Как формируется закон ома для участка цепи. Закон Ома для «чайников»: понятие, формула, объяснение

Зависит величина воздействия, которое ток может оказывать на проводник, будь то тепловое, химическое или магнитное действие тока . То есть, регулируя силу тока, можно управлять его воздействием. Электрический ток , в свою очередь – это упорядоченное движение частиц под действием электрического поля .

Зависимость силы тока и напряжения

Очевидно, что чем сильнее поле действует на частицы, тем больше будет сила тока в цепи. Электрическое поле характеризуется величиной, называемой напряжением . Следовательно, мы приходит к выводу, что сила тока зависит от напряжения.

И действительно, опытным путем удалось установить, что сила тока связана с напряжением прямо пропорционально. В случаях, когда изменяли величину напряжения в цепи, не меняя всех остальных параметров, сила тока возрастала или уменьшалась во столько же раз, во сколько меняли напряжение.

Связь с сопротивлением

Однако любая цепь или участок цепи характеризуются еще одной немаловажной величиной, называемой сопротивлением электрическому току . Сопротивление связано с силой тока обратно пропорционально. Если на каком-либо участке цепи изменить величину сопротивления, не меняя напряжения на концах этого участка, сила тока также изменится. Причем если мы уменьшим величину сопротивления, то сила тока возрастет во столько же раз. И, наоборот, при увеличении сопротивления сила тока пропорционально уменьшается.

Формула закона Ома для участка цепи

Сопоставив две эти зависимости, можно прийти к такому же выводу, к которому пришел немецкий ученый Георг Ом в 1827 г. Он связал воедино три вышеуказанные физические величины и вывел закон, который назвали его именем. Закон Ома для участка цепи гласит:

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

где I – сила тока,
U – напряжение,
R – сопротивление.

Применение закона Ома

Закон Ома – один из основополагающих законов физики . Открытие его в свое время позволило сделать огромный скачок в науке. В настоящее время невозможно себе представить любой самый элементарный расчет основных электрических величин для любой цепи без использования закона Ома. Представление об этом законе – это не удел исключительно инженеров-электронщиков, а необходимая часть базовых знаний любого мало-мальски образованного человека. Недаром есть поговорка: «Не знаешь закон Ома – сиди дома».

U=IR и R=U/I

Правда, следует понимать, что в собранной цепи величина сопротивления некоторого участка цепи есть величина постоянная, поэтому при изменении силы тока будет изменяться только напряжение и наоборот. Для изменения сопротивления участка цепи следует собрать цепь заново. Расчет же требуемой величины сопротивления при проектировании и сборке цепи можно произвести по закону Ома, исходя из предполагаемых значений силы тока и напряжения, которые будут пропущены через данный участок цепи.

Сила тока в участке цепи прямо пропорциональна напряжению, и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Закон Ома записывается формулой:

Где: I — сила тока (А), U — напряжение (В), R — сопротивление (Ом).

Следует иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков.

Закон Ома определяет связь трех фундаментальных величин: силы тока, напряжения и сопротивления. Он утверждает, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Ток течет из точки с избытком электронов в точку с дефицитом электронов. Путь, по которому следует ток, называется электрической цепью. Все электрические цепи состоят из источника тока , нагрузки и проводников . Источник тока обеспечивает разность потенциалов , которая позволяет течь току. Источником тока может быть батарея, генератор или другое устройство. Нагрузка оказывает сопротивление протеканию тока . Это сопротивление может быть высоким или низким, в зависимости от назначения цепи. Ток в цепи течет через проводники от источника к нагрузке . Проводник должен легко отдавать электроны. В большинстве проводников используется медь.

Путь электрического тока к нагрузке может проходить через три типа цепей: последовательную цепь, параллельную или последовательно-параллельную цепи.Ток электронов в электрической цепи течет от отрицательного вывода источника тока, через нагрузку к положительному выводу источника тока.

Пока этот путь не нарушен, цепь замкнута и ток течет.

Однако если прервать путь, цепь станет разомкнутой и ток не сможет по ней идти.

Силу тока в электрической цепи можно изменять, изменяя либо приложенное напряжение, либо сопротивление цепи. Ток изменяется в таких же пропорциях, что и напряжение или сопротивление. Если напряжение увеличивается, то ток также увеличивается. Если напряжение уменьшается, то ток тоже уменьшается. С другой стороны, если сопротивление увеличивается, то ток уменьшается. Если сопротивление уменьшается, то ток увеличивается. Это соотношение между напряжением, силои тока и сопротивлением называется законом Ома.

Закон Ома утверждает, что ток в цепи (последовательной, параллельной или последовательно-параллельной) прямо пропорционален напряжению и обратно пропорционален сопротивлению

При определении неизвестных величин в цепи, следуйте следующим правилам:

  1. Нарисуйте схему цепи и обозначьте все известные величины.
  2. Проведите расчеты для эквивалентных цепей и перерисуйте цепь.
  3. Рассчитайте неизвестные величины.

Помните: закон Ома справедлив для любого участка цепи и может применяться в любой момент. По последовательной цепи течет один и тот же ток, а к любой ветви параллельной цепи приложено одинаковое напряжение.

История закона Ома

Георг Ом, проводя эксперименты с проводником, установил, что сила тока в проводнике пропорциональна напряжению, приложенному к его концам. Коэффициент пропорциональности назвали электропроводностью, а величину принято именовать электрическим сопротивлением проводника. Закон Ома был открыт в 1826 году.

Ниже приведены анимации схем иллюстрирующих закон Ома. Обратите внимание, что (на первой картинке) Амперметр (А) является идеальным и имеет нулевое сопротивление.

Данная анимация показывает как меняется ток в цепи при изменении приложенного напряжения.

Следующая анимация показывает как меняется сила тока в цепи при изменении сопротивления.

Электрическое сопротивление для участка цепи определяется при помощи закона Ома. Для того, чтобы понять процессы, происходящие в элементах электрической цепи постоянного тока, необходимо дать общее определение закона Ома.

Закон Ома

Сила тока на участке цепи всегда прямо пропорциональна напряжению на данном участке и обратно пропорциональна сопротивлению участка.

Подобное определение будет верно также для растворов электролитов. Общий закон Ома характерен при описании однородного участка цепи, который не содержит источников тока.

При составлении формул вводятся дополнительные характеристики. Среди них коэффициент пропорциональности. Его записывают в виде $1=R$. Отсюда следует, что $I = \frac{U}{R}$.

$R$ – сопротивление проводника.

Сопротивление принято измерять в омах (Ом).

Закон Ома является главным законом в электротехнике. С помощью его:

  • изучаются и рассчитываются электрические цепи;
  • устанавливается логическое соотношение между сопротивлением и напряжением.

Определение 1

Вольтамперная характеристика – функциональная зависимость элемента участка цепи. Она является очень важной величиной электрических свойств элемента. Такую зависимость можно представить в виде $I = I(U)$.

Подобные характеристики в зависимости от ситуации могут приобретать различные формы и выражения. Наиболее простой вид вольтамперной характеристики выразил в формуле Георг Ом, в честь которого была названа единица сопротивления тока. Ученый подтвердил свою теорию многочисленными экспериментами, применяя опыты к металлическому проводнику.

Закон Ома необходимо понимать на теоретическом и практическом уровне, чтобы решать различные задачи. Если неправильно применять основные параметры закона, то результат приобретает неправильные черты, поэтому допускаются многочисленные ошибки.

Применение закона Ома для участка цепи

Каждый участок электрической цепи можно описать с помощью трех основных величин:

  • сопротивления;
  • напряжения;
  • тока.

Такое сочетание также называют «треугольником Ома», поскольку величины характеризуют все процессы электротехники.

Все производимые расчеты имеют смысл только в тех случаях, когда напряжение на участке цепи выражается в вольтах (В), сопротивление - в омах (Ом), а ток – в амперах (А). При использовании иных единиц измерений или их кратных значений необходимо осуществлять дополнительный ряд действий, чтобы искомый результат полностью соответствовал задачам и целям расчетов. Для этого кратные единицы используемых величин переводят в традиционные величины.

Кратные единицы измерений:

  • милливольты;
  • миллиамперы;
  • мегаомы.

При произведении расчетов в кратных единицах измерений величин напряжение всегда выражается в вольтах.

Для расчета сопротивления на участке цепи по закону Ома необходимо сначала определить ток на заданном участке цепи. Напряжение при этом делят на сопротивление конкретного участка цепи. Эти действия можно производить на любом участке без погрешности.

Для определения напряжения в цепи используют формулу $U = IR$.

Согласно указанной формуле, напряжение на обоих концах участка электрической цепи прямо пропорционально сопротивлению и току. Иными словами, если не стремиться все время изменять сопротивление на данном участке, то при увеличении тока применяется способ увеличения напряжения.

Значительному напряжению в цепи будет соответствовать больший ток. Эти правила действуют при постоянном сопротивлении. Для получении одинакового тока при различных сопротивлениях большее напряжение должно соответствовать большему сопротивлению.

Падение напряжения – это напряжение на определенном участке цепи. Это означает, что напряжение и падение напряжения – идентичные понятия, а слово «падение» никак не связано с потерей некоторого количества напряжения в цепи. Потерю напряжения следует различать от падения напряжения.

Расчет сопротивления

Сопротивление на участке цепи рассчитывается по классической формуле $R = \frac{U}{I}$. Для этого необходимо установить значения напряжения и тока. Сопротивление – отношение напряжения к току.

При многократном увеличении или уменьшении напряжения ток также изменяется в несколько раз в ту или иную сторону. Отношение напряжения к току, которое равно сопротивлению, всегда остается на неизменном уровне.

Сопротивление определенного проводника не зависит от напряжения и тока. Оно будет лежать в зависимости от материала проводника, его длины и площади сечения. Формула для расчета сопротивления на участке цепи очень похожа на формулу для определения тока, однако существует между ними принципиальное различие.

Оно состоит в том, что ток на конкретном участке цепи зависит от напряжения и сопротивления, поэтому изменяется таким же образом. Сопротивление на данном участке цепи – постоянная величина. Она не зависит от изменения значений тока и напряжения, однако равно отношению этих величин.

Вольтамперная характеристика

Закон Ома представляют в виде вольтамперной характеристики. Зависимость между двумя пропорциональными величинами выражается прямой линией на графике. Она проходит через начало координат. Подобную прямую пропорциональную зависимость величин также называют линейной зависимостью.

В графическом выражении закона Ома для участка цепи при отрицательных значениях напряжения и тока также рисуют прямую линию. Это означает, что ток в цепи проходит в разных направлениях одинаково. При большем сопротивлении меньшее значение имеет ток с таким же напряжением.

Вольтамперную характеристику составляют при помощи специальных приборов. Линейными называют такие приборы, у которых характеристика выражается прямой линией, и она проходит через начало координат.

Специалисты при составлении вольтамперной характеристики применяют также понятия линейные сопротивления и линейные цепи.

Определение 2

Нелинейными называют приборы, у которых сопротивление меняется при изменении тока или напряжения. Для таких случаев уже не действует закон Ома.

В 1827 году Георг Ом опубликовал свои исследования, которые составляют основу формулы, используемую и по сей день. Ом выполнил большую серию экспериментов, которые показали связь между приложенным напряжением и током, протекающим через проводник.

Этот закон является эмпирическим, то есть основанный на опыте. Обозначение «Ом» принято в качестве официальной единицы СИ для электрического сопротивления.

Закон Ома для участка цепи гласит, что электрический ток в проводнике прямо пропорционален разности потенциалов в нем и обратно пропорционален его сопротивлению. Принимая во внимание, что сопротивление проводника (не путать с ) величина постоянная, можно оформить это следующей формулой:

  • I — тока в амперах (А)
  • V — напряжение в вольтах (В)
  • R — сопротивления в омах (Ом)

Для наглядности: резистор имеющий сопротивление 1 Ом, через который протекает ток силой в 1 А на своих выводах имеет разность потенциалов (напряжение) в 1 В.

Немецкий физик Кирхгоф (известен своими правилами Кирхгофа) сделал обобщение, которое больше используется в физике:

  • σ – проводимость материала
  • J — плотность тока
  • Е — электрическое поле.

Закон Ома и резистор

Резисторы являются пассивными элементами, которые оказывают сопротивление потоку электрического тока в цепи. , который функционирует в соответствии с законом Ома, называется омическим сопротивлением. Когда ток проходит через такой резистор, то падение напряжения на его выводах пропорционально величине сопротивления.

Формула Ома остается справедливой и для цепей с переменным напряжением и током. Для конденсаторов и катушек индуктивности закон Ома не подходит, так как их ВАХ (вольт-амперная характеристика) по сути, не является линейной.

Формула Ома действует так же для схем с несколькими резисторами, которые могут быть соединены последовательно, параллельно или иметь смешанное соединение. Группы резисторов, соединенные последовательно или параллельно могут быть упрощены в виде эквивалентного сопротивления.

В статьях о и соединении более подробно описано как это сделать.

Немецкий физик Георг Симон Ом опубликовал в 1827 свою полную теорию электричества под названием «теория гальванической цепи». Он нашел, что падение напряжения на участке цепи является результатом работы тока, протекающего через сопротивление этого участка цепи. Это легло в основу закона, который мы используем сегодня. Закон является одним из основных уравнений для резисторов.

Закон Ома — формула

Формула закона Ома может быть использована, когда известно две из трех переменных. Соотношение между сопротивлением, током и напряжением может быть записано по-разному. Для усвоения и запоминания может быть полезен «треугольник Ома».

Ниже приведены два примера использования такого треугольного калькулятора.

Имеем резистор сопротивлением в 1 Ом в цепи с падением напряжения от 100В до 10В на своих выводах. Какой ток протекает через этот резистор? Треугольник напоминает нам, что:
Имеем резистор сопротивлением в 10 Ом через который протекает ток в 2 Ампера при напряжении 120В. Какое будет падение напряжения на этом резисторе? Использование треугольника показывает нам, что: Таким образом, напряжение на выводе будет 120-20 = 100 В.

Закон Ома — мощность

Когда через резистор протекает электрический ток, он рассеивает определенную часть мощности в виде тепла.

Мощность является функцией протекающего тока I (А) и приложенного напряжения V (В):

  • Р — мощность в ваттах (В)

В сочетании с законом Ома для участка цепи, формулу можно преобразовать в следующий вид:

Идеальный резистор рассеивает всю энергию и не сохраняет электрическую или магнитную энергию. Каждый резистор имеет предел мощности, которая может быть рассеяна, не оказывая повреждение резистору. Это мощность называется номинальной.

Окружающие условия могут снизить или повысить это значение. Например, если окружающий воздух горячий, то способность рассеять излишнее тепло у резистора снижается, и на оборот, при низкой температуре окружающего воздух рассеиваемая способность резистора возрастает.

На практике, резисторы редко имеют обозначение номинальной мощности. Тем не менее, большинство из резисторов рассчитаны на 1/4 или 1/8 Вт.

Ниже приведена круговая диаграмма, которая поможет вам быстро определить связь между мощностью, силой тока, напряжением и сопротивлением. Для каждого из четырех параметров показано, как вычислить свое значение.

Закон Ома — калькулятор

Данный онлайн калькулятор закона Ома позволяет определить взаимосвязь между силой тока, электрическим напряжением, сопротивлением проводника и мощностью. Для расчета введите любые два параметра и нажмите кнопку расчет.

Соберём электрическую цепь, состоящую из источника тока (который позволяет плавно менять напряжение), амперметра, спирали из никелиновой проволоки (проводника), ключа и параллельно присоединённого к спирали вольтметра (схема этой цепи показана рядом, прямоугольником условно обозначен проводник).

Замкнём цепь и отметим показания приборов. Затем при помощи источника тока плавно изменим напряжение (лучше всего увеличить его вдвое). Напряжение на спирали при этом тоже увеличится вдвое, и амперметр покажет вдвое большую силу тока. Увеличивая напряжение в \(3\) раза, напряжение на спирали увеличивается втрое, во столько же раз увеличивается сила тока.
Таким образом, опыт показывает, что во сколько раз увеличивается напряжение, приложенное к одному и тому же проводнику, во столько же раз увеличивается сила тока в нём. Другими словами:

Обрати внимание!

Сила тока в проводнике прямо пропорциональна напряжению на концах проводника.

Эту зависимость можно изобразить графически. Её называют зависимостью силы тока в проводнике от напряжения между концами этого проводника.

Включая в электрическую цепь источника тока различные проводники и амперметр, можно заметить, что при разных проводниках показания амперметра различны, т.е. сила тока в данной цепи различна.

Графики тоже будут отличаться.

Вольтметр, поочерёдно подключаемый к концам этих проводников, показывает одинаковое напряжение. Значит, сила тока в цепи зависит не только от напряжения, но и от свойств проводников, включённых в цепь. Зависимость силы тока от свойств проводника объясняется тем, что разные проводники обладают различным электрическим сопротивлением.

Обрати внимание!

Электрическое сопротивление - физическая величина. Обозначается оно буквой R.

За единицу сопротивления принимают \(1\) ом - сопротивление такого проводника, в котором при напряжении на концах \(1\)вольт сила тока равна \(1\) амперу .

Кратко это записывают так: 1 Ом = 1 В 1 А.

Применяют и другие единицы сопротивления: миллиом (мОм), килоом (кОм), мегаом (МОм).

\(1\) мОм = \(0,001\) Ом;

\(1\) кОм = \(1000\) Ом;

\(1\) МОм = \(1 000 000\) Ом.

Причина сопротивления заключается в следующем: электроны взаимодействуют с ионами кристаллической решётки металла. При этом замедляется упорядоченное движение электронов, и сквозь поперечное сечение проводника проходит за \(1\) с меньшее их число. Соответственно, уменьшается и переносимый электронами за \(1\) с заряд, т.е. уменьшается сила тока. Таким образом, каждый проводник как бы противодействует электрическому току, оказывает ему сопротивление. Итак:

Обрати внимание!

Причиной сопротивления является взаимодействие движущихся электронов с ионами кристаллической решётки.

Чтобы ответить на вопрос, как зависит сила тока в цепи от сопротивления, обратимся к опыту.

На рисунке изображена электрическая цепь, источником тока в которой является аккумулятор. В эту цепь по очереди включают проводники, обладающие различным сопротивлением. Напряжение на концах проводника во время опыта поддерживается постоянным. За этим следят по показаниям вольтметра. Силу тока в цепи измеряют амперметром. Ниже приведены результаты опытов с тремя различными проводниками.

Обобщая результаты опытов, приходим к выводу, что:

Обрати внимание!

Сила тока в проводнике обратно пропорциональна сопротивлению проводника.

Зависимость силы тока от напряжения на концах участка цепи и сопротивления этого участка называется законом Ома - по имени немецкого учёного Георга Ома, открывшего этот закон в \(1827\) году.
Закон Ома читается так:

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

И записывается так:

где \(I\) - сила тока в участке цепи, \(U\) - напряжение на этом участке, \(R\) - сопротивление участка.

Зависимость силы тока от сопротивления проводника при одном и том же напряжении на его концах может быть показана графически:

Найти сопротивление экспериментально можно несколькими способами:

При помощи амперметра и вольтметра

При помощи омметра