Будущее беспроводных технологий. Проводные и беспроводные виды соединений для домашней сети с интернет

Электроника лежит в основе практически всей коммуникации. Все началось с изобретения телеграфа в 1845 году, за ним в 1876 году последовал телефон. Связь постоянно совершенствовалась, а прогресс в электронике, который произошел совсем недавно, заложил новый этап в развитие коммуникаций. Сегодня беспроводная связь вышла на новый уровень и уверенно заняла доминирующую часть рынка связи. И ожидается новый рост сектора беспроводной коммуникации благодаря развивающейся сотовой инфраструктуре, а также современным технологиям, таким как . В данной статье мы рассмотрим наиболее перспективные технологии на ближайшее время.

Состояние 4G

4G в переводе с английского означает долговременную эволюцию (Long Term Evolution (LTE). LTE – это технология OFDM, которая на сегодняшний день является доминирующей структурой сотовой системы связи. Системы 2G и 3G все еще существуют, хотя внедрение 4G началась в 2011 – 2012 годах. Сегодня LTE в основном реализуется крупнейшими операторами в США, Азии и Европе. Его развертывание еще не завершено. LTE получила огромную популярность у владельцев смартфонов, так как высокая скорость передачи данных открыла такие возможности, как потоковая передача видео для эффективного просмотра фильмов. Тем не менее, все не так идеально.

Хотя LTE обещал скорость загрузки до 100 Мбит / с, это не было достигнуто на практике. Скорости до 40 или 50 Мбит / с могут быть достигнуты, но только при особых условиях. При минимальном количестве подключений и минимальном траффике такие скорости очень редко могут достигаться. Наиболее вероятные скорости передачи данных находятся в диапазонах 10 – 15 Мбит / с. В пиковые часы скорость проседает до нескольких Мбит / с. Конечно, это не делает реализацию 4G провальной затеей, это означает, что пока его потенциал реализован не полностью.

Одной из причин, почему 4G не обеспечивает заявленную скорость – слишком большое количество потребителей. При слишком интенсивном его использовании скорость передачи данных существенно снижается.

Однако, существует надежда, что это удастся исправить. Большинство операторов, предоставляющих услуги 4G, еще не реализовали технологию LTE-Advanced, усовершенствование, которое обещает повысить скорость передачи информации. LTE-Advanced использует «объединение несущих» (carrier aggregation (CA)) для увеличения скорости. «Объединение несущих» подразумевает объединение стандартной полосы пропускания LTE до 20 МГц в 40 МГц, 80 МГц или 100 МГц части, для повышения пропускной способности. LTE-Advanced также имеет конфигурацию MIMO 8 x 8. Поддержка этой функции открывает потенциал для увеличения скорости обмена данными до 1 Гбит/с.

LTE-CA известно еще как LTE-Advanced Pro или 4.5G LTE. Эти сочетания технологий определенны группой разработки стандартов 3GPP в версии 13. Она включает в себя агрегацию операторов, а также лицензионный доступ с поддержкой (LAA), метод, который использует LTE в нелицензированном Wi-Fi-спектре 5 ГГц. Он также развертывает агрегацию каналов LTE-Wi-Fi (LWA) и двойное подключение, позволяя смартфону «разговаривать» одновременно с узлом небольшой точки доступа, и точкой доступа Wi-Fi. В данной реализации слишком много деталей, которые мы не будем рассматривать, но общая цель — продлить срок службы LTE за счет снижения задержки и увеличения скорости передачи данных до 1 Гбит / с.

Но это не все. LTE сможет обеспечить более высокую производительность, так как операторы начинают упрощать свою стратегию небольшими ячейками, обеспечивая более высокую скорость передачи данных для большего числа абонентов. Маленькие ячейки — это просто миниатюрные сотовые базовые станции, которые могут быть установлены где угодно для заполнения пробелов охвата макроячейки, добавляя, где это необходимо, производительность.

Еще одним способом повышения производительности является использование Wi-Fi. Этот метод обеспечивает быструю загрузку в ближайшую точку доступа Wi-Fi, когда она доступна. Лишь несколько операторов сделали это доступным, но большинство из них рассматривают усовершенствование LTE под названием LTE-U (U для нелицензионного (unlicensed)). Это метод, аналогичный LAA, который использует нелицензированный диапазон 5 ГГц для быстрой загрузки, когда сеть не может справиться с нагрузкой. Это создает конфликт спектра с последней , которая использует диапазон 5 ГГц. Для реализации этого были разработаны определенные компромиссы.

Как мы видим, потенциал 4G все еще не раскрыт до конца. В ближайшие годы будут внедрены все или большинство из перечисленных усовершенствований. Стоит отметить и то, что производители смартфонов также внесут изменение в аппаратное или программное обеспечения для усовершенствования работы LTE. Данные улучшение, скорее всего, произойдут тогда, когда начнется массовое внедрение стандарта 5G.

Открытие 5G

Как такового 5G пока нет. Так, что громкие заявление об «абсолютно новом стандарте способном изменить подход к беспроводной передаче информации» пока рано. Хотя, некоторые поставщики интернет услуг уже начинают споры, кто же первым внедрит стандарт 5G. Но стоит вспомнить спор недавних лет о 4G. Ведь реального 4G (LTE-A) еще нет. Тем не менее, работа над 5G идет полным ходом.

«Проект партнерства третьего поколения» (3GPP) работает над стандартом 5G, который, как ожидается, будет внедрен в ближайшие годы. Международный союз электросвязи (ITU), который будет «благословлять» и администрировать стандарт, заявляет, что окончательно 5G должен стать доступен к 2020 году. Тем не менее, некоторые ранние версии стандарта 5G все же будут появляться в конкурентной борьбе провайдеров. Некоторые требования 5G появятся уже в 2017 – 2018 годах в той или иной формах. Полное внедрение 5G будет задачей далеко не из легких. Такая система будет одной из самых сложных, если не самой сложной, из беспроводных сетей. Полное ее развертывание ожидается к 2022 году.

Основанием внедрения 5G является преодоление ограничений 4G и добавление возможностей для новых приложений. Ограничения 4G — это в основном пропускная способность абонента и ограниченные скорости передачи данных. Сети сотовой связи уже перешли от голосовых технологий к центрам данных, но необходимы дальнейшие улучшения производительности в будущем.

Более того, ожидается бум новых приложений. К ним относят видео HD 4K, виртуальную реальность, интернет вещей (IoT), а также использование структуры «машина-машина» (М2М). Многие по-прежнему прогнозируют от 20 до 50 миллиардов устройств онлайн, многие из которых будут подключаться к сети интернет через сотовую связь. В то время, как большинство устройств IoT и M2M работают на низких скоростях передачи данных, то для работы с потоковыми данными (видео) необходима высокая скорость интернет. Другими потенциальными приложениями, которые будут использовать стандарт 5G, могут стать умные города и средства связи для обеспечения безопасности автомобильного транспорта.

5G, вероятно, будет более революционным, чем эволюционным. Это будет связано с созданием новой сетевой архитектуры, которая будет накладываться на сеть 4G. Новая сеть будет использовать распределенные мелкие ячейки с волоконным или миллиметровым обратным каналом, а также будет экономной, энергонезависимой и легко масштабируемой. Кроме того, в сетях 5G будет больше программного, чем аппаратного обеспечения. Также будет использоваться программная сеть (SDN), виртуализацию сетевых функций (NFV), методы самоорганизующейся сети (SON).

Также имеется еще несколько ключевых особенностей:

  • Использование миллиметровых волн. В первых версиях 5G могут использоваться полосы в 3,5 ГГц и 5 ГГц. Также рассматриваются варианты частот от 14 ГГц до 79 ГГц. Окончательный вариант пока выбран не был, однако FCC заявляет, что выбор буден сделан в ближайшее время. Тестирование ведется на частотах 24, 28, 37 и 73 ГГц.
  • Рассматриваются новые схемы модуляции. Большинство из них – это некоторые вариант OFDM. Две или более схем могут быть определены в стандарте для различных приложений.
  • Несколько входов с несколькими выходами (MIMO) будут включены в некоторую форму для расширения диапазона, скорости передачи данных и надежности связи.
  • Антенны будут иметь фазированные решетки с адаптивным формированием луча и управлением.
  • Более низкая латентность — главная цель. Менее 5 мс задано, но менее 1 мс является целью.
  • Скорости передачи данных от 1 Гбит / с до 10 Гбит / с ожидаются в полосах пропускания 500 МГц или 1 ГГц.
  • Микросхемы будут изготавливаться из арсенида галлия, кремния-германия и некоторых КМОП.

Одной из самых больших проблем во внедрении 5G ожидается интеграция данного стандарта в мобильные телефоны. В современных смартфонах и так полным-полно различных передатчиков и приемников, а с 5G они станут еще сложнее. Нужна ли такая интеграция?

Путь развития Wi-Fi

Наряду с сотовой связью находится одна из наиболее популярных беспроводных сетей – Wi-Fi. Как и , Wi-Fi является одной из наших любимых «утилит». Мы рассчитываем на подключение к сети Wi-Fi практически в любом месте, и в большинстве случаев мы получаем доступ. Как и большинство популярных беспроводных технологий, он постоянно находится в стадии разработки. Последняя выпущенная версия называется 802.11ac и обеспечивает скорость до 1,3 Гбит / с в нелицензированной полосе частот 5 ГГц. Также идет поиск приложений для стандарта 802.11ad со сверхвысокой частотой 60 ГГц (57-64 ГГц). Это проверенная и экономически эффективная технология, но кому нужны скорости от 3 до 7 Гбит / с на расстоянии до 10 метров?

На данный момент существует несколько проектов развития стандарта 802.11. Вот несколько из основных:

  • 11af — это версия Wi-Fi в белых полосах телевизионного диапазона (54 до 695 МГц). Данные передаются в локальных полосах пропускания 6- (или 8) МГц, которые не заняты. Возможна скорость передачи данных до 26 Мбит/с. Иногда его называют White-Fi, а главная привлекательность 11af заключается в том, что возможный радиус действия на низких частотах составляет много километров и отсутствие прямой видимости (NLOS) (работа только на открытых площадях). Эта версия Wi-Fi еще не используется, но имеет потенциал для приложений IoT.
  • 11ah — обозначенный как HaLow, является еще одним вариантом Wi-Fi, который использует нелицензированный диапазон ISM 902-928 МГц. Это маломощная низкоскоростная (сотни кбит / с) служба с дальностью до километра. Целью является применение в IoT.
  • 11ax — 11ax — это обновление до 11ac. Его можно использовать в диапазонах 2,4 и 5 ГГц, но, скорее всего, он будет работать в полосе частот 5 ГГц исключительно для использования полосы пропускания 80 или 160 МГц. Ожидается, что наряду с 4 x 4 MIMO и OFDA / OFDMA, ожидается пиковая скорость передачи данных до 10 Гбит / с. Окончательной ратификации не будет до 2019 года, хотя предварительные версии, вероятно, будут полными.
  • 11ay — это расширение стандарта 11ad. Он будет использовать полосу частот 60 ГГц, а целью является, по меньшей мере, скорость передачи данных 20 Гбит / с. Еще одна цель — расширить дальность до 100 метров, чтобы иметь больше приложений, таких как обратный трафик для других услуг. Выход этого стандарта не ожидается в 2017 году.

Беспроводные сети для IoT и М2М

Беспроводная связь, безусловно, является будущим интернет вещей (IoT) и межмашинных связей (Machine-to-Machine, M2M). Хотя проводные решения тоже не исключаются, но стремление к беспроводной связи все же является предпочтительней.

Типичным для устройств интернет вещей является небольшое расстояние действия, малая потребляемая мощность, небольшая скорость обмена данными, питания от аккумулятора или батареи с датчиком, как показано на рисунке ниже:

Альтернативой может стать какой-то удаленный исполнительный механизм, как показано на рисунке ниже:

Или же возможна комбинация этих двух устройств. Оба, как правило, подключаются к интернету через беспроводной шлюз, но также могут подключаться и через смартфон. Соединение со шлюзом также беспроводное. Вопрос в другом, какой беспроводной стандарт будет использоваться?

Очевидным выбором становится Wi-Fi, так как трудно представить себе место, где его нет. Но для некоторых приложений он будет излишен, а для некоторых слишком энергоемок. Bluetooth – еще один неплохой вариант, особенно его версия с низким энергопотреблением (BLE). Новые дополнения к сети и шлюзу Bluetooth делают его еще более привлекательным. ZigBee — еще одна готовая и ожидающая альтернатива, и не забываем о Z-Wave. Так же есть несколько вариантов 802.15.4, например 6LoWPAN.

Добавьте к ним новейшие варианты, являющиеся частью энергоэффективных сетей дальнего радиуса действия (Low Power Wide Area Networks (LPWAN)). Эти новые беспроводные варианты предлагают сетевые соединения большей дальности, что обычно невозможно при использовании традиционных технологий, упомянутых выше. Большинство из них работают в нелицензируемом спектре ниже 1 ГГц. Некоторые из новейших конкурентов для приложений IoT:

  • LoRa — изобретение Semtech и поддерживается Link Labs. Эта технология использует линейную частотную модуляцию (ЛЧМ) при низкой скорости передачи данных, чтобы получить диапазон до 2-15 км.
  • Sigfox — французская разработка, использующая ультра узкополосную схему модуляции при низкой скорости передачи данных для отправки коротких сообщений.
  • Weightless – использует телевизионные белые пространства с методами когнитивного радио для более длинных диапазонов и скорости передачи данных до 16 Мбит / с.
  • Nwave — это похоже на Sigfox, но на данный момент нам не удалось собрать достаточно информации.
  • Ingenu — в отличие от других, этот использует диапазон 2,4 ГГц и уникальную схему множественного доступа с произвольной фазой.
  • Halow — это 802.11ah Wi-Fi, описан выше.
  • White-Fi — это 802.11af, описан выше.

Cellular определенно является альтернативой IoT, поскольку является основой межмашинных связей (М2М) уже более 10 лет. Межмашинные связи используют в основном 2G и 3G беспроводные модули для мониторинга удаленных машин. В то время, как 2G (GSM) в конечном счете будет постепенно сокращаться, 3G все еще будет «жить».

Теперь доступен новый стандарт: LTE. В частности, он называется LTE-M и использует сокращенную версию LTE в полосе пропускания 1,4 МГц. Другая версия NB-LTE-M использует полосу пропускания 200 кГц для работы с более низкой скоростью. Все эти варианты смогут использовать существующие сети LTE с обновленным программным обеспечением. Модули и чипы для LTE-M уже доступны, как и на устройствах Sequans Communications.

Одна из самых больших проблем интернет вещей – отсутствие единого стандарта. И в ближайшее время, скорее всего, он не появится. Возможно, в будущем, появится несколько стандартов, только как скоро?

Современная наука переживает бум своего развития. На данный момент основную роль стала играть компьютерная техника. Это связанно, прежде всего, с приходом в жизнь людей планшетов, смартфонов, ноутбуков и компьютеров, для нормальной работы которых требуется доступ к интернету.

В сельском хозяйстве, промышленности и, конечно же, в военной сфере появилась необходимость в надежных системах управления, и объединении их специальную глобальную сеть. Такие тенденции проявляются во всем мире и способствуют развитию беспроводных технологий. В данной статье приведен перечень основных видов беспроводных технологий, а также описание каждого из видов.

Все беспроводные технологии можно разделить на такие основные виды по количеству объектов как:

  • персональные беспроводные технологии;
  • беспроводные сети;
  • локальные беспроводные сети;
  • глобальные беспроводные сети.

Персональные беспроводные технологии (сети)

К данному виду можно отнести такие технологии как:

Bluetooth — технология радиосвязи с малым расстоянием действия. Обычно это расстояние около 300 метров. В основе данного вида связи лежит алгоритм FHSS.

IrDA – порт инфракрасного вида, который описывает протоколы логического и физического уровней. Эта технология широко известна под именем ИК-порт. Эту технологию вытеснили известные нам технологии Wi-Fi и Bluetooth. ИК-порты, так как и Bluetooth являются технологией с малым радиусом действия. Одна из особенностей ИК-порта – передача данных только при полной видимости приемника.

USB-технология – беспроводная технология с радиусом действия почти 9-10 метров. На сегодняшний день это самый широкий диапазон, который используют коммерческие устройства для связи. Wireless USB – это одна из видов беспроводной USB-технологии, который предназначен для того, чтобы заменить проводной USB. Основная функция данной технологии – это обеспечение быстрого обмена на малых расстояниях и обеспечение процесса взаимодействия ПК и периферийных устройств.

Wireless HD – беспроводная технология, основной функцией которой является, передача видеороликов HD качества. WiGig – широкополосная технология беспроводной связи, которая работает в диапазон частот от 60 ГГц и обеспечивает передачу данных до 7-8 Гбит в секунду, приблизительно на расстоянии 9-10 метров. LibertyLink – это технология беспроводной сети, для передачи данных в которой используется магнитная индукция.

Беспроводные сети RuBee –беспроводная сеть локального характера, которая является сетью для датчиков. Чтобы передать данные, сеть использует магнитные волны. Используется сеть для необычных целей, которые не требуют высокого быстродействия, но требуют долгой работы и хорошей защищенной связи.

Такие сети используют для работы объектов повышенной опасности. Wavenis – беспроводная сеть использующая частоты номер 433, 868 и 915 МГц, и обеспечивает передачу данных на расстояние практически до 1000 м на открытой территории и до 200 метров в здании со скоростью до 100 Кбит в секунду.

Используют эту технологию для того, чтобы организовать персональную сеть или сеть для датчиков. One-Net – это протокол для создания сенсорных беспроводных сетей, а так же сетей для автоматизации зданий и объектов.

Передаются данные на расстоянии до 100 м, на открытом пространствепри скорости для передачи данных приблизительно 28 – 230 Кбит в секунду. DASH7 – стандарт для организации сенсорных беспроводных сетей. Сенсорная сеть – сеть вычислительных устройств, которые снабжены особыми сенсорными датчиками. Расстояние распространения напрямую зависимо от мощности сигнала, который передается.

Локальные беспроводные сети Wi-Fi – семейство стандартов IEEЕ. Используется для того, чтобы передавать данные в пределе от 2 до 5 ГГц и обеспечивают скорость передачи от 1 Мбит в секунду, на расстоянии до 150 метров. Wi-Fi используют для организации как локальных сетей, так и для подключения к глобальной сети Интернет. Wi-Fi – самая популярная технология для организации как домашних так и офисных сетей и доступа к Интернету. HiperLAN – это стандарт беспроводных сетей. Существует два семейства стандартов: HiperLAN1 и HiperLAN2. Данный стандарт используется для передачи данных на расстоянии до 50 метров и скорости передачи до 10 Мбит в секунду.

Глобальные беспроводные сети

К таким сетям относят: — мобильные связи 1G поколения; — мобильные связи 2G поколения; — мобильные связи 2.5G поколения; — мобильные связи 3G поколения; — мобильные связи 3.5 G поколения; — мобильные связи 4G поколения;

В данной статье приведена основная классификация беспроводных технологий. Это список не всех беспроводных технологии, а лишь их малая часть. Беспроводные технологии появляются по мере развития науки и техники, поэтому их количество огромно.

Ну а если вы являетесь веб разработчиком или владельцем высоконагруженного веб ресурса, то для вас на данный момент актуальным является аренда выделенного сервера под нужды веб ресурса. О всех преимуществах выделенного сервера вы можете получить подробную консультацию на сайте хостинг провайдера.

Термин WDS (Wireless Distribution System) расшифровывается как «распределённая беспроводная система». Если говорить упрощённо, то данная технология позволяет точкам доступа устанавливать беспроводное соединение не только с беспроводными клиентами, но и между собой. Беспроводные сети, называемые также Wi-Fi- или WLAN (Wireless LAN)-сети, обладают, по сравнению с традиционными проводными сетями, немалыми преимуществами, главным из которых, конечно же, является простота развёртывания.

Так, беспроводная сеть не нуждается в прокладке кабелей (часто требующей штробления стен); трудно оспорить такие достоинства беспроводной сети, как мобильность пользователей в зоне её действия и простота подключения к ней новых пользователей. В то же время беспроводные сети на современном этапе их развития не лишены серьёзных недостатков. Прежде всего, это низкая, по сегодняшним меркам, скорость соединения, которая к тому же серьёзно зависит от наличия преград и от расстояния между приёмником и передатчиком; плохая масштабируемость, а также, если речь идёт об использовании беспроводной сети в помещениях, довольно ограниченный радиус действия сети.

Один из способов увеличения радиуса действия беспроводной сети заключается в создании распределённой сети на основе нескольких точек беспроводного доступа. При создании таких сетей в домашних условиях появляется возможность превратить всю квартиру в единую беспроводную зону и увеличить скорость соединения вне зависимости от количества стен (преград) в квартире.

Аппаратное обеспечение

Bluetooth или блютус (переводится как синий зуб, назван в честь Харальда I Синезубого) - производственная спецификация беспроводных персональных сетей (англ. Wireless personal area network, WPAN). Bluetooth обеспечивает обмен информацией между такими устройствами как карманные и обычные персональные компьютеры, мобильные телефоны, ноутбуки, принтеры, цифровые фотоаппараты, мышки, клавиатуры, джойстики, наушники, гарнитуры на надёжной, недорогой, повсеместно доступной радиочастоте для ближней связи. Bluetooth позволяет этим устройствам сообщаться, когда они находятся в радиусе от 1 до 10 метров друг от друга (дальность сильно зависит от преград и помех), даже в разных помещениях.

Название и логотип

Слово Bluetooth - перевод на английский язык датского слова «Blåtand» («Синезубый»). Это прозвище носил король Харальд I, правивший в X веке Данией и частью Норвегии и объединивший враждовавшие датские племена в единое королевство. Подразумевается, что Bluetooth делает то же самое с протоколами связи, объединяя их в один универсальный стандарт. Хотя «blå» в современных скандинавских языках означает «синий», во времена викингов оно также могло означать «чёрного цвета». Таким образом, исторически правильно было бы перевести датское Harald Blåtand скорее как Harald Blacktooth, чем как Harald Bluetooth.

Логотип Bluetooth является сочетанием двух нордических («скандинавских») рун: «хаглаз» (Hagall) - аналог латинской H и «беркана» (Berkanan) - латинская B. Логотип похож на более старый логотип для Beauknit Textiles, подразделения корпорации Beauknit. В нём используется слияние отраженной K и В для «Beauknit», он шире и имеет скругленные углы, но в общем он такой же.

История создания и развития

Спецификация Bluetooth была разработана группой Bluetooth Special Interest Group (Bluetooth SIG), которая была основана в 1998 году. В неё вошли компании Ericsson, IBM, Intel, Toshiba и Nokia. Впоследствии Bluetooth SIG и IEEE достигли соглашения, на основе которого спецификация Bluetooth стала частью стандарта IEEE 802.15.1. Работы по созданию Bluetooth компания Ericsson Mobile Communication начала в 1994 году. Первоначально эта технология была приспособлена под потребности системы FLYWAY в функциональном интерфейсе между путешественниками и системой.

Wi-Fi (англ. Wireless Fidelity - «беспроводная точность») - торговая марка Wi-Fi Alliance для беспроводных сетей на базе стандарта IEEE 802.11.

Любое оборудование, соответствующее стандарту IEEE 802.11, может быть протестировано в Wi-Fi Alliance и получить соответствующий сертификат и право нанесения логотипа Wi-Fi.

Wi-Fi был создан в 1991 году NCR Corporation/AT&T (впоследствии - Lucent Technologies и Agere Systems) в Ньивегейн, Нидерланды. Продукты, предназначавшиеся изначально для систем кассового обслуживания, были выведены на рынок под маркой WaveLAN и обеспечивали скорость передачи данных от 1 до 2 Мбит/с. Создатель Wi-Fi - Вик Хейз (Vic Hayes) находился в команде, участвовавшей в разработке таких стандартов, как IEEE 802.11b, IEEE 802.11a и IEEE 802.11g. В 2003 году Вик ушёл из Agere Systems. Agere Systems не смогла конкурировать на равных в тяжёлых рыночных условиях, несмотря на то, что её продукция занимала нишу дешёвых Wi-Fi решений. 802.11abg all-in-one чипсет от Agere (кодовое имя: WARP) плохо продавался, и Agere Systems решила уйти с рынка Wi-Fi в конце 2004 года.

Стандарт IEEE 802.11n был утверждён 11 сентября 2009 года. Его применение позволяет повысить скорость передачи данных практически вчетверо по сравнению с устройствами стандартов 802.11g (максимальная скорость которых равна 54 Мбит/с), при условии использования в режиме 802.11n с другими устройствами 802.11n. Теоретически 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с.

· ОС семейства BSD (FreeBSD, NetBSD, OpenBSD) могут работать с большинством адаптеров, начиная с 1998 года. Драйверы для чипов Atheros, Prism, Harris/Intersil и Aironet (от соответствующих производителей Wi-Fi устройств) обычно входят в ОС BSD начиная с версии 3. В OpenBSD 3.7, было включено больше драйверов для беспроводных чипов, включая RealTek RTL8180L, Ralink RT25x0, Atmel AT76C50x, и Intel 2100 и 2200BG/2225BG/2915ABG. Благодаря этому частично удалось решить проблему нехватки открытых драйверов беспроводных чипов для OpenBSD. Возможно некоторые драйверы, реализованные для других BSD-систем, могут быть перенесены, если они ещё не были созданы. NDISwrapper также доступен для FreeBSD.

· Mac OS. Адаптеры производства Apple поддерживались с системы Mac OS 9, выпущенной в 1999 году. С 2006 года все настольные компьютеры и ноутбуки Apple Inc. (а также появившиеся позднее телефоны iPhone, плееры iPod Touch и планшетные компьютеры IPad) штатно оснащаются адаптерами Wi-Fi, сеть Wi-Fi в настоящее время является основным решением Apple для передачи данных, и полностью поддерживается Mac OS X. Возможен режим работы адаптера компьютера в качестве точки доступа, что позволяет при необходимости связывать компьютеры Macintosh в беспроводные сети в отсутствии инфраструктуры. Darwin и Mac OS X, несмотря на частичное совпадение с BSD, имеют свою собственную, уникальную реализацию Wi-Fi.

· Linux: Начиная с версии 2.6, поддержка некоторых Wi-Fi устройств появилась непосредственно в ядре Linux. Поддержка для чипов Orinoco, Prism, Aironet, Atmel, Ralink включена в основную ветвь ядра, чипы ADMtek и Realtek RTL8180L поддерживаются как закрытыми драйверами производителей, так и открытыми, написанными сообществом. Intel Calexico поддерживаются открытыми драйверами, доступными на SourceForge.net. Atheros поддерживается через открытые проекты. Поддержка других беспроводных устройств доступна при использовании открытого драйвера NDISwrapper, который позволяет Linux-системам, работающим на компьютерах с архитектурой Intel x86, «оборачивать» драйвера производителя для Microsoft Windows для прямого использования. Известна по крайней мере одна коммерческая реализация этой идеи. FSF создало список рекомендуемых адаптеров, более подробную информацию можно найти на сайте Linux wireless.

· Существует довольно большое количество Linux-based прошивок для беспроводных роутеров, распространяемых под лицензией GNU GPL. К ним относятся так называемая «прошивка от Олега», FreeWRT, OpenWRT, X-WRT, DD-WRT и т. д. Как правило, они поддерживают гораздо больше функций, чем оригинальные прошивки. Необходимые сервисы легко добавляются путём установки соответствующих пакетов. Список поддерживаемого оборудования постоянно растёт.

· В ОС семейства Microsoft Windows поддержка Wi-Fi обеспечивается, в зависимости от версии, либо посредством драйверов, качество которых зависит от поставщика, либо средствами самой Windows.

Ранние версии Windows, такие как Windows 2000 и младше, не содержат встроенных средств для настройки и управления, и тут ситуация зависит от поставщика оборудования.

Microsoft Windows XP поддерживает настройку беспроводных устройств. И хотя первоначальная версия включала довольно слабую поддержку, она значительно улучшилась с выходом Service Pack 2, а с выходом Service Pack 3 была добавлена поддержка WPA2.

Microsoft Windows Vista содержит улучшенную по сравнению с Windows XP поддержку Wi-Fi.

Microsoft Windows 7 поддерживает все современные на момент её выхода беспроводные устройства и протоколы шифрования. Помимо прочего в Windows 7 создана возможность создавать виртуальные адаптеры Wi-Fi, что теоретически позволило бы подключаться не к одной Wi-Fi-сети, а к нескольким сразу. На практике в Windows 7 поддерживается создание только одного виртуального адаптера, при условии написания специальных драйверов. Это может быть полезно при использовании компьютера в локальной Wi-Fi-сети и, одновременно, в Wi-Fi-сети подключённой к Интернет.

WiMAX (англ. Worldwide Interoperability for Microwave Access) - телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов). Основана на стандарте IEEE 802.16, который также называют Wireless MAN (WiMAX следует считать жаргонным названием, так как это не технология, а названия форума, на котором Wireless MAN и был согласован).

Страница 47 из 47 Беспроводная передача данных

Беспроводная передача данных

Беспроводная связь стала использоваться для общения между людьми ненамного позже, чем проводная. Уже в 90-х годах 19 века были проведены первые эксперименты по передаче телеграфных сообщений с помощью радиосигналов, а в 20-е годы 20 века началось применение радио для передачи голоса.

Сегодня существует большое число беспроводных телекоммуникационных систем, в том числе не только широковещательных, таких как радио или телевидение. Беспроводные системы также широко используются как транспортное средство для передачи дискретной информации. Для создания протяженных линий связи используются радиорелейные и спутниковые системы, существуют также беспроводные системы доступа к сетям операторов связи и беспроводные локальные сети.

Беспроводная среда, для которой сегодня в основном используется микроволновый диапазон, отличается высоким уровнем помех, которые создают внешние источники излучения, а также многократно отраженные от стен и других преград полезные сигналы. Поэтому в беспроводных системах связи применяют различные средства для снижения влияния помех. В арсенал таких средств входят коды прямой коррекции ошибок и протоколы с подтверждением доставки информации. Эффективным средством борьбы с помехами является техника расширенного спектра, разработанная специально для беспроводных систем.

Преимущества беспроводных коммуникаций

Возможность передавать информацию без проводов, привязывающих (в буквальном смысле этого слова) абонентов к определенной точке пространства, всегда была очень привлекательной. И как только технические возможности становились достаточными для того, чтобы новый вид беспроводных услуг приобрел две необходимые составляющие успеха - удобство использования и низкую стоимость, - успех ему был гарантирован.

Последнее тому доказательство - мобильная телефония. Первый мобильный телефон был изобретен еще в 1910 году Ларсом Магнусом Эрикссоном (Lars Magnus Ericsson). Этот телефон предназначался для автомобиля и был беспроводным только во время движения. Однако в движении им нельзя было пользоваться, для разговора нужно было остановиться, выйти из автомобиля и с помощью длинных жердей присоединить телефон к придорожным телефонным проводам Понятно, что определенные неудобства и ограниченная мобильность воспрепятствовали коммерческому успеху этого вида телефонии.

Прошло много лет, прежде чем технологии радиодоступа достигли определенной степени зрелости и в конце 70-х обеспечили производство сравнительно компактных и недорогих радиотелефонов. С этого времени начался бум мобильной телефонии, который продолжается в настоящее время.

Беспроводная связь не обязательно означает мобильность. Существует так называемая фиксированная беспроводная связь, когда взаимодействующие узлы постоянно располагаются в пределах небольшой территории -, например определенного здания. Фиксированная беспроводная связь применяется вместо проводной, когда по какой-то причине невозможно или невыгодно использовать кабельные линии связи. Причины могут быть разными. Например, малонаселенная или труднодоступная местность - болотистые районы и джунгли Бразилии, пустыни, крайний Север или Антарктида еще не скоро дождутся своих кабельных систем. Другой пример - здания, имеющие историческую ценность, стены которых непозволительно подвергать испытанию прокладкой кабеля. Еще один часто встречающийся случай использования фиксированной беспроводной связи - получение доступа к абонентам, дома которых уже подключены к точкам присутствия существующих уполномоченных операторов связи. Наконец, организация временной связи, например, при проведении конференции в здании, в котором отсутствует проводной канал, имеющий скорость, достаточную для качественного обслуживания многочисленных участников конференции.

Беспроводная связь уже достаточно давно используется для передачи данных. До недавнего времени большая часть применений беспроводной связи в компьютерных сетях была связана с ее фиксированным вариантом. Не всегда архитекторы и пользователи компьютерной сети знают о том, что на каком-то участке пути данные передаются не по проводам, а распространяются в виде электромагнитных колебаний через атмосферу или космическое пространство. Это может происходить в том случае, когда компьютерная сеть арендует линию связи у оператора первичной сети, и отдельный канал такой линии является спутниковым или наземным СВЧ-каналом.

Начиная с середины 90-х годов достигла необходимой зрелости и технология мобильных компьютерных сетей. С появлением стандарта IEEE 802.11 в 1997 году появилась возможность строить мобильные сети Ethernet, обеспечивающие взаимодействие пользователей независимо от того, в какой стране они находятся и оборудованием какого производителя они пользуются.

Беспроводные сети часто связывают с радиосигналами, однако это не всегда верно. Беспроводная связь использует широкий диапазон электромагнитного спектра, от радиоволн низкой частоты в несколько килогерц до видимого света, частота которого составляет примерно 8 х 10 14 Гц.

Беспроводная линия связи

Беспроводная линия связи строится в соответствии с достаточно простой схемой.

Каждый узел оснащается антенной, которая одновременно является передатчиком и приемником электромагнитных волн. Электромагнитные волны распространяются в атмосфере или вакууме со скоростьюво всех направлениях или же в пределах определенного сектора.

Направленность или ненаправленность распространения зависит от типа антенны. На рис. показана параболическая антенна, которая является направленной. Другой тип антенн - изотропные антенны, представляющие собой вертикальный проводник длиной в четверть волны излучения, являются ненаправленными. Они широко используются в автомобилях и портативных устройствах. Распространение излучения во всех направлениях можно также обеспечить несколькими направленными антеннами.

Так как при ненаправленном распространении электромагнитные волны заполняют все пространство (в пределах определенного радиуса, определяемого затуханием мощности сигнала), то это пространство может служить разделяемой средой. Разделение среды передачи порождает те же проблемы, что и в локальных сетях, однако здесь они усугубляются тем, что пространство в отличие от кабеля является общедоступным, а не принадлежит одной организации.

Кроме того, проводная среда строго определяет направление распространения сигнала в пространстве, а беспроводная среда является ненаправленной.

Для передачи дискретной информации с помощью беспроводной линии связи необходимо модулировать электромагнитные колебания передатчика в соответствии с потоком передаваемых битов. Эту функцию осуществляет DCE-устройство, располагаемое между антенной и DTE-устройством, которым может быть компьютер, коммутатор или маршрутизатор компьютерной сети.

Диапазоны электромагнитного спектра

Движение электронов порождает электромагнитные волны, которые могут рас­пространяться в пространстве (даже в вакууме). Это явление было предсказано британским физиком Джеймсом Клерком Максвеллом (James Clerk Maxwell) в 1865 году. Первый эксперимент, при котором их можно было наблюдать, поста­вил немецкий физик Генрих Герц (Heinrich Hertz) в 1887 году.

Характеристики беспроводной линии связи - расстояние между узлами, территория охвата, скорость передачи информации и т. п. - во многом зависят от частоты используемого электромагнитного спектра (частота f и длина волны X связаны соотношением).

На рис. показаны диапазоны электромагнитного спектра. Можно сказать, что они и соответствующие им беспроводные системы передачи информации делятся на четыре группы.

□ Диапазон до 300 ГГц имеет общее стандартное название - радиодиапазон. Союз ITU разделил его на несколько поддиапазонов (они показаны на рисунке), начиная от сверхнизких частот (Extremely Low Frequency, ELF) и заканчивая сверхвысокими (Extra High Frequency, EHF). Привычные для нас радиостанции работают в диапазоне от 20 кГц до 300 МГц, и для этих диапазонов существует хотя и не определенное в стандартах, однако чаете) используемое название широковещательное радио. Сюда попадают низкоскоростные системы AM- и FM-диапазонов, предназначенные для передачи данных со скоростями от нескольких десятков до сотен килобит в секунду. Примером могут служить радиомодемы, которые соединяют два сегмента локальной сети на скоростях 2400, 9600 или 19200 Кбит/с.

    Несколько диапазонов от 300 МГц до 3000 ГГц имеют также нестандартное название микроволновых диапазонов. Микроволновые системы представляют наиболее широкий класс систем, объединяющий радиорелейные линии связи, спутниковые каналы, беспроводные локальные сети и системы фиксированного беспроводного доступа, называемые также системами беспроводных абонентских окончаний (Wireless Local Loop, WLL).

    Выше микроволновых диапазонов располагается инфракрасный диапазон. Микроволновые и инфракрасный диапазоны также широко используются для беспроводной передачи информации. Так как инфракрасное излучение не может проникать через стены, то системы инфракрасных волн используются для образования небольших сегментов локальных сетей в пределах одного помещения.

    В последние годы видимый свет тоже стал применяться для передачи информации (с помощью лазеров). Системы видимого света используются как высокоскоростная альтернатива микроволновым двухточечным каналам для организации доступа на небольших расстояниях.

Распространение электромагнитных волн

Количество информации, которое может переносить электромагнитная волна, связано с частотным диапазоном канала. Современные технологии позволяют кодировать несколько бит на герц на низких частотах. При некоторых условиях это число может возрастать восьмикратно на высоких частотах.

Перечислим некоторые общие закономерности распространения электромагнитных волн, связанные с частотой излучения.

    Чем выше несущая частота, тем выше возможная скорость передачи информации.

    Чем выше частота, тем хуже проникает сигнал через препятствия. Низкочастотные радиоволны AM-диапазонов легко проникают в дома, позволяя обходится комнатной антенной. Более высокочастотный сигнал.телевидения требует, как правило, внешней антенны. И наконец, инфракрасный и видимый свет не прохода передачу прямой видимостью (Line Of Sight, LOS).

    Чем выше частота, тем быстрее убывает энергия сигнала с расстояниеям от источника. При. распространении электромагнитных волн в свободном пространстве (без отражений) затухание мощности сигнала пропорционально произведению квадрата расстояния от источника сигнала на квадрат частоты сигнала.

    Низкие частоты (до 2 МГц) распространяются вдоль поверхности земли. Именно поэтому сигналы АМ-радио могут передаваться на расстояния в сотни километров.

    Сигналы частот от 2 до 30 МГц отражаются ионосферой земли, поэтому они могут распространяться даже на более значительные расстояния, в несколько тысяч километров: (при достаточной мощности передатчика).

    Сигналы в.диапазоне выше: 30 МГц распространяются только только по прямой, то есть являются сигналами прямой видимости. При частоте свыше 4 ГГц их подстерегает неприятность - они начинают поглощаться водой, а это означает, что не только дождь, но и туман может стать причиной резкого ухудшения качества передачи микроволновых систем. Недаром испытания лазерных систем передачи данных часто проводят в Сиэтле, городе, который известен своими туманами:

Потребность в скоростной передаче информации является превалирующей, поэтому все современные системы беспроводной передачи информации работают в высокочастотных диапазонах, начиная с 800 МГц, несмотря на преимущества, которые сулят низкочастотные диапазоны благодаря распространению сигнала вдоль поверхности земли или отражения от ионосферы.

Для успешного использования микроволнового диапазона необходимо также учитывать дополнительные проблемы, связанные с поведением сигналов, распространяющихся в режиме прямой видимости и встречающих на своем пути препятствия.

На рис. показано, что сигнал, встретившись с препятствием, может распространяться в соответствии с тремя механизмами : отражением, дифракцией и рассеиванием.

Когда сигнал встречается с препятствием, которое частично прозрачно для данной длины волны и в то же время размеры которого намного превышают длину волны, то часть энергии сигнала отражается от такого препятствия. Волны микроволнового диапазона имеют длину несколько сантиметров, поэтому они частично отражаются от стен домов при передаче сигналов в городе. Если сигнал встречает непроницаемое для него препятствие (например, металлическую пластину) также намного большего размера, чем длина волны, то происходит дифракция - сигнал как бы огибает препятствие, так что такой сигнал можно получить, даже не находясь в зоне прямой видимости. И наконец, при встречес препятствием, размеры которого соизмеримы с длиной волны, сигнал рассеивается, распространяясь под различными углами.

В результате подобных явлений, которые повсеместно встречаются при беспроводной связи в городе, приемник может получить несколько копий одного и того же сигнала. Такой эффект называется многолучевым распространением сигнала. Результат многолучевого распространения сигнала часто оказывается отрицательным, поскольку один из сигналов может прийти с обратной фазой и подавить основной сигнал.

Так как время распространения сигнала вдоль различных путей будет в общем случае различным, то может также наблюдаться и межсимвольная интерференция, ситуация, когда в результате задержки сигналы, кодирующие соседние биты данных, доходят до приемника одновременно.

Искажения из-за многолучевого распространения приводят к ослаблению сигнала, этот эффект называется многолучевым замиранием. В городах многолучевое замирание приводит к тому, что ослабление сигнала становится пропорциональным не квадрату расстояния, а его кубу или даже четвертой степени!

Все эти искажения сигнала складываются с внешними электромагнитными помехами, которых в городе довольно много. Достаточно сказать, что в диапазоне 2,4 ГГц работают микроволновые печи.

Отказ от проводов и обретение мобильности приводят к высокому уровню помех в беспроводных линиях связи. Если интенсивность битовых ошибок (ВЕЯ) в проводных линиях связи равна, то в беспроводных линиях связи она достигает величины!

Проблема высокого уровня помех беспроводных каналов решается различными способами. Важную роль играют специальные методы кодирования, распределяющие энергию сигнала в широком диапазоне частот. Кроме того, передатчики сигнала (и приемники, если это возможно) стараются разместить на высоких башнях, чтобы избежать многократных отражений. Еще одним способом является применение протоколов с установлением соединений и повторными передачами кадров уже на канальном уровне стека протоколов. Эти протоколы позволяют быстрее корректировать ошибки, так как работают с меньшими значениями тайм-аутов, чем корректирующие протоколы транспортного уровня, такие как TCP.

Лицензирование

Итак, электромагнитные волны могут распространяться во всех направлениях на значительные расстояния и проходить через препятствия, такие как стены домов. Поэтому проблема совместного использования электромагнитного спектра является весьма острой и требует централизованного регулирования. В каждой стране есть специальный государственный орган, который (в соответствии с рекомендациями ITU) выдает лицензии операторам связи на использование определенной части спектра, достаточной для передачи информации по определенной технологии. Лицензия выдается на определенную территорию, в пределах которой оператор монопольно использует закрепленный за ним диапазон частот.

При выдаче лицензий правительственные органы руководствуются различными стратегиями. Наиболее популярными являются три: конкурс, лотерея, аукцион.

    Участники конкурса - операторы связи - разрабатывают детальные предложения. В них они описывают их будущие услуги, технологии, которые будут использоваться для реализации этих услуг, уровень цен для потенциальных клиентов и т. п. Затем комиссия рассматривает все предложения и выбирает оператора, который в наилучшей степени будет соответствовать общественным интересам. Сложность и неоднозначность критериев выбора победителя в прошлом часто приводили к значительным задержкам в принятии решений и коррупции среди государственных чиновников, поэтому некоторые страны, например США, отказались от такого метода. В то же время в других странах он все еще используется, чаще всего для наиболее значимых для страны услуг, например развертывания современных систем мобильной связи 3G.

    Лотерея - это наиболее простой способ, но он также не всегда приводит к справедливым результатам, поскольку в лотерее могут принимать участие и «подставные» операторы, которые не собираются вести операторскую деятельность, а хотят просто перепродать лицензию.

    Аукционы сегодня являются достаточно популярным способом выявления обладателя лицензии. Они отсекают недобросовестные компании и приносят немалые доходы государствам. Впервые аукцион был проведен в Новой Зеландии в 1989 году. В связи с бумом вокруг мобильных систем 3G многие государства хорошо пополнили свои бюджеты за счет подобных аукционов.

Существуют также три частотных диапазона, 900 МГц, 2,4 ГГц и 5 ГГц, которые рекомендованы ITU как диапазоны для международного использования без лицензирования. Эти диапазоны предназначены для использования промышленными товарами беспроводной связи общего назначения, например устройствами блокирования дверей автомобилей, научными и медицинскими приборами. В соответствии с назначением эти диапазоны получили название ISM -диапазонов (Industrial, Scientific, Medical - промышленность, наука, медицина). Диапазон 900 МГц является наиболее «населенным». Это и понятно, низкочастотная техника всегда стоила дешевле. Сегодня активно осваивается диапазон 2,4 ГГц, например, в технологиях IEEE 802.11 и Bluetooth. Диапазон 5 ГГц только начал осваиваться, несмотря на то, что он обеспечивает более высокие скорости передачи данных.

Обязательным условием использования этих диапазонов на совместной основе является ограничение максимальной мощности передаваемых сигналов уровнем 1 Ватт. Это условие ограничивает радиус действия устройств, чтобы их сигналы не стали помехами для других пользователей, которые, возможно, задействуют этот же диапазон частот в других районах города.

В России для гражданской радиосвязи выделены три диапазона частот:

27 МГц (гражданский диапазон), с разрешённой выходной мощностью передатчика до 10 Вт;

433 МГц (LPD), выделено 69 каналов для носимых радиостанций с выходной мощностью передатчика не более 0,01 Вт;

446 МГц (PMR), выделено 8 каналов для носимых радиостанций с выходной мощностью передатчика не более 0,5 Вт.

Существуют также специальные методы кодирования, которые уменьшают взаимное влияние устройств, работающих в ISM-диапазонах.

Инфракрасные и миллиметровые волны

Инфракрасное и миллиметровое излучения без использования кабеля широко применяется для связи на небольших расстояниях. Дистанционные пульты управления для телевизоров, видеомагнитофонов и стереоаппаратуры используют инфракрасное излучение. Они относительно направленные, дешевые и легко устанавливаемые, но имеют один важный недостаток: инфракрасное излучение не проходит сквозь твердые объекты (попробуйте встать между телевизором и пультом).

С другой стороны, тот факт, что инфракрасные волны не проходят сквозь стены, является также и положительным. Ведь это означает, что инфракрасная система в одной части здания не будет интерферировать с подобной системой в соседней комнате - вы, к счастью, не сможете управлять со своего пульта телевизором соседа. Кроме того, это повышает защищенность инфракрасной системы от прослушивания по сравнению с радиосистемой. По этой причине для использования инфракрасной системы связи не требуется государственная лицензия, в отличие от радиосвязи (кроме диапазонов ISM). Связь в инфракрасном диапазоне применяется в настольных вычислительных системах (например, для связи ноутбуков с принтерами), но все же не играет значимой роли в телекоммуникации.

Связь в видимом диапазоне

Ненаправленные оптические сигналы использовались в течение нескольких веков. Герой американской войны за независимость Пол Ревер (Paul Revere) в 1775 году в Бостоне использовал двоичные оптические сигналы, информируя с колокольни Старой Северной церкви (Old North Church) население о наступлении англичан. Более современным приложением является соединение локальных сетей в двух зданиях при помощи лазеров, установленных на крышах. Связь с помощью когерентных волн лазера является сугубо однонаправленной, поэтому для двусторонней связи необходимо на каждой крыше установить по лазеру и по фотодетектору. Такая технология позволяет организовать связь с очень высокой пропускной способностью при очень низкой цене. Кроме того, такая система довольно просто монтируется и, в отличие от микроволновой связи, не требует лицензии FCC (Федеральной комиссии связи США).

Узкий луч является сильной стороной лазера, однако он создает и некоторые проблемы. Чтобы попасть миллиметровым лучом в мишень диаметром 1 мм на расстоянии 500 м, требуется снайперское искусство высочайшей пробы. Обычно на лазеры устанавливаются линзы для небольшой расфокусировки луча.

Недостатком лазерного луча является также неспособность проходить сквозь дождь или густой туман, хотя в солнечные ясные дни он работает прекрасно. Тем не менее, автор однажды присутствовал на конференции в современной европейской гостинице, где организаторы заботливо предоставили комнату, полную терминалов, чтобы участники конференции могли читать свою электронную почту во время скучных презентаций. Поскольку местная телефонная станция не желала устанавливать большое количество телефонных линий всего на три дня, организаторы установили лазер на крыше и нацелили его на здание университетского компьютерного центра, который находится на расстоянии нескольких километров. В ночь перед конференцией они проверили связь - она работала прекрасно. В 9 часов следующего утра, в ясный солнечный день связь была полностью потеряна и отсутствовала весь день. Вечером организаторы опять тщательно проверили связь и снова убедились в ее прекрасной работе. На следующий день связи опять не было.

Когда конференция закончилась, организаторы обсудили эту проблему. Как выяснилось, в дневное время солнце нагревало крышу, горячий воздух от нее поднимался и отклонял лазерный луч, начинавший танцевать вокруг детектора. Этот эффект можно наблюдать невооруженным глазом в жаркий день на шоссе или над горячим радиатором автомобиля. Борясь с этим эффектом, астрономы располагают свои телескопы высоко в горах, подальше от атмосферы.

Спутниковые системы

Спутниковая связь используется для организации высокоскоростных микроволновых протяженных линий. Так как для таких линий связи нужна прямая видимость, которую из-за кривизны Земли невозможно обеспечить на больших расстояниях, то спутник как отражатель сигнала является естественным решением этой проблемы.

Идея использовать искусственный спутник Земли для создания линий связи появилась задолго до запуска в 1957 году первого такого спутника Советским Союзом. Писатель-фантаст Артур Кларк продолжил дело Жюля Верна и Герберта Уэллса, которым удалось описать много технических изобретений до их появления. Кларк в 1945 году описал геостационарный спутник, который висит над одной точкой экватора и обеспечивает связью большую территорию Земли.

Первый спутник, запущенный Советским Союзом в годы холодной войны, обладал очень ограниченными телекоммуникационными возможностями - он только передавал радиосигнал «бип-бип», извещая мир о своем присутствии в космосе. Однако успех России в космосе подхлестнул усилия Америки, и в 1962 году она запустила первый телекоммуникационный спутник Telstar-1, который поддерживал 600 голосовых каналов.

В настоящее время функции спутника как телекоммуникационного узла, естественно, усложнились. Сегодня спутник может играть роль узла первичной сети, а также телефонного коммутатора и коммутатора/маршрутизатора компьютерной сети. Для этого аппаратура спутников может взаимодействовать не только с наземными станциями, но и между собой, образуя прямые космические беспроводные линии связи. Принципиально техника передачи микроволновых сигналов в космосе и на Земле не отличается, однако у спутниковых линий связи есть и очевидная специфика - один из узлов такой линии постоянно находится в полете, причем на большом расстоянии от других узлов.

Спутникам связи присущи определенные свойства, делающие их чрезвычайно привлекательными для самых разных областей применения. Проще всего пред­ставить себе спутник связи в виде своего рода огромного микроволнового повто­рителя, висящего в небе. Он включает в себя несколько транспондеров, каждый из которых настроен на определенную часть частотного спектра. Транспондеры усиливают сигналы и преобразуют их на новую частоту, чтобы при отправке на Землю отраженный сигнал не накладывался на прямой.

Технические информационные средства постоянно совершенствуются, а производители стремятся вложить в них как можно больше комфорта для потребителя. В настоящее время практически все электронные устройства имеют как минимум один интерфейс для передачи данных. Благодаря этому их можно связать в общую локальную сеть внутри квартиры.

Рассмотрим краткий обзор ее возможностей и советы, которые облегчат работу домашнему мастеру по созданию проводных и беспроводных каналов связи, обеспечат надежную работу всех устройств домашней сети интернет.


Назначение домашней сети

Благами объединения различных электронных устройств в единую информационную систему мы с вами постоянно пользуемся, даже не замечая этого, когда:

  • ищем информацию в сети интернет с электронных устройств;
  • смотрим фильм или телепередачу на телевизоре через интернет;
  • печатаем фотографии напрямую со смартфона на принтере;
  • в отсутствии хозяина квартиры;
  • анализируем происходящие в квартире события в реальном масштабе времени по IP-камерам;
  • или выполняем другие операции.

Этот неполный перечень возможностей, которые предоставляет нам объединение различных устройств в единую сеть, можно значительно расширить.

Виды домашних сетей

На практике используются два вида обмена информацией по:

  1. радиоканалу (беспроводное соединение);
  2. специальному кабелю (проводной сети Ethernet).

Возможно использование обоих видов в единой сети, где одно оборудование работает без проводов, а другое - за счет подсоединения предназначенным для этих целей кабелем.

Каждый вид связи имеет свои достоинства и недостатки.

Беспроводное соединение

Для передачи информации по радиоканалам внутри дома используются технологии:

  • Wi-Fi.

Они обладают различными возможностями.

Спецификация Bluetooth позволяет осуществлять беспроводную радиосвязь между портативными устройствами, поддерживающими этот вид связи.


В технологию передачи заложено использование радиоволн с непостоянной, быстроменяющейся частотой, которую знают только передатчик и приемник.

Этим обеспечивается как защита от помех, возникающих от работы нескольких близко расположенных устройств, так и безопасность передачи данных.

В домашних условиях Bluetooth применяется чаще всего для подключения к портативным устройствам гарнитуры, мышки или клавиатуры, реже принтеров, фотоаппаратов и другой совместимой техники.

Wi-Fi как альтернатива Ethernet

Беспроводное соединение Wi-Fi получает в последнее время все большее распространение благодаря отсутствию привязки к проводам.


Практически все современные девайсы имеют встроенное оборудование для использования беспроводных технологий.

Основные отличия по передаче данных посредством проводного Ethernet соединения с беспроводными радиоканалами Wi-Fi сведены в таблицу.

Как видно из таблицы, расстояния для передачи сигнала и скорости обмена данными по беспроводной технологии хуже. Но, величины обеих характеристик вполне достаточны для работы внутри помещения.

С точки зрения обеспечения безопасности передачи информации у беспроводного Wi-Fi также имеются проблемы. Однако защита домашней сети не всегда имеет первостепенное значение. Поэтому отдельные пользователи даже не вникают в этот вопрос либо по незнанию, либо просто считая, что им нечего защищать.

В целом же беспроводный Wi-Fi уступает по характеристикам проводному Ethernet, но его удобства и мобильность обеспечивают широкое применение среди бытовых электронных девайсов.

Проводное соединение

Этот метод требует больше затрат на приобретение дополнительного оборудования и прокладку кабеля в кабель-каналах, что влияет .


Следует учитывать, что провода, расположенные рядом с оборудованием, могут путаться друг с другом, создавать беспорядок, снижать безопасность эксплуатации.

Был, правда, придуман один оригинальный способ передачи информации. Он использует каналы бытовой электрической сети 220В за счет подключения к ней PLC-модема. Эта методика позволяет сэкономить средства на прокладке кабеля. Но по ряду причин она не стала развиваться.

Доступ к сети интернет в квартире, частном доме и офисе

В домашних и офисных сетях чаще всего применяется сетевое подключение по проводным каналам за счет технологии Ethernet. Провайдеры, (организации, занимающиеся доступом клиентов к сети интернет) обычно предоставляют свое оборудование (маршрутизатор или модем) абонентам для установки в помещениях.

Оно отличается по конструкции и может иметь:

  • единственный порт (разъем для подключения кабеля) или несколько;
  • техническую возможность передачи Wi-Fi либо быть без нее;
  • дополнительные функции (подключение интернет-ТВ, и другие).

Благодаря этому оборудованию у нас в квартире работает интернет. Чтобы обеспечить к нему подключение по Wi-Fi, достаточно на принимающем электронном устройстве указать:

  • сетевое имя;
  • ключ (пароль) для доступа в свою сеть.

Оба этих параметра прописываются в модеме.

Для проводной сети чаще всего происходит автоматическое определение параметров оборудования и его подключение (для этого должен быть включен DHCP протокол). Однако в некоторых случаях может потребоваться их настройка.

Вообще, компьютерная локальная сеть не обязательно должна иметь доступ к интернет. Но, учитывая сравнительно дешевые тарифы на подключение и большие возможности расширения пользовательских функций за счет доступа к всемирной паутине в домашних условиях такие сети становятся редкостью.

Технология подключения к интернет от провайдера до абонента

Организация коммутируемого доступа (Dial-UP)

Это довольно «древний» метод подключения, работающий на телефонных сетях с устаревшими координатными АТС. Связь через интернет создается модемом, который дозванивается на станционное оборудование и коммутируется с ним.


Скорость соединения при подобном подключении сильно зависит от качества связи и возникающих помех. Она редко превышает 32-56 Кбит/сек. Сама телефонная линия при этом занята и не может быть использована для разговора.

ISDN (Integrated Services Digital Network)

Такая сеть позволяет одновременно передавать голос и цифровые данные.


В отличии от Dial-Up телефон не будет занят во время подключения к интернет, а его скорость будет на порядок выше.

PON (Passive optical network)

Производиться постепенная замена обычного кабеля на оптоволокно, которое, несмотря на повышенную стоимость, открывает совсем другие возможности.

Технология PON позволяет передавать данные с высокой скоростью от оборудования телекоммуникационной компании до абонента. Качество передаваемого сигнала по оптоволокну на порядок выше чем по обычному кабелю.

WiMAX

Вид беспроводной связи, способной передавать информацию на расстояния в несколько километров на высокой скорости. Предоставляется телекоммуникационными компаниями для доступа к сети интернет своим клиентам, посредством установки базовых станций и оконечного оборудования WiMAX. Эта технология набирает популярность.

Спутниковый интернет

Организация канала доступа через спутник требует:

  1. установки специфического спутникового оборудования, настроенного на спутник - антенны «тарелки»;
  2. регистрации у провайдера, предоставляющего доступ в интернет, через указанный спутник.

Стоит отметить, что имеется два варианта пользования сетью интернет через спутник:

  1. ассиметричная организация канала связи;
  2. симметричный канал.

Первый способ дешевле для пользователя. Исходящие запросы пакетов идут отдельным каналом. Это очень незначительный трафик и для него достаточно использовать мобильный интернет, оплачиваемый отдельно.

Прием же запрошенных данных осуществляется через спутниковый канал. Скорость приема и получаемый трафик со спутника получаются значительно выше, чем для исходящих пакетов.

Второй вариант намного дороже. Он предусматривает обмен входящего и исходящего трафика непосредственно через спутник. Неоспоримым преимуществом этого вида подключения является возможность организации доступа к интернет с любой точки земного шара, если используется необходимое оборудование.

Как правило, он используется при необходимости иметь доступ в интернет и отсутствию других вариантов его подключения.

Технология DOCSIS или соединение по ТВ кабелю

Подобный вид подключения используют некоторые операторы кабельного телевидения. Принцип работы такой схемы довольно прост. Кабель коаксиального типа, заведенный в квартиры к абонентам за счет делителя разветвляется на два выхода:

  1. один канал работает непосредственно на телевизор;
  2. второй выход соединяется через модем, использующий технологию DOCSIS (Data Over Cable Service Interface Specifications).

Этот модем и раздает затем интернет на принимающие электронные устройства. А в простейшем случае можно вообще использовать специальную компьютерную плату (ТВ-тюнер), поддерживающую эту технологию.

Такой способ не стал широко применяться из-за существенных недостатков:

  • ширина канала сильно зависит от количества подключенных абонентов, пользующихся интернет соединением;
  • невысокая скорость передачи информации.

Однако операторы кабельного телевидения могут использовать эту возможность для оказания дополнительных услуг своим клиентам.

Мобильный интернет

Главное достоинство этого способа - интернет всегда под рукой, но он ограничен пределами действующей сети оператора мобильной связи. Подключение реализуется через встроенный модем мобильного устройства (телефона, смартфона, коммуникатора, планшета) либо за счет работы отдельного USB-модема.

Мобильный интернет использует один из видов технологий:

  • GPRS,
  • EDGE,

Даже несмотря на низкую скорость передачи информации (GPRS - до 40 Кбит/с, EDGE - до 236 Кбит/сек, 3G - до 3,6 Мбит/сек, и лишь 4G - около 100 Мбит/сек) этот вид доступа в интернет пользуется популярностью.

Рассмотренный перечень способов передачи данных лучше всего отвечает интересам домашнего мастера по обеспечению связи через сеть интернет. Остальные методы больше подходят для офисных организаций.