рассчитать затруднительно. Поэтому ее подбирают экспериментально. Ориентировочно следует считать, что на каждый миллиампер среднего потребляемого тока требуется брать как минимум 3...10 мкФ этой емкости, если выпрямитель БТБП двухполупериодный, или 10...30 мкФ, если он однополупериодный.

Номинальное напряжение используемого оксидного конденсатора С ф должно быть не менее U ст ·А если стабилитрона в БТБП нет, а нагрузка включена постоянно, номинальное напряжение фильтрующего конденсатора должно превышать значение:


Если нагрузка не может быть включена постоянно, а стабилитрон отсутствует, номинальное напряжение фильтрующего конденсатора должно составлять более 450В, что вряд ли приемлемо из-за больших размеров конденсатора С ф. Кстати, в этом случае снова подключать нагрузку следовало бы лишь после отключения БТБП от сети.

И это еще не все

Любой из возможных вариантов БТБП желательно дополнить еще двумя вспомогательными резисторами. Один из них, сопротивление которого может быть в пределах 300кОм...1МОм, включают параллельно конденсатору С гас. Этот резистор нужен для ускорения разрядки конденсатора С гас после отключения устройства от сети. Другой - балластный - сопротивлением 10...51 Ом включают в разрыв одного из сетевых проводов, например, последовательно с конденсатором С гас. Этот резистор будет ограничивать ток через диоды моста VD1 в момент подключения БТБП к сети. Мощность рассеяния обоих резисторов должна быть не менее 0,5 Вт, что нужно для гарантии от возможных поверхностных пробоев этих резисторов высоким напряжением. За счет балластного резистора стабилитрон будет нагружен несколько меньше, но вот средняя потребляемая БТБП мощность заметно увеличится.

Какие взять диоды

Функцию двухполупериодного выпрямителя БТБП по схемам на рис. 1...3 могут выполнять диодные сборки серии КЦ405 или КЦ402 с буквенными индексами Ж или И, если средний ток не превышает 600 мА, либо с индексами А, Б, если значение тока достигает 1 А. Пригодны также четыре отдельных диода, включенных по схеме моста, например серий КД105 с индексами Б, В или Г, Д226 Б или В - до 300 мА, КД209 А, Б или В - до 500...700 мА, КД226 В, Г или Д - до 1,7 А.

Диоды VD1 и VD3 в БТБП по схеме на рис. 4 могут быть любыми из перечисленных выше. Допустимо также использовать две диодные сборки КД205К В,Г или Д в расчете на ток до 300 мА либо КД205 А,В,Ж или И - до 500 мА.

И последнее. Бестрансформаторный блок питания, а также аппаратура, подключенная к нему, подключены в сеть переменного тока непосредственно! Поэтому они должны быть надежно за-изолированы снаружи, скажем, размещены в пластмассовом корпусе. Кроме того, категорически запрещается "заземлять" какой-либо из их выводов, а также вскрывать корпус при включенном устройстве.

Предлагаемая методика расчета БПТП опробована автором на практике в течение ряда лет. Весь расчет ведется, исходя из того, что БПТП - это по существу параметрический стабилизатор напряжения, в котором роль ограничителя тока выполняет гасящий конденсатор.

Журнал «САМ» №5, 1998 год

Собрался делать освещение на дача. По прикидкам получалась необходимая мощность для ламп накаливания примерно 300 - 400 Вт. Решил делать на светодиодах это и экономия и приобщение к новым технологиям. Было заказано 4 шт. светодиодных матриц на 20 Вт «теплого» цвета, с расчетом использовать на мощность в 1,5 - 2 раза меньше (на случай если есть «китайская погрешность» на заявленную мощность).
Данные матриц от продавца:
Входное напряжение: 30-34Vdc
Мощность: 20 Вт
Световой поток: 1600LM
Продолжительность времени:> 50,000 часов
Размер: 4.7*4.7 см

Трек отслеживался только по Китаю, доставка около месяца. Пришли в такой упаковке.


.

Сами матрицы выглядят так



Прежде чем переходить к схеме несколько слов о параметрах матриц, что я определил опытным путем.

На небольшом токе светятся неравномерно.


С увеличением тока разница незаметна.


Заявленные 20 Вт матрица достигает при примерно 36 В, что несколько выше заявленных же 34 В. Параметры у всех матриц мало отличаются. Ток довольно сильно зависит от температуры. Так с 20 градусов при фиксированном напряжении с начальным током 400 мА до 60 гр. ток меняется на 90 мА.

Измерения проводились фотодиодом ФД-24К. Результат, естественно, в относительных единицах. Получается, что увеличение тока в два раза не дает увеличение интенсивности в два раза, а немного меньше.

Перейдем теперь к схеме. Подобные схемы тут обсуждалась и не раз. Для примера приведу одну ссылку , найти другие думаю не составит труда. Чем же меня привлекла такая схема, это простотой реализации, надежностью и отсутствием помех. Кроме того все основные компоненты были у меня под рукой… много лет.
Четыре матрицы планирую включать последовательно.

Вот схема, так сказать, «а-ля натюрель».


Да, детали довольно древние, но вполне рабочие. К выбору конденсаторов С1 и С2 надо подойти внимательно, важно не только рабочее напряжение, но и тангенс угла диэлектрических потерь, т. к. реактивная мощность в схеме может достигать 150 Вт. Наверно можно использовать пусковые конденсаторы для асинхронных двигателей. Я использовал конденсаторы типа МБГО и нагрева не обнаружил.

Известные недостатки таких схем:
1. Гальваническая связь с электросетью.
2. Отсутствие стабилизации тока
3. Опасность выхода из строя электролита C3 если в цепи светодиодов произойдет обрыв.
4. Большие габариты по сравнению с импульсным ИП.
Разберем эти пункты.
По первому пункту, проблема решается надежной изоляцией, как и в большинстве бытовых приборов. Есть опасность только при наладке, но что тут налаживать? :) В любом случае надо соблюдать технику безопасности!
По второму пункту , наличие довольно большого балласта уже играет роль стабилизатора тока. Кроме того, в моей схеме еще включены две лампочки, которые имеют нелинейное сопротивление и выполняют роль дополнительного стабилизатора тока (и еще предохранителя). Были проведены испытания светодиодной матрицы на на начальном токе 400 мА. При изменении температуры от 20 градусов до 60, ток увеличился менее чем на 5 мА. Остается проблема нестабильности напряжения электросети (а значит и тока), которую в такой простой схеме не решить.
По третьему пункту , если использовать конденсатор на напряжение 150 В, т. к. сами матрицы будут играть роль стабилизатора на напряжение примерно 140 В, но надо параллельно ставить мощный стабилитрон на напряжение 150 В для защиты от обрыва. Стабилитрону тоже нужен радиатор. Я же просто использовал конденсатор на 350 В, что сняло все эти проблемы.
По четвертому , габариты для моих целей это не принципиально. Планирую поместить в размер 10x8x5 см.

Еще несколько комментариев. В схеме использован электролит на довольно большую емкость - 800 мкФ это сделано для уменьшения пульсаций. Для примера приведу график тока с этой емкостью. График получен в программе симуляторе , т. к. осциллографа под рукой нет. Вопрос, как хорошо соответствуют используемые мной в симуляторе светодиоды реальным, остается открытым. В оправдание могу сказать, что по постоянному току, я соответствия добился с точность процентов 10.

Блок питания с гасящим конденсатором представляет собой простейший вариант запитать какое нибудь маломощное устройство.

При всей своей простоте он имеет и два минуса:
1. Он гальванически связан с сетью! потому такие БП используются там, где нет вероятности прикосновения к контактам.
2. Такой Бп имеет не очень большой выходной ток. При увеличении выходного тока надо увеличивать емкость гасящего конденсатора и его габариты становятся существенными.

Внимание, будьте очень аккуратны, не прикасайтесь к контактам этого БП когда он включен.

Простейшая схема данного БП выглядит так:

Как можно увидеть из схемы, последовательно с сетью стоит конденсатор. Он то и является балластом, на котором гасится часть напряжения.
Конденсатор не пропускает постоянный ток, но так как в сети переменный и конденсатор в итоге постоянно перезаряжется, то и получается, что в таком случае ток на выходе есть. Причем сила тока напрямую зависит от емкости конденсатора.

Собственно потому для расчета емкости конденсатора необходимо знать как минимум выходной ток нашего будущего БП, причем надо учесть и потребление стабилизатора, обычно это несколько мА.

И так. Есть две формулы, сложная и простая.
Сложная - подходит для расчета при произвольном выходном напряжении.
Простая - подходит в ситуациях, когда выходное напряжение не более 10% от входного.
I - выходной ток нашего БП
Uвх - напряжение сети, например 220 Вольт
Uвых - напряжение на выходе БП (или до стабилизаторе если такой есть), например 12 Вольт.
С - собственно искомая емкость.

Например я хочу сделать БП с выходным током до 150мА. Пример схемы приведен выше, вариант применения - радиопульт с питанием 5 Вольт + реле на 12 Вольт.
Подставляем наши 0.15 Ампера и получаем емкость 2.18мкФ, можно взять ближайший номинал из стандартных - 2,2мкФ, ну или "по импортному" - 225.

Все как бы вроде хорошо, схема простая, но есть несколько минусов, которые надо исключить:
1. Бросок тока при включении может сжечь диодный мост.
2. При выходе из строя конденсатора может быть КЗ
3. Если оставить как есть, то вполне можно получить разряд от входного конденсатора, так как на нем может долго присутствовать напряжение даже после отключения БП от сети.
4. При снятии нагрузки напряжение на конденсаторе до стабилизатора поднимется до довольно большого значения.

Решения:
1. Резистор R1 последовательно с конденсатором
2. Предохранитель 0.5 Ампера.
3. Резистор R2 параллельно конденсатору.
4. Супрессор на 12 Вольт параллельно конденсатору после диодного моста. Я не рекомендую здесь использовать стабилитроны, супрессоры рассчитаны на большую мощность рассеивания и схема будет работать надежнее.

На схеме красным цветом я выделил новые компоненты, синим - небольшое дополнение в виде светодиода.

Но гасящие конденсаторы используют часто и в дешевых светодиодных лампах. Это плохо, так как у таких ламп меньше надежность и часто высокие пульсации света.
Ниже упрощенный вариант схемы такой лампы.

Попробуем рассчитать емкость для такого применения, но так как напряжение на выходе будет явно больше чем 1/10 от входного, то применим первую формулу.
В качестве выходного напряжения я заложил 48 Вольт, 16 светодиодов по 3 Вольта на каждом. Конечно это все условно, но близко к реальности.
Ток - 20мА, типичный максимальный ток для большинства индикаторных светодиодов.

У меня вышло, что необходим конденсатор емкостью 0.298 мкФ. Ближайший из распространенных номиналов - 0.27 или 0.33мкФ. Первый встречается гораздо реже, а второй уже будет давать превышение тока, потому можно составить конденсатор из двух параллельных, например по 0.15мкФ. При параллельном включении емкость складывается.

С емкостью разобрались, осталось еще пара моментов:
1. Напряжение конденсатора
2. Тип конденсатора.

С напряжением все просто, можно применить конденсатор на 400 Вольт, но надежнее на 630, хоть они и имеют больше размер.

С типом чуть сложнее. Для такого применения лучше использовать конденсаторы, которые изначально предназначены для такого использования, например К73-17, CL21, X2
На фото конденсатор CL21

А это более надежный вариант, не смотрите что на нем указано 280 Вольт, у него это значение переменного действующего напряжения и он будет работать надежнее, чем К73-17 или CL21.

Такие конденсаторы могут выглядеть и так

А вот теперь можно еще раз внимательно посмотреть, что надо для того, чтобы собрать такой "простой" блок питания и решить, нужен ли он.
В некоторых ситуациях да, он поможет, но он имеет кучу минусов, потому на мой взгляд лучше применить просто небольшой импульсный блок питания, который уже имеет стабилизированное выходное напряжение, гальваническую изоляцию и больший выходной ток.
Как пример таких блоков питания я могу дать ссылку на четырех вариантов, с тестами, схемами и осмотров.

Но можно поступить еще лучше. Сейчас получили распространение монолитные блоки питания. По сути кубик, в котором находится миниатюрный БП
Например производства Hi-link, стоимостью около двух долларов за штуку.

Или их китайский аналог производства Tenstar robot. Они немного дешевле, 1.93 доллара за штуку.
Практика показала, что качество у них сопоставимое.

Как я писал выше, они представляют из себя импульсный Бп в модульном исполнении. БП в пластмассовом корпусе залитый эпоксидной смолой.
Выпускаются на разные напряжения и способны поддерживать его на довольно стабильном уровне.

Внутренности поближе, на фото вариант от Hi-link

На этом вроде все. Надеюсь, что статья была полезна, постараюсь и в будущем находить интересные темы. Также интересны пожелания, что хотелось бы видеть в рубрике - Начинающим.

Напряжение цепи,Ua
Частота цепи, f
Ёмкость понижающего конденсатора,C
Напряжение нагрузки,Ub
Ток, протекающий через нагрузку,I
Мощность нагрузки,P

Если у Вас когда нибудь возникала задача понизить напряжение до какого либо уровня, например с 220 Вольт то 12В, то это статья для Вас.

Есть масса способов это сделать подручными материалами. В нашем случае мы будем использовать одну деталь - ёмкость.

В принципе мы можем использовать и обычное сопротивление, но в этом случае, у нас возникнет проблема перегрева данной детали, а там и до пожара недалеко.

В случае, когда в виде понижающего элемента используется ёмкость, ситуация другая.

Ёмкость, включенная в цепь переменного тока обладает (в идеале) только реактивным сопротивлением, значение котрого находится по общеизвестной формуле.

Кроме этого в нашу цепь мы включаем какую то нагрузку (лампочку, дрель, стиральную машину), которая обладает тоже каким то сопротивлением R

Таким образом общее сопротивление цепи будет находиться как

Наша цепь последовательна, а следовательно общее напряжение цепи есть сумма напряжений на конденсаторе и на нагрузке

По закону ома, вычислим ток, протекающий в этой цепи.

Как видите легко зная параметры цепи, вычислить недостающие значения.

А вспомнив как вычисляется мощность легко рассчитывать параметры конденсатора основываясь на потребляемую мощность нагрузки.

Учитывайте что в такой схеме нельзя использовать полярные конденсаторы то есть такие что включаются в электронную схему в строгом соответствии с указанной полярностью.

Кроме этого необходимо учитывать и частоту сети f . И если у нас в России частота 50Гц, то например в Америке частота 60Гц. Это тоже влияет на окончательне расчеты.

Примеры расчета

Необходимо запитать лампочку мощностью 36Вт, рассчитанное на напряжение 12В. Какая ёмкость понижающего конденсатора тут необходима?

Если речь идет об электрических сетях в России, то входное напряжение 220 Вольт, частота 50Гц.

Ток проходящий через лампочку равен 3 Ампера (36 делим на 12). Тогда ёмкость по вышенаписанной формуле будет равна:

Полученные параметры понижающего конденсатора