Типы экранов в смартфонах: какой выбрать? Какие бывают матрицы мониторов

Аббревиатуры обычно применяются для обозначения характеристик или специфики. В данном случае в отношении сравнения экранов IPS и TFT возникает ужасная путаница, потому что технология (матрица) IPS – это разновидность матриц TFT и только. Невозможно сравнивать между собой эти 2 технологии.

НО! Есть технология TN-TFT – вот между ней и IPS можно делать выбор и сравнивать. Поэтому, когда мы говорим о том, какой экран лучше: IPS или TFT, мы имеем в виду TFT-экраны в любом случае, но изготовленные на основе разных технологий: TN и IPS.

Кратко о TN-TFT и IPS

TN-TFT – это технология, на основе которой выполнена матрица жидкокристаллического экрана. Здесь кристаллы, когда на их ячейки не подается напряжение, «смотрят» друг на друга под углом 90 градусов. Они располагаются по спирали, и когда на них подается напряжение, то они поворачиваются таким образом, чтобы образовать нужный цвет.

IPS – эта технология отличается тем, что здесь кристаллы располагаются параллельно друг другу в единой плоскости экрана (в первом случае спирально). Все это сложно… на практике отличие между экранами на основе матриц TN и IPS заключается в том, что IPS идеально отображает черный цвет, в результате чего картинка получается более четкой и насыщенной.

Что касается TN-TFT, то качество цветопередачи данной матрицы не внушает доверия. Здесь каждый пиксель может иметь свой собственный оттенок, следовательно, цвета искажаются. IPS-матрицы показывают картинку гораздо лучше, а также более бережно обращаются с цветами. Также IPS позволяют наблюдать за происходящим на экране под большим углом. Если смотреть на экран TN-TFT под таким же углом, то цвета будут искажены настолько, что будет сложно разобрать картинку.

Преимущества TN

Однако матрицы TN-TFT обладают своими преимуществами. Главное из них – более низкая скорость отклика пикселей. IPS нужно больше времени, чтобы весь массив параллельных кристаллов повернуть в нужный угол. Поэтому если речь идет о выборе монитора для игр или для отображения динамических сцен, когда очень важна скорость прорисовки, то лучше всего выбирать именно экраны на основе технологии TN-TFT.

С другой стороны, при обычной работе с ПК разницу во времени отклика пикселей заметить невозможно. Она видна только при просмотре динамических сцен, что часто бывает в боевиках и видеоиграх.

Еще один плюс – низкое потребление электроэнергии. IPS-матрицы энергоемкие, т.к. для поворота массива кристаллов им необходимо большое напряжение. Следовательно, экраны на основе TFT лучше подходят для мобильных гаджетов, где остро стоит вопрос экономии энергии аккумулятора.

И еще – матрицы TN-TFT дешевые. Не найти сегодня монитора (не считая б/у или ЭЛТ модели), который бы был дешевле модели на основе технологии TN. Любое бюджетное устройство электроники с экраном обязательно будет использовать матрицу TN-TFT.

Итак, какой же экран лучше: TFT или IPS:

  1. IPS менее отзывчивы за счет большего времени отклика (плохо для игр и экшн-сцен);
  2. IPS гарантируют практически идеальную цветопередачу и контрастность;
  3. IPS обладает более широким углом обзора;
  4. IPS энергозатратны и потребляют больше электричества;
  5. Они также более дорогие, в то время как TN-TFT дешевые.

Вот, в принципе, и вся разница между данными матрицами. Если учитывать все преимуществ и недостатки, то, конечно же, легко прийти к конкретному выводу: IPS экраны гораздо лучше.


Отправить ответ

Выбирая себе монитор, телевизор или телефон, покупатель часто стает перед выбором типа экрана. Какому же из них отдать предпочтение: IPS или TFT? Причиной такого замешательства стало постоянное усовершенствование технологий по изготовлению дисплеев.

Все мониторы с TFT технологией можно разделить на три основных типа:

  1. TN+Film.
  2. PVA/MVA.

То есть, технология TFT представляет собой жидкокристаллический дисплей с активной матрицей , а IPS — это одна из разновидностей этой матрицы . И сравнение этих двух категорий не возможно, так как практически это одно и тоже. Но если все же разобраться более подробно в том, что собой представляет дисплей с TFT матрицей, то сравнение провести можно, но не между экранами, а между технологиями их изготовления: IPS и TFT-TN.

Общее понятие TFT

TFT (Thin Film Transistor) переводится, как тонкопленочный транзистор . В основе ЖК дисплея с технологией TFT лежит активная матрица. Такая технология подразумевает спиральное расположение кристаллов, которые в условиях сильного напряжения делают поворот таким образом, что экран стает черным. А при отсутствии напряжения большой мощности мы видим белый экран. Дисплеи с такой технологией на выходе выдают лишь темно-серый цвет вместо идеального черного. Поэтому TFT дисплеи пользуются популярностью в основном в изготовлении более дешевых моделей.

Описание IPS

Технология матрицы ЖК экрана IPS (In-Plane Switching) подразумевает параллельное расположение кристаллов по всей плоскости монитора . Спирали здесь отсутствуют. И поэтому кристаллы в условиях сильного напряжения не поворачиваются. Иными словами технология IPS — это ничто иное, как улучшенная TFT. Она намного лучше передает черный цвет, тем самым улучшая степень контрастности и яркости изображения. Именно поэтому данная технология стоит дороже, чем TFT, и используется в более дорогих моделях.

Основные отличия TN-TFT и IPS

Желая реализовать как можно больше продукции, менеджеры по продажам вводят людей в заблуждение о том, что TFT и IPS — это совершенно разные типы экранов. Специалисты из сферы маркетинга не дают исчерпывающих сведений о технологиях и это позволяет им выдавать уже существующую разработку за только что появившуюся.

Рассматривая IPS и TFT, мы видим, что это практически одно и тоже . Разница лишь в том, что монитор с IPS технологией являются более свежей разработкой, по сравнению с TN-TFT. Но несмотря на это, все же можно выделить ряд отличий между данными категориями:

  1. Повышенная контрастность . То, как отображается черный цвет, напрямую влияет на контрастность изображения. Если наклонить экран с технологией TFT без IPS, то прочитать что-либо будет практически не возможно. А все из-за того, что экран при наклоне стает темным. Если же рассматривать IPS матрицу, то, благодаря тому, что передача черного цвета производится кристаллами идеально, изображение получается достаточно четким.
  2. Передача цвета и количество отображаемых оттенков . Матрица TN-TFT не лучшим образом передает цвета. А все из-за того, что каждый пиксель имеет собственный оттенок и это приводит к искажению цвета. Экран с технологией IPS намного бережнее передает изображение.
  3. Задержка отклика . Одним из преимуществ TN-TFT экранов над IPS является высокоскоростной отклик. А все потому, что на поворот множества параллельных кристаллов IPS затрачивает много времени. Отсюда делаем вывод, что там, где скорость прорисовки имеет большое значение, лучше использовать экран с матрицей TN. Дисплеи с технологией IPS работают медленнее, но в повседневной жизни этого не заметно. А выявить данное различие можно лишь применив специально предназначенные для этого технологические тесты. Как правило, предпочтение лучше отдавать дисплеям с матрицей IPS.
  4. Угол обзора . Благодаря широкому углу обзора экран с технологией IPS не искажает изображения, даже если смотреть на него под углом в 178 градусов. При чем такое значение угла обзора может быть как по вертикали, так и по горизонтали.
  5. Энергоемкость . Дисплеи с IPS технологией, в отличии от TN-TFT, требуют больше энергии. Это обусловлено тем, что для того, чтобы повернуть параллельные кристаллы, нужно большое напряжение. В итоге на аккумулятор идет больше нагрузки, чем при использовании TFT матрицы. Если вам необходимо устройство с небольшой энергоемкостью, то TFT технология будет идеальным вариантом.
  6. Ценовая политика . В большинстве бюджетных моделей электроники используют дисплеи на основе TN-TFT технологии, поскольку этот вид матрицы является самым недорогим.На сегодняшний день мониторы с IPS матрицей хоть и стоят дороже, но их используют практически во всех современных электронных моделях. Это постепенно приводит к тому, что IPS матрица практически вытесняет оборудование с технологией TN-TFT.

Итоги

Исходя из всего выше сказанного, можно подвести следующий итог.

Как обычно бывает с аббревиатурами, используемыми для обозначения специфики и теххарактеристик, в отношении TFT и IPS происходит путаница и подмена понятий. Во многом благодаря неквалифицированным описаниям электронных устройств в каталогах потребители ставят вопрос выбора изначально неверно. Так, матрица IPS — разновидность матриц TFT, так что сравнивать между собой эти две категории невозможно. Однако для российского потребителя аббревиатура TFT зачастую обозначает технологию TN-TFT, и в этом случае уже можно делать выбор. Так что, говоря об отличиях экранов TFT и IPS, мы будем иметь в виду TFT-экраны, изготовленные по технологиям TN и IPS.

TN-TFT — технология выполнения матрицы жидкокристаллического (на тонкопленочных транзисторах) экрана, когда кристаллы, при отсутствии напряжения, поворачиваются друг к другу под углом 90 градусов в горизонтальной плоскости между двумя пластинами. Кристаллы расположены по спирали, и в итоге при подаче максимального напряжения кристаллы поворачиваются таким образом, что при прохождении света через них образуются черные пиксели. Без напряжения — белые.

IPS — технология выполнения матрицы жидкокристаллического (на тонкопленочных транзисторах) экрана, когда кристаллы расположены параллельно друг другу вдоль единой плоскости экрана, а не спирально. При отсутствии напряжения молекулы жидких кристаллов не поворачиваются.

На практике самое важное отличие IPS-матрицы от TN-TFT-матрицы состоит в повышенном уровне контрастности за счет практически идеального отображения черного цвета. Картинка получается более четкой.

Качество цветопередачи матриц TN-TFT оставляет желать много лучшего. Каждый пиксель в этом случае может иметь собственный оттенок, отличный от других, в результате чего искажаются цвета. IPS уже обращается с изображением гораздо бережнее.

Слева — планшет с TN-TFT матрицей. Справа — планшет с IPS матрицей

Скорость отклика у TN-TFT несколько выше, чем у других матриц. IPS требуется время, чтобы повернуть весь массив параллельных кристаллов. Таким образом, при выполнении задач, где важна скорость прорисовки, гораздо выгоднее использовать матрицы TN. С другой стороны, в повседневном применении разницу во времени отклика человек не замечает.

Мониторы и дисплеи, созданные на базе IPS-матриц, гораздо более энергоемкие. Это обусловлено высоким уровнем напряжения, требуемого для поворота массива кристаллов. Потому задачам экономии энергии в мобильных и портативных устройствах отвечает больше технология TN-TFT.

Экраны, основанные на IPS, обладают широкими углами обзора, то есть не искажают и не инверсируют цвета, если взгляд падает под углом. В отличие от TN, углы обзора IPS составляют 178 градусов как по вертикали, так и по горизонтали.

Еще одно отличие, немаловажное для конечного потребителя — цена. TN-TFT на сегодняшний день представляет собой самый дешевый и самый массовый вариант матрицы, поэтому ее используют в бюджетных моделях электроники.

Выводы сайт

  1. Экраны IPS менее отзывчивы, время задержки отклика у них больше.
  2. Экраны IPS обеспечивают более качественную цветопередачу и контрастность.
  3. Углы обзора экранов IPS существенно больше.
  4. Экраны IPS требуют больше энергии.
  5. Экраны IPS дороже.

Для многих жидкокристаллические дисплеи (LCD) ассоциируются, прежде всего, с плоскими мониторами, "крутыми" телевизорами, ноутбуками, видеокамерами и сотовыми телефонами. Некоторые добавят сюда КПК, электронные игры, банковские автоматы. Но существует еще множество областей, где необходимы дисплеи с высокой яркостью, прочной конструкцией, работающие в широком диапазоне температур.

Плоские дисплеи нашли применение там, где критичными параметрами являются минимальные энергопотребление, вес и габариты. Машиностроение, автомобильная промышленность, железнодорожный транспорт, морские буровые установки, горное оборудование, наружные торговые точки, авиационная электроника, морской флот, специальные транспортные средства, системы безопасности, медицинское оборудование, вооружение - вот далеко не полный перечень применений жидкокристаллических дисплеев.

Постоянное развитие технологий в этой области позволило снизить стоимость производства LCD до такого уровня, при котором произошел качественный переход: дорогая экзотика стала обыденным явлением. Важным фактором быстрого распространения ЖК-дисплеев в промышленности стала и простота применения.

В этой статье рассматриваются основные параметры различные типов жидкокристаллических дисплеев, что позволит сделать осознанный и правильный выбор LCD для каждого конкретного применения (метод "побольше и подешевше" практически всегда оказывается слишком дорогим).

Все многообразие ЖК-дисплеев можно разделить на несколько типов в зависимости от технологии производства, конструкции, оптических и электрических характеристик.

Технология

В настоящее время при производстве LCD применяются две технологии (рис.1): пассивная матрица (PMLCD-STN) и активная матрица (AMLCD).

Технологии MIM-LCD и Diode-LCD не получили широкого распространения и поэтому не будем на них тратить время.

Рис. 1. Виды технологий жидкокристаллических дисплеев

STN (Super Twisted Nematic)- матрица, состоящая из ЖК-элементов с изменяемой прозрачностью.

TFT (Thin Film Transistor)- активная матрица, в которой каждый пиксел управляется отдельным транзистором.

По сравнению с пассивной матрицей, TFT LCD имеет более высокую контрастность, насыщенность, меньшее время переключения (нет "хвостов" у движущихся объектов).

Управление яркостью в жидкокристаллическом дисплее основано на поляризации света (курс общей физики): свет поляризуется, проходя через поляризационный фильтр (с определенным углом поляризации). При этом наблюдатель видит только снижение яркости света (почти в 2 раза). Если за этим фильтром поставить еще один такой фильтр, то свет будет полностью поглощаться (угол поляризации второго фильтра перпендикулярен углу поляризации первого) или полностью проходить (углы поляризации совпадают). При плавном изменении угла поляризации второго фильтра интенсивность проходящего света будет также плавно изменяться.

Принцип действия и "бутербродная" структура всех TFT LCD примерно одинакова (рис. 2). Свет от лампы подсветки (неоновая или светодиоды) проходит через первый поляризатор и попадает в слой жидких кристаллов, управляемых тонкопленочным транзистором (TFT). Транзистор создает электрическое поле, которое формирует ориентацию жидких кристаллов. Пройдя такую структуру, свет меняет свою поляризацию и будет - или полностью поглощен вторым поляризационным фильтром (черный экран), или не будет поглощаться (белый), или поглощение будет частичным (цвета спектра). Цвет изображения определяют цветовые фильтры (аналогично электронно-лучевым трубкам, каждый пиксел матрицы состоит из трех субпикселов - красного, зеленого и голубого).


Рис. 2. Структура TFT LCD

Пиксел TFT

Цветные фильтры для красного, зелёного и синего цветов интегрированы в стеклянную основу и расположены близко друг к другу. Это может быть вертикальная полоса, мозаичная структура или дельта-структура (рис. 3). Каждый пиксел (точка) состоит из трёх ячеек указанных цветов (субпикселей). Это означает, что при разрешении m x n активная матрица содержит 3m x n транзисторов и субпикселов. Шаг пиксела (с тремя субпикселами) для 15.1" TFT ЖК-дисплея (1024 x 768 точек) составляет примерно 0.30 мм, а для 18.1" (1280 x 1024 точки)- 0.28 мм. TFT LCD имеют физическое ограничение, которое определяется максимальной площадью экрана. Не ждите разрешения 1280 x 1024 при диагонали 15" и шаге точки 0.297 мм.


Рис. 3. Структура цветного фильтра

На близком расстоянии точки явственно различимы, но это не беда: при формировании цвета используется свойство человеческого глаза смешивать цвета при угле зрения менее 0,03°. На расстоянии 40 см от ЖК-дисплея при шаге между субпикселами 0,1 мм угол зрения составит 0,014° (цвет каждого субпиксела различит только человек с орлиным зрением).

Типы ЖК-дисплеев

TN (Twist Nematic) TFT или TN+Film TFT - первая технология, появившаяся на рынке ЖК-дисплеев, основное достоинство которой& - дешевизна. Недостатки: черный цвет больше похож на темно-серый, что приводит к низкой контрастности изображения, "мертвые" пиксели (при выходе из строя транзистора) очень яркие и заметные.

IPS (In-Pane Switching) (Hitachi) или Super Fine TFT (NEC, 1995 год). Характеризуется наибольшим углом обзора и высокой точностью цветопередачи. Угол обзора расширен до 170°, остальные функции - как у TN+Film (время отклика порядка 25мс), практически идеальный черный цвет. Преимущества: хорошая контрастность, "мертвый" пиксель - черный.

Super IPS (Hitachi), Advansed SFT (производитель - NEC). Достоинства: яркое контрастное изображение, искажения цвета почти незаметны, увеличены углы обзора (до 170° по вертикали и по горизонтали) и обеспечена исключительная четкость.

UA-IPS (Ultra Advanced IPS), UA-SFT (Ultra Advanced SFT) (NEC). Время реакции достаточно для обеспечения минимальных искажений цвета при просмотре экрана под разными углами, повышенная прозрачность панели и расширение цветовой гаммы при достаточно высоком уровне яркости.

MVA (Multi-Domain Vertical Alignment) (Fujitsu).Основное преимущество - наименьшее время реакции и высокая контрастность. Главный недостаток - высокая стоимость.

PVA (Patterned Vertical Alignment) (Samsung). Микроструктурное вертикальное размещение ЖК.

Конструкция

Конструкция жидкокристаллического дисплея определяется расположением слоев в "бутерброде" (включая и светопроводящий слой) и имеет наибольшее значение для качества изображения на экране (в любых условиях: от темного помещения до работы при солнечном свете). В настоящее время используются три основных типа цветных LCD:

  • пропускающий (transmissive), предназначенный в основном для оборудования, работающего в помещении;
  • отражающий (reflective) применяется в калькуляторах и часах;
  • проекционный (projection) используется в ЖК-проекторах.

Компромиссной разновидностью пропускающего типа дисплея для работы, как в помещении, так и при внешнем освещении, является полупрозрачный (transflective) тип конструкции.

Пропускающий тип дисплея (transmissive) . В этом типе конструкции свет поступает сквозь жидкокристаллическую панель с задней стороны (подсветка) (рис. 4).По этой технологии сделаны большинство ЖК-дисплеев, используемых в ноутбуках и карманных компьютерах. Transmissive LCD имеет высокое качество изображения в помещении и низкое (черный экран) при солнечном свете, т.к. отраженные от поверхности экрана солнечные лучи полностью подавляют свет, излучаемый подсветкой. Эта проблема решается (в настоящее время) двумя способами: увеличением яркости задней подсветки и уменьшением количества отраженного солнечного света.


Рис. 4. Конструкция жидкокристаллического дисплея пропускающего типа

Для работы при дневном освещении в тени необходима лампа подсветки, обеспечивающая 500 кд/м2, при прямом солнечном свете - 1000 кд/м 2 . Яркости в 300 кд/м 2 можно добиться путем предельного увеличения яркости одной лампы CCFL (Cold Cathode Fluorescent Lamp) или добавлением второй лампы, расположенной напротив. Модели жидкокристаллических дисплеев с повышенной яркостью используют от 8 до 16 ламп. Однако увеличение яркости подсветки увеличивает расход энергии батарей (одна лампа подсветки потребляет около 30% энергии, используемой устройством). Следовательно, экраны с повышенной яркостью можно использовать только при наличии внешнего источника питания.

Уменьшение количества отраженного света достигается нанесением антиотражающего покрытия на один или несколько слоев дисплея, заменой стандартного поляризационного слоя на минимально отражающий, добавлением пленок, повышающих яркость и, таким образом, увеличивающих эффективность источника света. В ЖК-дисплеях Fujitsu преобразователь заполняется жидкостью с коэффициентом рефракции, равным коэффициенту рефракции сенсорной панели, что значительно сокращает количество отраженного света (но сильно сказывается на стоимости).

Полупрозрачный тип дисплея (transflective) похож на пропускающий, но у него между слоем жидких кристаллов и подсветкой имеется т. н. частично отражающий слой (рис.5). Он может быть или частично серебряным, или полностью зеркальным со множеством маленьких отверстий. Когда такой экран используется в помещении, он работает аналогично transmissive LCD, в котором часть освещения поглощается отражающим слоем. При дневном освещении солнечный свет отражается от зеркального слоя и освещает слой ЖК, при этом свет проходит жидкие кристаллы дважды (внутрь, а затем наружу). Как следствие, качество изображения при дневном освещении ниже, чем при искусственном освещении в помещении, когда свет проходит LCD один раз.


Рис. 5. Конструкция жидкокристаллического дисплея полупрозрачного типа

Баланс между качеством изображения в помещении и при дневном освещении достигается подбором характеристик пропускающего и отражающего слоев.

Отражающий тип дисплея (reflective) имеет полностью отражающий зеркальный слой. Все освещение (солнечный свет или свет передней подсветки) (рис. 6), проходит сквозь ЖКИ, отражается от зеркального слоя и снова проходит сквозь ЖКИ. В этом случае качество изображения у дисплеев отражающего типа ниже, чем у полупропускающего (так как в обоих случаях используются сходные технологии). В помещении передняя подсветка не так эффективна, как задняя, и, соответственно, качество изображения - ниже.


Рис. 6. Конструкция жидкокристаллического дисплея отражающего типа

Основные параметры жидкокристаллических панелей

Разрешение. Цифровая панель, число пикселей в которой строго соответствует номинальному разрешению, должна корректно и быстро масштабировать изображение. Простой способ проверки качества масштабирования - изменение разрешения (на экране текст, написанный мелким шрифтом). По контурам букв легко заметить качество интерполяции. Качественный алгоритм дает ровные, но немного размытые буквы, тогда как быстрая целочисленная интерполяция обязательно вносит искажения. Быстродействие - второй параметр разрешения (для масштабирования одного кадра требуется время на интерполяцию).

Мертвые пиксели. На плоской панели могут не работать несколько пикселей (они всегда одного цвета), которые появляются в процессе производства и восстановлению не подлежат.

Стандарт ISO 13406-2 определяет предельные значения количества дефектных пикселов на миллион. В соответствии с таблицей ЖК-панели делятся на 4 класса.

Таблица 1

Тип 1 - постоянно светящиеся пиксели (белый); Тип 2 - "мертвые" пиксели (черный); Тип 3 - дефектные красные, синие и зеленые субпиксели.

Угол обзора. Максимальный угол обзора определяется как угол, при обзоре с которого контрастность изображения уменьшается в 10 раз. Но в первую очередь при изменении угла обзора от 90(видны искажения цвета. Поэтому, чем больше угол обзора, тем лучше. Различают горизонтальный и вертикальный угол обзора, рекомендуемые минимальные значения - 140 и 120 градусов соответственно (наилучшие углы обзора даёт технология MVA).

Время отклика (инерционность)- время, за которое транзистор успевает изменить пространственную ориентацию молекул жидких кристаллов (чем меньше, тем лучше). Для того чтобы быстро движущиеся объекты не казались смазанными, достаточно времени отклика 25 мс. Этот параметр состоит из двух величин: времени на включение пикселя (come-up time) и времени на выключение (come-down time). Время отклика (точнее, время выключения как наибольшее время, за которое отдельный пиксель максимально изменяет свою яркость) определяет частоту обновления изображения на экране

FPS = 1 с/время отклика.

Яркость - преимущество ЖК-дисплея, которая в среднем в два раза выше показателей ЭЛТ: с увеличением интенсивности лампы подсветки сразу возрастает яркость, а в ЭЛТ необходимо усиливать поток электронов, что приведёт к значительному усложнению её конструкции и повысит электромагнитное излучение. Рекомендуемое значение яркости - не менее 200 кд/м 2 .

Контрастность определяется как соотношение между максимальной и минимальной яркостью. Основная проблема заключается в сложности получения точки чёрного цвета, т.к. лампа подсветки включена постоянно и для получения тёмных тонов используется эффект поляризации. Чёрный цвет зависит от качества перекрытия светового потока подсветки.

ЖК-дисплеи как сенсоры. Снижение стоимости и появление моделей LCD, работающих в жестких условиях эксплуатации, позволило совместить в одном лице (в лице жидкокристаллического дисплея) средство вывода визуальной информации и средство ввода информации (клавиатура). Задача построения такой системы упрощается использованием контроллера последовательного интерфейса, который подключается, с одной стороны, к ЖК-дисплею, а с другой - непосредственно к последовательному порту (СОМ1 - СОМ4) (рис.7). Для управления, декодирования сигналов и подавления "дребезга" (если так можно назвать определение прикосновения) применяется PIC-контроллер (например, IF190 фирмы Data Display), обеспечивающий высокое быстродействие и точность определения точки прикосновения.


Рис. 7. Блок-схема TFT LCD на примере NL6448BC-26-01 дисплея фирмы NEC

Завершим на этом теоретические изыскания и перейдем к реалиям сегодняшнего дня, а точнее - к тому, что имеется сейчас на рынке жидкокристаллических дисплеев. Среди всех изготовителей TFT LCD рассмотрим продукцию NEC, Sharp, Siemens и Samsung. Выбор этих фирм обусловлен

  1. лидерством на рынке ЖК-дисплеев и технологий производства TFT LCD;
  2. доступностью продукции на рынке стран СНГ.

Компания NEC Corporation выпускает жидкокристаллические дисплеи (20% рынка) практически с момента их появления и предлагает не только широкий выбор, но и различные варианты исполнения: стандартный (Standard), специальный (Special) и особый (Specific). Стандартный вариант - компьютеры, офисное оборудование, домашняя электроника, коммуникационные системы и т.п. Специальное исполнение применяется на транспорте (любом: наземном и морском), системах управления движением, системах безопасности, медицинском оборудовании (не связанном с системами жизнеобеспечения). Для систем вооружений, авиации, космического оборудования, систем управления ядерными реакторами, систем жизнеобеспечения и других аналогичных предназначен особый вариант исполнения (понятно, что стоит это недешево).

Перечень выпускаемых ЖК-панелей для промышленного применения (инвертер для лампы подсветки поставляется отдельно) приведен в таблице 2, а блок-схема (на примере 10-дюймового дисплея NL6448BC26-01)- на рис. 8.


Рис. 8. Внешний вид дисплея

Таблица 2. Модели ЖК-панелей фирмы NEC

Модель Размер по диагонали, дюйм Количество пикселей Число цветов Описание
NL8060BC31-17 12,1 800x600 262144 Высокая яркость (350кд/м 2)
NL8060BC31-20 12,1 800x600 262144 Широкий угол обзора
NL10276BC20-04 10,4 1024x768 262144 -
NL8060BC26-17 10,4 800x600 262144 -
NL6448AC33-18A 10,4 640x480 262144 Встроенный инвертор
NL6448AC33-29 10,4 640x480 262144 Высокая яркость, широкий угол обзора, встроенный инвертор
NL6448BC33-46 10,4 640x480 262144 Высокая яркость, широкий угол обзора
NL6448CC33-30W 10,4 640x480 262144 Без подсветки
NL6448BC26-01 8,4 640x480 262144 Высокая яркость (450 кд/м 2)
NL6448BC20-08 6,5 640x480 262144 -
NL10276BC12-02 6,3 1024x768 16, 19M -
NL3224AC35-01 5,5 320x240 Full color
NL3224AC35-06 5,5 320x240 Full color Отдельный вход NTSC/PAL RGB, встроенный инвертор, тонкий
NL3224AC35-10 5,5 320x240 Full color Отдельный вход NTSC/PAL RGB, встроенный инвертор
NL3224AC35-13 5,5 320x240 Full color Отдельный вход NTSC/PAL RGB, встроенный инвертор
NL3224AC35-20 5,5 320x240 262, 144 Высокая яркость (400 кд/м 2)

Сыграла значительную роль в развитии LCD-технологий. Компания Sharp и сейчас находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975 г. уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. В 1976 г. Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы с разрешением 160х120 пикселов. Краткий перечень продукции - в таблице 3.

Таблица 3. Модели ЖК-панелей фирмы Sharp

Выпускает жидкокристаллические дисплеи с активной матрицей на низкотемпературных поликремниевых тонкопленочных транзисторах. Основные характеристики дисплеев с диагональю 10,5" и 15" приведены в таблице 4. Обратите внимание на диапазон рабочих температур и стойкость к ударам.

Таблица 4. Основные характеристики ЖК-дисплеев фирмы Siemens

Примечания:

I - встроенный инвертор l - в соответствии с требованиями стандарта MIL-STD810

Фирма выпускает жидкокристаллические дисплеи под торговой маркой "Wiseview™". Начав с выпуска 2-дюймовой TFT панели для поддержки Интернета и анимации в мобильных телефонах, Samsung теперь производит гамму дисплеев от 1,8" до 10,4" в сегменте малых и средних TFT LCD, причем некоторые модели предназначены для работы при естественном освещении (таблица 5).

Таблица 5. Основные характеристики ЖК-дисплеев Samsung малых и средних размеров

Примечания:

LED - светодиодная; CCFL - флуоресцентная лампа с холодным катодом;

В дисплеях используется технология PVA.

Выводы.

В настоящее время выбор модели жидкокристаллического дисплея определяется требованиями конкретного применения и в значительно меньшей степени - стоимостью LCD.

Технологии не стоят на месте, и производство жидкокристаллических экранов не является исключением. Однако в связи с постоянными разработками и выходом новых технологий в изготовлении экранов, а также из-за особых маркетинговых подходов к рекламе у многих покупателей при выборе монитора или телевизора может возникнуть вопрос, что лучше IPS или TFT экран?

Чтобы ответить на поставленный вопрос необходимо понять, что такое IPS технология и что такое TFT экран. Лишь зная это, вы сможете понять какая разница между этими технологиями. Это в свою очередь поможет вам сделать правильный выбор экрана, который будет полностью соответствовать вашим требованиям.

1. Итак, что такое TFT-дисплей

Как вы уже догадались, TFT–это сокращенное название технологии. Полностью оно имеет такой вид - Thin Film Transistor, что в переводе на русский язык означает тонкопленочный транзистор. По сути TFT дисплей – это тип жидкокристаллического экрана, который основан на активной матрице. Другими словами, это обычный жидкокристаллический экран с активной матрицей. То есть управление молекулами жидких кристаллов происходит при помощи специальных тонкопленочных транзисторов.

2. Что такое IPS технология

IPS – это также является сокращением от In-Plane Switching. Это разновидность ЖК-дисплея с активной матрицей. Это означает, что вопрос, что лучше TFT или IPS является ошибочным, так как это по сути одно и то же. Если говорить точнее, то IPS – это тип матрицы FTF дисплея.

Свое название IPS технология получила благодаря уникальному расположению электродов, которые находятся на одной плоскости с молекулами жидких кристаллов. В свою очередь жидкие кристаллы располагаются параллельно плоскости экрана. Такое решение позволило существенно увеличить углы обзоров, а также повысить яркость и контрастность изображения.

На сегодняшний день можно выделить три наиболее распространенных типа активных матриц TFT дисплеев:

  • TN+Film;
  • PVA/MVA.

Таким образом, становится очевидно, что отличие TFT от IPS заключается лишь в том, что TFT – это тип ЖК экрана с активной матрицей, а IPS является той самой активной матрицей в TFT дисплее, а точнее одним из типов матриц. Стоит отметить, что такая матрица является наиболее распространенной среди пользователей во всем мире.

3. Чем отличаются дисплеи TFT и IPS: Видео

Всеобщее заблуждение в том, что между TFT и IPS есть какая-то разница, возникло из-за маркетинговых уловок менеджеров по продажам. В попытках привлечь новых клиентов маркетологи не распространяют полной информации о технологиях, что позволяет создавать иллюзию того, что в мир выходит совершенно новая разработка. Конечно, IPS является более новой разработкой, нежели TN, однако выбирать какой лучше дисплей TFT или IPS нельзя по указанным выше причинам.