Операционные усилители в линейных схемах. Операционный усилитель? Это очень просто

Что то часто мне стали задавать вопросы по аналоговой электронике. Никак сессия студентов за яцы взяла? ;) Ладно, давно пора двинуть небольшой ликбезик. В частности по работе операционных усилителей. Что это, с чем это едят и как это обсчитывать.

Что это
Операционный усилитель это усилок с двумя входами, невье… гхм… большим коэфициентом усиления сигнала и одним выходом. Т.е. у нас U вых = K*U вх а К в идеале равно бесконечности. На практике, конечно, там числа поскромней. Скажем 1000000. Но даже такие числа взрывают мозг при попытке их применить напрямую. Поэтому, как в детском саду, одна елочка, две, три, много елочек — у нас тут много усиления;) И баста.

А входа два. И один из них прямой, а другой инверсный.

Более того, входы высокоомные. Т.е. их входное сопротивление равно бесконечности в идеальном случае и ОЧЕНЬ много в реальном. Счет там идет на сотни МегаОм, а то и на гигаомы. Т.е. оно замеряет напряжение на входе, но на него влияет минимально. И можно считать, что ток в ОУ не течет.

Напряжение на выходе в таком случае обсчитывается как:

U out =(U 2 -U 1)*K

Очевидно, что если на прямом входе напряжение больше чем на инверсном, то на выходе плюс бесконечность. А в обратном случае будет минус бесконечность.

Разумеется в реальной схеме плюс и минус бесконечности не будет, а их замещать будет максимально высокое и максимально низкое напряжение питания усилителя. И у нас получится:

Компаратор
Устройство позволяющее сравнивать два аналоговых сигнала и выносить вердикт — какой из сигналов больше. Уже интересно. Применений ему можно придумать массу. Кстати, тот же компаратор встроен в большую часть микроконтроллеров и как им пользоваться я показывал на примере AVR в статьях и про создание . Также компаратор замечательно используется для создания .

Но одним компаратором дело не ограничивается, ведь если ввести обратную связь, то из ОУ можно сделать очень многое.

Обратная связь
Если мы сигнал возьмем со выхода и отправим прямиком на вход, то возникнет обратная связь.

Положительная обратная связь
Возьмем и загоним в прямой вход сигнал сразу с выхода.

  • Напряжение U1 больше нуля — на выходе -15 вольт
  • Напряжение U1 меньше нуля — на выходе +15 вольт

А что будет если напряжение будет равно нулю? По идее на выходе должен быть ноль. Но в реальности напряжение НИКОГДА не будет равно нулю. Ведь даже если на один электрон заряд правого перевесит заряд левого, то уже этого достаточно, чтобы на бесконечном усилении вкатить потенциал на выход. И на выходе начнется форменный ад — скачки сигнала то туда, то сюда со скоростью случайных возмущений, наводящихся на входы компаратора.

Для решения этой проблемы вводят гистерезис. Т.е. своего рода зазор между переключениями из одного состояния в другое. Для этого вводят положительную обратную связь, вот так:


Считаем, что на инверсном входе в этот момент +10 вольт. На выходе с ОУ минус 15 вольт. На прямом входе уже не ноль, а небольшая часть выходного напряжения с делителя. Примерно -1.4 вольта Теперь, пока напряжение на инверсном входе не снизится ниже -1.4 вольта выход ОУ не сменит своего напряжения. А как только напряжение станет ниже -1.4, то выход ОУ резко перебросится в +15 и на прямом входе будет уже смещение в +1.4 вольта.

И для того, чтобы сменить напряжение на выходе компаратора сигналу U1 надо будет увеличиться на целых 2.8 вольта, чтобы добраться до верхней планки в +1.4.

Возникает своеобразный зазор где нет чувствительности, между 1.4 и -1.4 вольтами. Ширина зазора регулируется соотношениями резисторов в R1 и R2. Пороговое напряжение высчитывается как Uout/(R1+R2) * R1 Скажем 1 к 100 даст уже +/-0.14 вольт.

Но все же ОУ чаще используют в режиме с отрицательной обратной связью.

Отрицательная обратная связь
Окей, воткнем по другому:


В случае отрицательной обратной связи у ОУ появляется интересное свойство. Он всегда будет пытаться так подогнать свое выходное напряжение, чтобы напряжения на входах были равны, в результате давая нулевую разность.
Пока я в великой книге от товарищей Хоровица и Хилла это не прочитал никак не мог вьехать в работу ОУ. А оказалось все просто.

Повторитель
И получился у нас повторитель. Т.е. на входе U 1 , на инверсном входе U out = U 1 . Ну и получается, что U out = U 1 .

Спрашивается нафига нам такое счастье? Можно же было напрямую кинуть провод и не нужен будет никакой ОУ!

Можно, но далеко не всегда. Представим себе такую ситуацию, есть датчик выполненный в виде резистивного делителя:


Нижнее сопротивление меняет свое значение, меняется расклад напряжений выхода с делителя. А нам надо снять с него показания вольтметром. Но у вольтметра есть свое внутреннее сопротивление, пусть большое, но оно будет менять показания с датчика. Более того, если мы не хотим вольтметр, а хотим чтобы лампочка меняла яркость? Лампочку то сюда никак не подключить уже! Поэтому выход буфферизируем операционным усилителем. Его то входное сопротивление огромно и влиять он будет минимально, а выход может обеспечить вполне ощутимый ток (десятки миллиампер, а то и сотни), чего вполне хватит для работы лампочки.
В общем, применений для повторителя найти можно. Особенно в прецезионных аналоговых схемах. Или там где схемотехника одного каскада может влиять на работу другого, чтобы разделить их.

Усилитель
А теперь сделаем финт ушами — возьмем нашу обратную связь и через делитель напряжения подсадим на землю:

Теперь на инверсный вход подается половина выходного напряжения. А усилителю то по прежнему надо уравнять напряжения на своих входах. Что ему придется сделать? Правильно — поднять напряжение на своем выходе вдвое выше прежнего, чтобы компенсировать возникший делитель.

Теперь будет U 1 на прямом. На инверсном U out /2 = U 1 или U out = 2*U 1 .

Поставим делитель с другим соотношением — ситуация изменится в том же ключе. Чтобы тебе не вертеть в уме формулу делителя напряжения я ее сразу и дам:

U out = U 1 *(1+R 1 /R 2)

Мнемонически запоминается что на что делится очень просто:

При этом получается, что входной сигнал идет по цепи резисторов R 2 , R 1 в U out . При этом прямой вход усилителя засажен на нуль. Вспоминаем повадки ОУ — он постарается любыми правдами и неправдами сделать так, чтобы на его инверсном входе образовалось напряжение равное прямому входу. Т.е. нуль. Единственный вариант это сделать — опустить выходное напряжение ниже нуля настолько, чтобы в точке 1 возник нуль.

Итак. Представим, что U out =0. Пока равно нулю. А напряжение на входе, например, 10 вольт относительно U out . Делитель из R 1 и R 2 поделит его пополам. Таким образом, в точке 1 пять вольт.

Пять вольт не равно нулю и ОУ опускает свой выход до тех пор, пока в точке 1 не будет нуля. Для этого на выходе должно стать (-10) вольт. При этом относительно входа разность будет 20 вольт, а делитель обеспечит нам ровно 0 в точке 1. Получили инвертор.

Но можно же и другие резисторы подобрать, чтобы наш делитель выдавал другие коэффициенты!
В общем, формула коэффициента усиления для такого усилка будет следующей:

U out = — U in * R 1 /R 2

Ну и мнемоническая картинка для быстрого запоминания ху из ху.

Допустим U 2 и U 1 будет по 10 вольт. Тогда на 2й точке будет 5 вольт. А выход должен будет стать таким, чтобы на 1й точке стало тоже 5 вольт. То есть нулем. Вот и получается, что 10 вольт минус 10 вольт равняется нуль. Все верно:)

Если U 1 станет 20 вольт, то выход должен будет опуститься до -10 вольт.
Сами посчитайте — разница между U 1 и U out станет 30 вольт. Ток через резистор R4 будет при этом (U 1 -U out)/(R 3 +R 4) = 30/20000 = 0.0015А, а падение напряжения на резисторе R 4 составит R 4 *I 4 = 10000*0.0015 = 15 вольт. Вычтем падение в 15 вольт из входных 20 и получим 5 вольт.

Таким образом, наш ОУ прорешал арифметическую задачку из 10 вычел 20, получив -10 вольт.

Более того, в задачке есть коэффициенты, определяемые резисторами. Просто у меня, для простоты, резисторы выбраны одинакового номинала и поэтому все коэффициенты равны единице. А на самом деле, если взять произвольные резисторы, то зависимость выхода от входа будет такой:

U out = U 2 *K 2 — U 1 *K 1

K 2 = ((R 3 +R 4) * R 6) / (R 6 +R 5)*R 4
K 1 = R 3 /R 4

Мнемотехника для запоминания формулы расчета коэффициентов такова:
Прям по схеме. Числитель у дроби вверху поэтому складываем верхние резисторы в цепи протекания тока и множим на нижний. Знаменатель внизу, поэтому складываем нижние резисторы и множим на верхний.

Тут все просто. Т.к. точка 1 у нас постоянно приводится к 0, то можно считать, что втекающие в нее токи всегда равны U/R, а входящие в узел номер 1 токи суммируются. Соотношение входного резистора и резистора в обратной связи определяет вес входящего тока.

Ветвей может быть сколько угодно, я же нарисовал всего две.

U out = -1(R 3 *U 1 /R 1 + R 3 *U 2 /R 2)

Резисторы на входе (R 1 , R 2) определяют величину тока, а значит общий вес входящего сигнала. Если сделать все резисторы равными, как у меня, то вес будет одинаковым, а коэффициент умножения каждого слагаемого будет равен 1. И U out = -1(U 1 +U 2)

Сумматор неинвертирующий
Тут все чуток посложней, но похоже.


Uout = U 1 *K 1 + U 2 *K 2

K 1 = R 5 /R 1
K 2 = R 5 /R 2

Причем резисторы в обратной связи должны быть такими, чтобы соблюдалось уравнение R 3 /R 4 = K 1 +K 2

В общем, на операционных усилителях можно творить любую математку, складывать, умножать, делить, считать производные и интегралы. Причем практически мгновенно. На ОУ делают аналоговые вычислительные машины. Одну такую я даже видел на пятом этаже ЮУрГУ — дура размером в пол комнаты. Несколько металлических шкафов. Программа набирается соединением разных блоков проводочками:)

Было показано, что при использовании операционного усилителя в различных схемах включения, усиление каскада на одном операционном усилителе (ОУ), зависит только от глубины обратной связи. Поэтому в формулах для определения усиления конкретной схемы не используется коэффициент усиления самого, если так можно выразиться, «голого» ОУ. То есть как раз тот огромный коэффициент, который указывается в справочниках.

Тогда вполне уместно задать вопрос: «Если от этого огромного «справочного» коэффициента не зависит конечный результат (усиление), тогда в чем же разница между ОУ с усилением в несколько тысяч раз, и с таким же ОУ, но с усилением в несколько сотен тысяч и даже миллионов?».

Ответ достаточно простой. И в том и в другом случае результат будет одинаковый, усиление каскада будет определяться элементами ООС, но во втором случае (ОУ с большим усилением) схема работает более стабильно, более точно, быстродействие таких схем намного выше. Неспроста ОУ делятся на ОУ общего применения и высокоточные, прецизионные.

Как уже было сказано свое название «операционные» рассматриваемые усилители получили в то далекое время, когда в основном применялись для выполнения математических операций в аналоговых вычислительных машинах (АВМ). Это были операции сложения, вычитания, умножения, деления, возведения в квадрат и еще множества других функций.

Эти допотопные ОУ выполнялись на электронных лампах, позднее на дискретных транзисторах и прочих радиодеталях. Естественно, габариты даже транзисторных ОУ были достаточно велики, чтобы использовать их в любительских конструкциях.

И только после того, как благодаря достижениям интегральной электроники, ОУ стали размером с обычный маломощный транзистор, то использование этих деталей в бытовой аппаратуре и любительских схемах стало оправданным.

Кстати, современные ОУ, даже достаточно высокого качества, по цене ненамного выше двух - трех транзисторов. Это утверждение касается ОУ общего применения. Прецизионные усилители могут стоить несколько дороже.

По поводу схем на ОУ сразу стоит сделать замечание, что все они рассчитаны на питание от двухполярного источника питания. Такой режим является для ОУ наиболее «привычным», позволяющим усиливать не только сигналы переменного напряжения, например синусоиду, но также и сигналы постоянного тока или попросту напряжение.

И все-таки достаточно часто питание схем на ОУ производится от однополярного источника. Правда, в этом случае не удается усилить постоянное напряжение. Но часто случается, что в этом просто нет необходимости. О схемах с однополярным питанием будет рассказано далее, а пока продолжим о схемах включения ОУ с двухполярным питанием.

Напряжение питания большинства ОУ чаще всего находится в пределах ±15В. Но это вовсе не значит, что это напряжение нельзя сделать несколько ниже (выше не рекомендуется). Многие ОУ весьма стабильно работают начиная от ±3В, а некоторые модели даже ±1,5В. Такая возможность указывается в технической документации (DataSheet).

Повторитель напряжения

Является самым простым по схемотехнике устройством на ОУ, его схема показана на рисунке 1.

Рисунок 1. Схема повторителя напряжения на операционном усилителе

Нетрудно видеть, что для создания такой схемы не понадобилось ни одной детали, кроме собственно ОУ. Правда, на рисунке не показано подключение питания, но такое начертание схем встречается сплошь и рядом. Единственное, что хотелось бы заметить, - между выводами питания ОУ (например для ОУ КР140УД708 это выводы 7 и 4) и общим проводом следует подключить емкостью 0,01…0,5мкФ.

Их назначение в том, чтобы сделать работу ОУ более стабильной, избавиться от самовозбуждения схемы по цепям питания. Конденсаторы должны быть подключены по возможности ближе к выводам питания микросхемы. Иногда один конденсатор подключается из расчета на группу из нескольких микросхем. Такие же конденсаторы можно увидеть и на платах с цифровыми микросхемами, назначение их то же самое.

Коэффициент усиления повторителя равен единице, или, сказать по- другому, никакого усиления и нет. Тогда зачем нужна такая схема? Здесь вполне уместно вспомнить, что существует транзисторная схема - эмиттерный повторитель, основное назначение которого согласование каскадов с различными входными сопротивлениями. Подобные каскады (повторители) называют еще буферными.

Входное сопротивление повторителя на ОУ рассчитывается как произведение входного сопротивления ОУ на его же коэффициент усиления. Например, для упомянутого УД708 входное сопротивление составляет приблизительно 0,5МОм, коэффициент усиления как минимум 30 000, а может быть и более. Если эти числа перемножить, то входное сопротивление получается, 15ГОм, что сравнимо с сопротивлением не очень качественной изоляции, например бумаги. Такого высокого результата вряд ли удастся достигнуть с обычным эмиттерным повторителем.

Чтобы описания не вызывали сомнения, ниже будут приведены рисунки, показывающие работу всех описываемых схем в программе - симуляторе Multisim. Конечно все эти схемы можно собрать на макетных платах, но ничуть не худшие результаты можно получить и на экране монитора.

Собственно, тут даже несколько лучше: совсем не надо лезть куда-то на полку, чтобы поменять резистор или микросхему. Здесь все, даже измерительные приборы, находится в программе, и «достается» при помощи мышки или клавиатуры.

На рисунке 2 показана схема повторителя, выполненная в программе Multisim.

Рисунок 2.

Исследование схемы провести достаточно просто. На вход повторителя от функционального генератора подан синусоидальный сигнал частотой 1КГц и амплитудой 2В, как показано на рисунке 3.

Рисунок 3.

Сигнал на входе и выходе повторителя наблюдается осциллографом: входной сигнал отображается лучом синего цвета, выходной луч - красный.

Рисунок 4.

А почему, спросит внимательный читатель, выходной (красный) сигнал в два раза больше входного синего? Все очень просто: при одинаковой чувствительности каналов осциллографа обе синусоиды с одной амплитудой и фазой сливаются в одну, прячутся друг за друга.

Для того чтобы разглядеть из сразу обе, пришлось снизить чувствительность одного из каналов, в данном случае входного. В результате синяя синусоида стала на экране ровно вдвое меньше, и перестала прятаться за красную. Хотя для достижения подобного результата можно просто сместить лучи органами управления осциллографа, оставив чувствительность каналов одинаковой.

Обе синусоиды расположены симметрично относительно оси времени, что говорит о том, что постоянная составляющая сигнала равна нулю. А что будет, если к входному сигналу добавить небольшую постоянную составляющую? Виртуальный генератор позволяет сдвинуть синусоиду по оси Y. Попробуем сдвинуть ее вверх на 500мВ.

Рисунок 5.

Что из этого получилось показано на рисунке 6.

Рисунок 6.

Заметно, что входная и выходная синусоиды поднялись вверх на полвольта, при этом ничуть не изменившись. Это говорит о том, что повторитель в точности передал и постоянную составляющую сигнала. Но чаще всего от этой постоянной составляющей стараются избавиться, сделать ее равной нулю, что позволяет избежать применения таких элементов схемы, как межкаскадные разделительные конденсаторы.

Повторитель это, конечно, хорошо и даже красиво: не понадобилось ни одной дополнительной детали (хотя бывают схемы повторителей и с незначительными «добавками»), но ведь усиления никакого не получили. Какой же это тогда усилитель? Чтобы получился усилитель достаточно добавить всего несколько деталей, как это сделать будет рассказано дальше.

Инвертирующий усилитель

Для того, чтобы из ОУ получился инвертирующий усилитель достаточно добавить всего два резистора. Что из этого получилось, показано на рисунке 7.

Рисунок 7. Схема инвертирующего усилителя

Коэффициент усиления такого усилителя рассчитывается по формуле K=-(R2/R1). Знак «минус» говорит не о том, что усилитель получился плохой, а всего лишь, что выходной сигнал будет противоположен по фазе входному. Недаром усилитель и называется инвертирующим. Здесь было бы уместно вспомнить транзистор включенный по схеме с ОЭ. Там тоже выходной сигнал на коллекторе транзистора находится в противофазе с входным сигналом, поданным на базу.

Вот тут как раз и стоит вспомнить, сколько усилий придется приложить, чтобы на коллекторе транзистора получить чистую неискаженную синусоиду. Требуется соответствующим образом подобрать смещение на базе транзистора. Это, как правило, достаточно сложно, зависит от множества параметров.

При использовании ОУ достаточно просто подсчитать сопротивление резисторов согласно формулы и получить заданный коэффициент усиления. Получается, что настройка схемы на ОУ намного проще, чем настройка нескольких транзисторных каскадов. Поэтому не надо бояться, что схема не заработает, не получится.

Рисунок 8.

Здесь все так же, как и на предыдущих рисунках: синим цветом показан входной сигнал, красным он же после усилителя. Все соответствует формуле K=-(R2/R1). Выходной сигнал находится в противофазе с входным (что соответствует знаку «минус» в формуле), и амплитуда выходного сигнала ровно в два раза больше входного. Что также справедливо при соотношении (R2/R1)=(20/10)=2. Чтобы сделать коэффициент усиления, например, 10 достаточно увеличить сопротивление резистора R2 до 100КОм.

На самом деле схема инвертирующего усилителя может быть несколько сложнее, такой вариант показан на рисунке 9.

Рисунок 9.

Здесь появилась новая деталь - резистор R3 (скорее она просто пропала из предыдущей схемы). Его назначение в компенсации входных токов реального ОУ с тем, чтобы уменьшить температурную нестабильность постоянной составляющей на выходе. Величину этого резистора выбирают по формуле R3=R1*R2/(R1+R2).

Современные высокостабильные ОУ допускают подключение неинвертирующего входа на общий провод напрямую без резистора R3. Хотя присутствие этого элемента ничего плохого и не сделает, но при теперешних масштабах производства, когда на всем экономят, этот резистор предпочитают не ставить.

Формулы для расчета инвертирующего усилителя показаны на рисунке 10. Почему на рисунке? Да просто для наглядности, в строке текста они смотрелись бы не так привычно и понятно, были бы не столь заметны.

Рисунок 10.

Про коэффициент усиления было сказано ранее. Здесь заслуживают внимания разве что входные и выходные сопротивления неинвертирующего усилителя. С входным сопротивлением все, вроде, ясно: он получается равным сопротивлению резистора R1, а вот выходное сопротивление придется посчитать, по формуле, показанной на рисунке 11.

Буквой K” обозначен справочный коэффициент ОУ. Вот, пожалуйста, посчитайте чему будет равно выходное сопротивление. Получится достаточно маленькая цифра, даже для среднего ОУ типа УД7 при его K” равным не более 30 000. В данном случае это хорошо: ведь чем ниже выходное сопротивление каскада (это касается не только каскадов на ОУ), тем более мощную нагрузку, в разумных, конечно, пределах, к этому каскаду можно подключить.

Следует сделать отдельное замечание по поводу единицы в знаменателе формулы для расчета выходного сопротивления. Предположим, что соотношение R2/R1 будет, например, 100. Именно такое отношение получится в случае коэффициента усиления инвертирующего усилителя 100. Получается, что если эту единицу отбросить, то особо ничего не изменится. На самом деле это не совсем так.

Предположим, что сопротивление резистора R2 равно нулю, как в случае с повторителем. Тогда без единицы весь знаменатель превращается в нуль, и таким же нулевым будет выходное сопротивление. А если потом этот нуль окажется где-то в знаменателе формулы, как на него прикажете делить? Поэтому от этой вроде бы незначительной единицы избавиться просто невозможно.

В одной статье, даже достаточно большой, всего не написать. Поэтому придется все, что не уместилось рассказать в следующей статье. Там будет описание неинвертирующего усилителя, дифференциального усилителя, усилителя с однополярным питанием. Также будет приведено описание простых схем для проверки ОУ.

Открыла цикл статей про строительные кирпичики современной аналоговой электроники – операционные усилители. Было дано определение ОУ и некоторые параметры, также приведена классификация операционных усилителей. Данная статья раскроет такое понятие как идеальный операционный усилитель, и будут приведены основные схемы включения операционного усилителя.

Идеальный операционный усилитель и его свойства

Так как наш мир не является идеальным, так и идеальных операционных усилителей не существует. Однако параметры современных ОУ находятся на достаточно высоком уровне, поэтому анализ схем с идеальными ОУ даёт результаты, очень близкие к реальным усилителям.

Для понимания работы схем с операционными усилителями вводится ряд допущений, которые приводят реальные операционные усилители к идеальным усилителям. Таких допущений всего пять:

  1. Ток, протекающий через входы ОУ, принимается равным нулю.
  2. Коэффициент усиления ОУ принимается бесконечно большим, то есть выходное напряжение усилителя может достичь любых значений, однако в реальность ограничено напряжением питания.
  3. Разность напряжений между входами идеального ОУ равна нулю, то есть если один из выводов соединён с землёй, то и второй вывод имеет такой же потенциал. Отсюда также следует, что входное сопротивление идеального усилителя бесконечно.
  4. Выходное сопротивление идеального ОУ равно нулю.
  5. Амплитудно-частотная характеристика идеального ОУ является плоской, то есть коэффициент усиления не зависит от частоты входного сигнала.

Близость параметров реального операционного усилителя к идеальным определяет точность, с которой может работать данный ОУ, а также выяснить ценность конкретного операционного усилителя, быстро и правильно сделать выбор подходящего ОУ.

Исходя из вышеописанных допущений, появляется возможность проанализировать и вывести соотношения для основных схем включения операционного усилителя.

Основные схемы включения операционного усилителя

Как указывалось в предыдущей статье, операционные усилители работают только с обратными связями, от вида которой зависит, работает ли операционный усилитель в линейном режиме или в режиме насыщения. Обратная связь с выхода ОУ на его инвертирующий вход обычно приводит к работе ОУ в линейном режиме, а обратная связь с выхода ОУ на его неинвертирующий вход или работа без обратной связи приводит к насыщению усилителя.

Неинвертирующий усилитель

Неинвертирующий усилитель характеризуется тем, что входной сигнал поступает на неинвертирующий вход операционного усилителя. Данная схема включения изображена ниже

Работа данной схемы объясняется следующим образом, с учётом характеристик идеального ОУ. Сигнала поступает на усилитель с бесконечным входным сопротивлением, а напряжение на неинвертирующем входе имеет такое же значение, как и на инвертирующем входе. Ток на выходе операционного усилителя создает на резисторе R2 напряжение, равное входному напряжению.

Таким образом, основные параметры данной схемы описываются следующим соотношением


Отсюда выводится соотношение для коэффициента усиления неинвертирующего усилителя


Таким образом, можно сделать вывод, что на коэффициент усиления влияют только номиналы пассивных компонентов.

Необходимо отметить особый случай, когда резистора R2 намного больше R1 (R2 >> R1), тогда коэффициент усиления будет стремиться к единице. В этом случае схема неинвертирующего усилителя превращается в аналоговый буфер или операционный повторитель с единичным коэффициентом передачи, очень большим входным сопротивлением и практически нулевым выходным сопротивлением. Что обеспечивает эффективную развязку входа и выхода.

Инвертирующий усилитель

Инвертирующий усилитель характеризуется тем, что неинвертирующий вход операционного усилителя заземлён (то есть подключен к общему выводу питания). В идеальном ОУ разность напряжений между входами усилителя равна нулю. Поэтому цепь обратной связи должна обеспечивать напряжение на инвертирующем входе также равное нулю. Схема инвертирующего усилителя изображена ниже


Работа схемы объясняется следующим образом. Ток протекающий через инвертирующий вывод в идеальном ОУ равен нулю, поэтому токи протекающие через резисторы R1 и R2 равны между собой и противоположны по направлению, тогда основное соотношение будет иметь вид


Тогда коэффициент усиление данной схемы будет равен


Знак минус в данной формуле указывает на то, что сигнал на выходе схемы инвертирован по отношению к входному сигналу.

Интегратор

Интегратор позволяет реализовать схему, в которой изменение выходного напряжения пропорционально входному сигналу. Схема простейшего интегратора на ОУ показана ниже


Интегратор на операционном усилителе.

Данная схема реализует операцию интегрирования над входным сигналом. Я уже рассматривал схемы интегрирования различных сигналов при помощи интегрирующих . Интегратор реализует аналогичное изменение входного сигнала, однако он имеет ряд преимуществ по сравнению с интегрирующими цепочками. Во-первых, RC и RL цепочки значительно ослабляют входной сигнал, а во-вторых, имеют высокое выходное сопротивление.

Таким образом, основные расчётные соотношения интегратора аналогичны интегрирующим RC и RL цепочкам, а выходное напряжение составит


Интеграторы нашли широкое применение во многих аналоговых устройствах, таких как активные фильтры и системы автоматического регулирования

Дифференциатор

Дифференциатор по своему действию противоположен работе интегратора, то есть выходной сигнал пропорционален скорости изменения входного сигнала. Схема простейшего дифференциатора показана ниже


Дифференциатор реализует операцию дифференцирование над входным сигналом и аналогичен действию дифференцирующих , кроме того имеет лучшие параметры по сравнению с RC и RL цепочками: практически не ослабляет входной сигнал и обладает значительно меньшим выходным сопротивлением. Основные расчётные соотношения и реакция на различные импульсы аналогична дифференцирующим цепочкам.

Выходное напряжение составит


Одной из схем на операционном усилителе, которые нашли применение, является логарифмирующий преобразователь. В данном схеме используется свойство или биполярного транзистора. Схема простейшего логарифмического преобразователя представлена ниже


Данная схема находит применение, прежде всего в качестве компрессора сигналов для увеличения динамического диапазона, а так же для выполнения математических функций.

Рассмотрим принцип работы логарифмического преобразователя. Как известно ток, протекающий через диод, описывается следующим выражением


где I O – обратный ток диода,
е – число е, основание натурального логарифма, e ≈ 2,72,
q – заряд электрона,
U – напряжение на диоде,
k – постоянная Больцмана,
T – температура в градусах Кельвина.

При расчётах можно принимать I O ≈ 10-9 А, kT/q = 25 мВ. Таким образом, входной ток данной схемы составит


тогда выходное напряжение


Простейший логарифмический преобразователь практически не используется, так как имеет ряд серьёзных недостатков:

  1. Высокая чувствительность к температуре.
  2. Диод не обеспечивает достаточной точности преобразования, так как зависимость между падением напряжения и током диода не совсем логарифмическая.

Вследствие этого вместо диодов применяют в диодном включении или с заземлённой базой.

Схема экспоненциального преобразователь получается из логарифмического преобразователя путём перемены места диода и резистора в схеме. А работа такой схемы так же как и логарифмического преобразователя основана на логарифмической зависимости между падение напряжения на диоде и током протекающим через диод. Схема экспоненциального преобразователя показана ниже


Работа схемы описывается известными выражениями


Таким образом, выходное напряжение составит


Также как и логарифмический преобразователь, простейший экспоненциальный преобразователь с диодом на входе применяют редко, вследствие вышеописанных причин, поэтому вместо диодов на входе используют биполярные транзисторы в диодном включении или с общей базой.

Как уже отмечалось, операционные усилители в настоящее время используются в самых различных электронных устройствах. Их широко применяют как в аналоговых, так и в импульсных устройствах электроники. В то же время существуют и часто используются типовые линейные схемы на основе операционных усилителей. Такие типовые схемы должен знать каждый инженер, использующий электронные устройства. Именно такие схемы рассматриваются ниже.

Очень полезно овладеть достаточно простыми приемами ручного анализа электронных схем на основе операционных усилителей. Это значительно облегчит понимание принципа действия конкретных устройств электроники и будет способствовать получению достоверных результатов машинного анализа. Указанные приемы анализа основаны на ряде допущений, принимаемых в предположении, что используемые операционные усилители достаточно близки к идеальным. Практика расчетов показывает, что результаты, получаемые на основе допущений, имеют вполне приемлемую погрешность.

Примем следующие допущения:

● Входное сопротивление операционного усилителя равно бесконечности, токи входных электродов равны нулю (R вх → ∞, i + = i −).

● Выходное сопротивление операционного усилителя равно нулю, т. е. операционный усилитель со стороны выхода является идеальным источником (R вых = 0).

● Коэффициент усиления по напряжению (коэффициент усиления дифференциального сигнала) равен бесконечности, а дифференциальный сигнал в режиме усиления равен нулю (при этом не допускается закорачивания выводов операционного усилителя).

● В режиме насыщения на выходе равно по модулю напряжению питания, а знак определяется полярностью входного напряжения. Полезно обратить внимание на тот факт, что в режиме насыщения дифференциальный сигнал нельзя всегда считать равным нулю.

● Синфазный сигнал не действует на операционный усилитель.

● смещения нуля равно нулю.

Рассмотрим схему инвертирующего усилителя (рис. 2.25), из которой видно, что в ней действует параллельная обратная связь по напряжению.

Так как i − = 0, то в соответствии с первым законом Кирхгофа i 1 = i 2 .

Предположим, что операционный усилитель работает в режиме усиления, тогда uдиф = 0. В соответствии с этим на основании второго закона Кирхгофа получим i 1 = uвх/ R 1 i 2 = − uвых/ R 2

Учитывая, что i 1 = i 2 , получаем uвых= −uвх· R 2 / R 1

Таким образом, инвертирующий усилитель характеризуется коэффициентом усиления по напряжению, равным Кu= −R2/R1

Например, если R1= 1кОм,R2=10 кОм, тогда uвых= − 10 ·uвх

Для уменьшения влияния входных токов операционного усилителя на выходное в цепь неинвертирующего входа включают резистор с сопротивлением R 3 (рис. 2.26), которое определяется из выражения R3=R1//R2=R1·R2/ (R1+R2)

Входное сопротивление инвертирующего усилителя на низких частотах значительно ниже собственного входного сопротивления операционного усилителя. Это полностью соответствует сделанному раннее выводу о том, что параллельная отрицательная обратная связь, имеющая место в схеме, уменьшает входное сопротивление. Учитывая, что uдиф~ 0, легко заметить, что иходное сопротивление усилителя на низких частотах приблизительно равно R 1 .

Выходное сопротивление инвертирующего усилителя на низких частотах R вых.ос существенно меньше выходного сопротивления на низких частотах R вых собственно операционного усилителя. Это является следствием действия отрицательной обратной связи по напряжению.

Можно показать, что R вых.ос = R вых / (1 + К ·R1/R2) где К - коэффициент усиления по напряжению операционного усилителя.

В курсе электроники есть много важных тем. Сегодня мы попытаемся разобраться с операционными усилителями.
Начнем сначала. Операционный усилитель - это такая «штука», которая позволяет всячески оперировать аналоговыми сигналами. Самые простейшие и основные - это усиление, ослабление, сложение, вычитание и много других (например, дифференцирование или логарифмирование). Абсолютное большинство операций на операционных усилителях (далее ОУ) выполняются с помощью положительных и отрицательных обратных связей.
В данной статье будем рассматривать некий «идеал» ОУ, т.к. переходить на конкретную модель не имеет смысла. Под идеалом подразумевается, что входное сопротивление будет стремиться к бесконечности (следовательно, входной ток будет стремиться к нулю), а выходное сопротивление - наоборот, будет стремиться к нулю (это означает, что нагрузка не должна влиять на выходное напряжение). Также, любой идеальный ОУ должен усиливать сигналы любых частот. Ну, и самое важное, коэффициент усиления при отсутствующей обратной связи должен также стремиться к бесконечности.

Ближе к делу
Операционный усилитель на схемах очень часто обозначается равносторонним треугольничком. Слева расположены входы, которые обозначены "-" и "+", справа - выход. Напряжение можно подавать на любой из входов, один из которых меняет полярность напряжения (поэтому его назвали инвертирующим), другой - не меняет (логично предположить, что он называется неинвертирующий). Питание ОУ, чаще всего, двуполярное. Обычно, положительное и отрицательное напряжение питания имеет одинаковое значение (но разный знак!).
В простейшем случае можно подключить источники напряжения прямо ко входам ОУ. И тогда напряжение на выходе будет расчитываться по формуле:
, где - напряжение на неинвертирующем входе, - напряжение на инвертирующем входе, - напряжение на выходе и - коэффициент усиления без обратной связи.
Посмотрим на идеальный ОУ с точки зрения Proteus.


Предлагаю «поиграть» с ним. На неинвертирующий вход подали напряжение в 1В. На инвертирующий 3В. Используем «идеальный» ОУ. Итак, получаем: . Но тут у нас есть ограничитель, т.к. мы не сможем усилить сигнал выше нашего напряжения питания. Таким образом, на выходе все равно получим -15В. Итог:


Изменим коэффициент усиления (чтобы Вы мне поверили). Пусть параметр Voltage Gain станет равным двум. Та же задача наглядно решается.

Реальное применение ОУ на примере инвертирующего и неинвертирующего усилителей
Есть два таких основных правила:
I. Выход операционного усилителя стремится к тому, чтобы дифференциальное напряжение (разность между напряжением на инвертирующем и неинвертирующем входах) было равно нулю.
II. Входы ОУ не потребляют тока.
Первое правило реализуется за счет обратной связи. Т.е. напряжение передается с выхода на вход таким образом, что разность потенциалов становится равной нулю.
Это, так сказать, «священные каноны» в теме ОУ.
А теперь, конкретнее. Инвертирующий усилитель выглядит именно так (обращаем внимание на то, как расположены входы):


Исходя из первого «канона» получаем пропорцию:
, и немного «поколдовав» с формулой выводим значение для коэффициента усиления инвертирующего ОУ:

Приведенный выше скрин в комментариях не нуждается. Просто сами все подставьте и проверьте.

Следующий этап - неинвертирующий усилитель.
Тут все также просто. Напряжение подается непосредственно на неинвертирующий вход. На инвертирующий вход подводится обратная связь. Напряжение на инвертирующем входе будет:
, но применяя первое правило, можно утверждать, что

И снова «грандиозные» познания в области высшей математики позволяют перейти к формуле:
Приведу исчерпывающий скрин, который можете перепроверить, если хотите:

Напоследок, приведу парочку интересных схем, чтобы у Вас не сложилось впечатления, что операционные усилители могут только усиливать напряжение.

Повторитель напряжения (буферный усилитель). Принцип действия такой же, как и у транзисторного повторителя. Используется в цепях с большой нагрузкой. Также, с его помощью можно решить задачку с согласованием импедансов, если в схеме есть нежелательные делители напряжения. Схема проста до гениальности:

Суммирующий усилитель. Его можно использовать, если требуется сложить (отнять) несколько сигналов. Для наглядности - схема (снова обращаем внимание на расположение входов):


Также, обращаем внимание на то, что R1 = R2 = R3 = R4, а R5 = R6. Формула расчета в данном случае будет: (знакомо, не так ли?)
Таким образом, видим, что значения напряжений, которые подаются на неинвертирующий вход «обретают» знак плюс. На инвертирующий - минус.

Заключение
Схемы на операционных усилителях чрезвычайно разнообразны. В более сложных случаях Вы можете встретить схемы активных фильтров, АЦП и устройств выборки хранения, усилители мощности, преобразователи тока в напряжение и многие многие другие схемы.
Список источников
Краткий список источников, который поможет Вам быстрее освоится как в ОУ, так и в электронике в целом:
Википедия
П. Хоровиц, У. Хилл. «Искусство схемотехники»
Б. Бейкер. «Что нужно знать цифровому разработчику об аналоговой электронике»
Конспект лекций по электронике (желательно, собственный)
UPD.: Спасибо НЛО за приглашение