Структура системы радиосвязи. Принципы ведения радиосвязи. Канал и линия радиосвязи

Для разрабатываемой функциональной схемы передающей части канала из структурной схемы выбираются: коммутатор К, усилитель мощности, который может состоять из двух каскадов предварительного усиления ПОК1 и ПОК2 и оконечного усилителя мощности ОК. Схема синтезатора-возбудителя предназначена для формирования высокочастотного ЧМ колебания с амплитудой не менее 0,5 В, которое используется для возбуждения предварительного усилителя мощности ПОК1. Диапазон частот возбудителя 151,725 - 156,000 МГц, шаг сетки частот 25 кГц. В состав возбудителя входят: ГУН 1 на транзисторе ГТ311Е и варикапах КВ121А, буферный усилитель на двух транзисторах того же типа, включенных по каскадной схеме ОЭ - ОБ, большая интегральная схема синтезатора частоты типа КФ1015ПЛ4Б (КР1015ХК2). Опорный сигнал частотой 10 МГц для передающего и приёмного синтезаторов вырабатывает высокостабильный генератор "Топаз - 03", выпускаемый на Российских предприятиях по техническим условиям ШИ3.423.009ТУ в виде малогабаритного конструктивного устройства, питаемого стабилизированным напряжением +9 В. В проекте его можно использовать, как функциональный блок без представления принципиальной схемы.

На вход синтезатора частоты поступает сигнал с ГУН 1 через буферный усилитель. Входом является входящий в синтезатор делитель частоты с переменным коэффициентом деления ДПКД, с выхода которого сигнал поступает на один из входов частотно-фазового детектора ЧФД. На второй вход детектора подается высокочастотный сигнал опорного генератора ОГ, прошедший через делитель опорной частоты ДОЧ. ЧДФ формирует сигнал ошибки, пропорциональный разности фаз входных сигналов. Это напряжение ошибки по цепи фазовой автоподстройки ФАПЧ через фильтр низких частот ФНЧ подаётся на управляющий вход ГУН 1 , что приводит к изменению его частоты до требуемого, определяемого коэффициентом ДПКД значения. Синтезатор имеет выход сигнала детектора захвата частоты петлёй ФАПЧ. На ГУН 1 одновременно осуществляются частотная модуляция и автоподстройка его частоты. Чтобы не происходило снижения девиации частоты за счёт схемы ФАПЧ, постоянная времени фильтра низких частот ФНЧ на выходе синтезатора выбрана много больше, чем период низкой частоты (F МИН = 300 Гц) спектра НЧ сигнала. При этом ФАПЧ работает на частотах ДF<< 300 Гц и не реагирует на сравнительно быстрые изменения частоты при её девиации, что делает возможным одновременное сосуществование частотной модуляции и автоподстройки. Информация о частоте конкретного канала поступает в регистр синтезатора по цепям "Запись", "Данные" и "Синхронизация". Сигнал "Запись" содержит байт информации о включении или выключении передатчика. Сигнал "Данные" содержит ещё три байта информации для передачи трёхзначного номера канала, общее число которых составляет в диапазоне частот 151,725 - 156,000 МГц N = 172. Т.о. для хранения информации "Запись" и "Данные" должно использоваться 32 - разрядное (4 - байтовое) управляющее слово, формируемое в блоке автоматики. Запись номера канала, по которому устанавливается в ДПКД синтезатора необходимый коэффициент деления, производится двоичным последовательным кодом, продвигаемым через регистр синтезатора с каждым синхроимпульсом, поступающим по цепи "Синхронизация". При этом внутри синтезатора последовательный код преобразуется в параллельный, что обеспечивает нормальное функционирование режима ФАПЧ возбудителя. Все сигналы поступают в синтезатор через буферную микросхему 564ПУ4Б D 1 . Сигнал синтезатора подаётся также на схему контроля для формирования сигнала исправности его работы. Особое место в схеме передающего тракта занимает модулятор, который выполняет следующие функции:

а) обеспечивает номинальную девиацию частоты Дf НОМ;

б) ограничивает максимальное значение девиации частоты Дf МАКС;

в) осуществляет необходимую предкоррекцию амплитудно-частотной характеристики тракта АЧХ по закону +6 дБ/октава.

Для выполнения указанных функций схема модулятора содержит:

Усилитель звуковой частоты, охваченный петлей автоматической регулировки усиления АРУ, которая производит сжатие динамического диапазона входных сигналов;

Амплитудный ограничитель, устраняющий перемодуляцию передатчика;

Фильтр низких частот, служащий для ограничения полосы пропускания модулирующих сигналов в пределах от 0,3 до 3,4 кГц;

Формирователь сигнала исправности модулятора.

Расчёт режима модулятора в данном проекте не выполняется, в принципиальную и функциональную схемы вставляется лишь его функциональный блок и перечисляются все вышеприведенные функции, которые реализует модулятор. Параметры стандартного модулятора:

а) чувствительность модуляционного входа модулятора при R ВХ = 600 Ом должна быть не менее 300 мВ;

б) отклонение амплитудно-частотной модуляционной характеристики передатчика АЧМХ от характеристики с предкоррекцией + 6 дБ/октава должно быть в пределах ± 12,5 дБ;

Функциональная схема передающего канала приведена на рисунке 3.1. В соответствии с этой схемой производятся расчёты предварительных параметров передающей части.

Рисунок 3.1 - Функциональная схема передающей части канала

1. Основы радиосвязи. Основы радиосвязи и телевидения

1. Основы радиосвязи

Целью изучения данной темы является ознакомление с общими принципами организации радиосвязи, изучение структурных схем систем радиосвязи, основных функциональных узлов радиопередатчиков и радиоприемных устройств, знакомство с основными техническими показателями приемопередающих устройств.

1.1. Общие принципы организации радиосвязи

Может возникнуть вопрос, нельзя ли для того чтобы передать с помощью радиоволн человеческую речь или музыку, звуковые колебания превратить в электрические, а последние с помощью антенны преобразовать в электромагнитные волны, чтобы затем в приемном пункте электромагнитные волны снова превратить в звуковые?

Звуковые колебания, воспринимаемые человеческим слухом, лежат обычно в полосе частот от 20 до 20 000 Гц, т.е. такие колебания создадут волны длиной от 15 000 до 15км. Антенны же могут эффективно излучать электромагнитные колебания только тогда, когда их размеры соизмеримы с длиной волны.

Однако сами по себе колебания высокой частоты информацию не несут. Посылать их по линии связи бесполезно. Так же бесполезно, как посылать телеграмму с адресом, но без текста: она дойдет сравнительно быстро, но ее получатель сведений не получит.

Таким образом, в нашем распоряжении есть сообщение, содержащее информацию, но не способное дойти до получателя. Есть и высокочастотное колебание, которое найдет своего получателя, но не принесет ему информацию. Как соединить вместе необходимые качества сообщения и безынформативного колебания?

Единственный способ - попытаться наложить на высокочастотное колебание отпечаток сообщения, т.е. использовать высокочастотное колебание лишь в роли переносчика сообщения, содержащего информацию. С этой целью нужно изменять один или несколько признаков (параметров) несущего колебания в соответствии с изменениями сообщения. Тогда мы получим высокочастотное колебание с меняющимися во времени параметрами по закону передаваемого сообщения. Рассмотренный процесс называется модуляцией.

Рисунок 1.1. Структурная схема радиолинии

На рисунке 1.1 приведена упрощенная структурная схема радиолинии. Передаваемое сообщение поступает на преобразователь (микрофон, телевизионную камеру или телеграфный аппарат), который преобразует его в электрический сигнал. Последний поступает на радиопередающее устройство, состоящее из модулятора (М), синтезатора несущей частоты (СЧ) и усилителя модулированных колебаний (УМК). С помощью модулятора один из параметров высокочастотного колебания изменяется по закону передаваемого сообщения. С помощью антенны (А) энергия радиочастотных колебаний передатчика излучается в тракт распространения радиоволн.

На приемном конце радиоволны наводят ЭДС в антенне. Радио-приемное устройство с помощью селективных (избирательных) цепей (СЦ) отфильтровывает сигналы от помех и других радиостанций. В детекторе (Д) происходит процесс, обратный модуляции, – выделение из модулированных колебаний исходного электрического сигнала, который управлял радиопередатчиком. С помощью преобразователя (громкоговорителя, телеграфного аппарата, приемной телевизионной трубки) электрический сигнал связи преобразуется в сообщение, доставляемое абоненту.

Рассмотренная радиолиния обеспечивает одностороннюю передачу сообщения, что приемлемо только в службах оповещения. Одностороннюю радиосвязь представляет собой, в сущности, и радиовещание, хотя в этом случае прием ведется не в одном, а во множестве пунктов. Прием во многих пунктах ведется также при циркулярной передаче: распоряжения передаются многим исполнителям; сообщения передаются из пресс-центра редакциям газет и т.д.

Для организации двусторонней радиосвязи в каждом пункте надо иметь и передатчик и приемник. Если при этом передача и прием на каждой радиостанции осуществляются поочередно, то такая радиосвязь называется симплексной (рисунок 1.2, а ). Двусторонняя радиосвязь, при которой связь между радиостанциями реализуется одновременно, называется дуплексной (см. рис. 1.2, б ).

При дуплексной радиосвязи передача в одном и другом направлениях ведется, как правило, на разных несущих частотах. Это делается для того, чтобы приемник принимал сигналы только от передатчика с противоположного пункта и не принимал сигналов собственного передатчика.

Для радиосвязи на большие расстояния применяют радиопередатчики мощностью в десятки и сотни киловатт. Поэтому, хотя при дуплексной связи приемник настраивается не на ту частоту, на которую настроен свой передатчик, трудно обеспечить его нормальную работу вблизи мощного передатчика. Исходя из этого приемник и передатчик приходится размещать на расстоянии в десятки километров друг от друга.

Симплексная связь используется, как правило, при наличии относительно небольших информационных потоков. Для объектов с большой нагрузкой характерна дуплексная связь.

Если необходимо иметь радиосвязь с большим числом объектов, то организуется так называемая радиосеть (рисунок 1.3). Одна радиостанция, называемая главной (ГР), может передавать сообщения как для одного, так и для нескольких подчиненных объектов. Ее радист-оператор следит за порядком в радиосети и устанавливает очередность работы на передачу подчиненных станций (ПР). Последние при соответствующем разрешении могут обмениваться информацией не только с ГР, но и между собой. Этот вариант организации радиосети может быть построен на основе как сложного симплекса (рисунок 1.3, а), так и сложного дуплекса (рисунок 1.3, б). В первом случае возможно использование совмещенных приемопередатчиков и общей рабочей радиоволны (частоты). Во втором случае ГР ведет передачу на одной частоте, а принимает на нескольких (по числу подчиненных радиостанций). Несмотря на различие в частотах приема и передачи, здесь, как и при простом дуплексе, необходимо располагатьприемник и передатчик на удалении друг от друга. Иначе из-за помех, создаваемых передающим устройством, одновременный прием сообщений может стать невозможным.

Рисунок 1.3. Структурные схемы радиосетей:

а – сложный симплекс; б – сложный дуплекс.

Центры крупных промышленных районов соединяются линиями радиосвязи со многими пунктами. В этих условиях передатчики и передающие антенны располагают на радиостанции, которую называют передающим радиоцентром. Приемники и приемные антенны располагают на приемном радиоцентре.

Процессы в электроэнергетических сооружениях, на электрифициро-ванных железных дорогах, в электрических установках и бытовых электроприборах, множество которых имеется в городах, связаны с излучением электромагнитных волн. Поскольку эти излучения могут быть помехами радиоприему, приемный радиоцентр обычно помещается в стороне от населенных пунктов и железных дорог. Для соединения источников сообщения с радиопередатчиками и радиоприемниками и контроля качества радиосвязи в городах оборудуют радиобюро.

1.2. Радиопередающие устройства

Основные функциональные узлы радиопередатчика. Схема и конструкция радиопередатчика зависят от различных факторов: назначения, диапазона рабочих волн, мощности и т.д. Тем не менее можно выделить некоторые типичные блоки, которые с теми или иными вариациями имеются в большинстве передатчиков.

Структура передатчика (рисунок 1.4) определяется его основными общими функциями, к которым относятся:

  • получение высокочастотных колебаний требуемой частоты и мощности;
  • модуляция высокочастотных колебаний передаваемым сигналом;
  • фильтрация гармоник и прочих колебаний, частоты которых выходят за пределы необходимой полосы излучения и могут создать помехи другим радиостанциям;
  • излучение колебаний через антенну.

Рисунок 1.4. Функциональная схема радиопередатчика.

Остановимся более подробно на требованиях к отдельным функциональным узлам радиопередатчика.

Генератор высокой частоты, часто называемый задающим или опорным генератором, служит для получения высокочастотных колебаний, частота которых соответствует высоким требованиям к точности и стабильности частоты радиопередатчиков.

Синтезатор преобразует частоту колебаний опорного генератора, которая обычно постоянна, в любую другую частоту, которая в данное время необходима для радиосвязи или вещания. Стабильность частоты при этом преобразовании не должна существенно ухудшаться. В отдельных случаях синтезатор частоты не нужен, например если генератор непосредственно создает колебания нужной частоты. Однако с синтезатором легче обеспечить требуемую высокую точность и стабильность частоты, так как он, во-первых, работает на более низкой частоте, на которой легче обеспечить требуемую стабильность; во-вторых, он работает на фиксированной частоте. Кроме того, современные синтезаторы приспособлены для дистанционного или автоматического управления синтезируемой частотой, что облегчает общую автоматизацию передатчика.

Промежуточный усилитель высокой частоты, следующий за синтезатором, необходим по следующим причинам:

  • благодаря промежуточному усилителю с достаточно большим коэффициентом усиления от опорного генератора и синтезатора не требуется значительной мощности;
  • применение промежуточного усилителя между синтезатором и мощным усилителем ослабляет влияние на генератор и синтезатор возможных регулировок в мощных каскадах передатчика и в антенне.

Усилитель мощности (его называют генератором с внешним возбуждением ) увеличивает мощность радиосигнала до уровня, определяемого требованиями системы радиосвязи. Главным требованием к усилителю мощности является обеспечение им высоких экономических показателей, в частности коэффициента полезного действия.

Выходная цепь служит для передачи усиленных колебаний в антенну, для фильтрации высокочастотных колебаний и для согласования выхода мощного оконечного усилителя с антенной, т.е. для обеспечения условий максимальной передачи мощности.

Модулятор служит для модуляции несущих высокочастотных колебаний передатчика передаваемым сигналом. Для этого модулятор воздействует в зависимости от особенностей передатчика и вида модуляции (амплитудная, частотная, однополосная и др.) на один или несколько блоков из числа обведенных пунктиром на рисунке 1.4. Например, частотная модуляция может получаться в синтезаторе частоты либо (реже) в генераторе высокой частоты; амплитудная модуляция получается воздействием на мощный и промежуточный усилители.

Устройство электропитания обеспечивает подведение ко всем блокам токов и напряжений, необходимых для нормальной работы входящих в их состав транзисторов, ламп и прочих электронных элементов, а также систем автоматического управления, устройств защиты от аварийных режимов и прочих вспомогательных цепей и устройств. Система электропитания содержит выпрямители, электромашинные генераторы с двигателями внутреннего сгорания, аккумуляторы, инверторы (преобразователи) низкого постоянного напряжения в более высокое или обратно, трансформаторы, коммутационную аппаратуру, резервные источники питания и устройства для автоматического перехода с основного источника на резервный в случае неисправностей и т.п.

На рисунке 1.4 не показаны многочисленные объекты вспомога-тельного оборудования, входящие в состав передатчика (особенно мощного), например средства автоматического и дистанционного управления; контрольно-измерительные приборы, устройства дистанционного контроля и сигнализации; устройства защиты и блокировки, выключающие цепи высокого напряжения при аварийных режимах или опасности для обслуживающего персонала и др.

Радиопередатчики диапазонов километровых, гектометровых и декаметровых волн обычно размещаются группами на специальных предприятиях – передающих радиостанциях. При большом числе передатчиков радиостанции называются радиоцентрами. Радиовещательные передатчики метровых и дециметровых волн, кaк правило, размещаются вместе с передатчиками телевизионного вещания. Предприятия связи, на которых установлены эти передатчики, называются радиотелевизионными передающими станциями (центрами).

Технические показатели радиопередатчиков. К основным показателям радиопередатчика относятся: диапазон волн, мощность, коэффициент полезного действия, вид и качество передаваемых сигналов.

В соответствии с классификацией волн различают передатчики километровых, гектометровых, декаметровых и других волн. С этим различием связаны соответствующие особенности конструкций, так как в разных диапазонах различны конструкции колебательных контуров и типов усилительных элементов. Передатчик может работать на одной или нескольких выделенных для него фиксированных волнах, либо он может настраиваться на любую длину волны в непрерывном диапазоне волн.

Мощность передатчика обычно определяется как максимальная мощность высокочастотных колебаний, поступающая в антенну при отсутствии модуляции, при непрерывном излучении. Однако этой характеристики недостаточно для оценки мощности радиопередатчика. Дело в том, что в технике радиосвязи часто приходится иметь дело с сигналами, напряжение которых изменяется в очень широких пределах и в сравнительно короткие промежутки времени может принимать значения, в несколько раз превосходящие средний уровень. Характерным примером подобного режима может служить радиолокационный передатчик, излучающий импульсы длительностью около 1 мксек, разделенные интервалами около 1 мсек, т.е. в 1000 раз большей длительности. Если бы при проектировании передатчика расчет велся на то, что в моменты этих выбросов мощность излучения соответствовала бы номинальной мощности, то фактическая средняя мощность излучения была бы во много раз меньше. Передатчик был бы использован значительно слабее своих возможностей, а при необходимости обеспечить большую дальность радиосвязи потребовалось бы применить передатчик значительно большей мощности.

В системах радиовещания промежутки времени, в которые амплитуда колебаний достигает максимальных значений, занимают обычно большую часть общего времени работы передатчика (например, 10-20%), длительность их доходит до десятков миллисекунд, но и в этом случае описанное временное форсирование передатчика возможно, хотя и в меньших пределах.

В соответствии с изложенным мощность передатчика, помимо цифры максимальной мощности, при непрерывной работе характеризуют значениями пиковой мощности, которая может быть обеспечена в течение ограниченных промежутков времени. Например, если средняя мощность передатчика при непрерывной работе 100 кВт, то она может доходить до 200 кВт, если длительность импульсов не превышает интервалов между ними.

Важнейшими показателями радиопередатчика являются стабильность излучаемой им частоты и уровень побочных излучений. Дело в том, что если строго соблюдается присвоенная данному передатчику частота сигнала, то настроенный на эту частоту приемник начинает принимать передаваемые сигналы тотчас после включения, не требуя подстроек; это способствует удобству эксплуатации и высокой надежности радиосвязи, а также облегчает автоматизацию оборудования. Кроме того, частотные диапазоны, используемые для радиосвязи и вещания, переуплотнены сигналами одновременно работающих радиостанций, поэтому если частота передатчика отличается от разрешенного значения, то она может приблизиться к частоте другого передатчика, что вызовет помехи приему его сигналов.

По существующим международным нормам отклонение от номинала частоты передатчика для радиосвязи на гектометровых волнах не должно превышать 0,005%; для радиовещательных передатчиков отклонение частоты в этом диапазоне не должно превышать 10 Гц. На декаметровых волнах допустимая нестабильность частоты для передатчиков мощностью более 0,5 кВт равна 15·10 - 6 , что соответствует в диапазоне от 4 до 30 МГц абсолютному отключению частоты от 60 до 450 Гц. Некоторые системы радиосвязи по своему принципу требуют, чтобы стабильность частоты была значительно лучше, чем предусматривается указанными нормами.

Гармоническими излучениями (гармониками) передатчика называются излучения на частотах, в целое число раз превышающих частоту передаваемого радиосигнала.

Известно, что при действии в нелинейной цепи, например двух ЭДС с частотами f 1 и f 2 спектр тока содержит, помимо составляющих с этими частотами и их гармоник, также составляющие с частотами вида mf 1 ± nf 2 , где т и п –целые числа. Это явление и лежит в основе взаимной модуляции; оно обусловлено наличием в передатчике элементов, обладающих нелинейными характеристиками, главным образом транзисторов или электронных ламп.

Интенсивность побочных излучений характеризуется мощностью соответствующих колебаний в антенне передатчика. Например, по действующим международным нормам радиопередатчики на частотах до 30 МГц должны иметь мощность побочных излучений не менее чем в 10000 раз (на 40 дБ) ниже мощности основного излучения и не более 50 мВт.

Показатели, определяющие качество передачи вещательного сигнала (электроакустические показатели), в принципе не отличаются от аналогичных параметров электрического канала вещания, что естественно, поскольку передатчик является частью канала – трактом вторичного распределения.

Некоторое отличие заключается лишь в том, что эти показатели нормируются и измеряются относительно уровня сигнала, соответствующего определенному коэффициенту модуляции сигналом частотой 1000 Гц. Для допустимого отклонения амплитудно-частотной характеристики этот коэффициент равен 50%.

Коэффициент гармоник определяется при коэффициенте модуляции 50, 90, а также 10%, что обусловлено наличием в модуляторе передатчика специфических искажений вида двустороннего ограничения, заметных при большом коэффициенте модуляции, вида центральной отсечки, заметных при малом коэффициенте модуляции. Защищенность от интегральной помехи и от псофометрического шума измеряется относительно уровня модулирующего сигнала, соответствующего 100% модуляции. Эксплуатационный персонал часто употребляет термин уровень шумов, который оценивается в децибелах относительно уровня модулирующего сигнала с частотой 1000 Гц, соответствующего коэффициенту модуляции 100%. Численно он равен величине запрещенности от интегральной помехи, взятой со знаком "минус".

1.3. Радиоприемные устройства

Назначение и классификация радиоприемных устройств. Радиоприемные устройства используют для радиосвязи, звукового и телевизионного вещания, радионавигации, радиолокации, paдио-, телеуправления и т.д. Радиоприемное устройство должно содержать все необходимые узлы для осуществления следующих процессов:

  • выделения из всей совокупности электрических колебаний, создаваемых в антенне внешними электромагнитными полями, сигнала от нужного радиопередатчика;
  • усиления высокочастотного сигнала;
  • детектирования, т.е. преобразования высокочастотного модулированного сигнала в ток, изменяющийся по закону модуляции;
  • усиления продетектированного сигнала.

Дальнейшее преобразование сигнала зависит от конкретных особенностей применения радиоприемника. Если, например, приемник предназначен для одноканальной радиотелефонной связи либо звукового или телевизионного вещания, то принятый сигнал после усиления превращается в звук и изображение при помощи телефона, громкоговорителя и приемной телевизионной трубки.

Если приемник предназначен для многоканальной радиосвязи, то продетектированный и усиленный сигнал подводится к оконечному устройству, в котором происходит разделение сигналов по отдельным каналам и, если требуется, дополнительная их обработка.

Применяемые в настоящее время радиоприемники делятся на профессиональные и бытовые. Первые предназначаются для использования на линиях радиосвязи и для решения различных навигационных, телеметрических и других специальных задач. Вторые служат для приема программ звукового и телевизионного вещания.

Радиоприемные устройства можно классифицировать:

  • по роду работы (радиотелефонные, радиотелеграфные, телевизионные, радионавигационные, радиолокационные и др.);
  • по виду модуляции (с амплитудной модуляцией (AM), частотной модуляцией (ЧМ), однополосной амплитудной модуляцией (ОБП) и т.д.);
  • по диапазону волн принимаемых сигналов (километровые, гектометровые, декаметровые и т.д.);
  • по месту установки (стационарные, переносные, самолетные, автомобильные и др.);
  • по схеме электропитания (от сети постоянного и переменного токов).

Основные показатели радиоприемников. Показатели радиоприемников определяются их назначением. Для радиоприемников разных типов они могут быть различными.

Чувствительность характеризует способность приемника принимать слабые сигналы. Она обычно оценивается наименьшим значением ЭДС или мощностью радиосигнала в антенне, при которой возможен устойчивый прием с нормальным воспроизведением сигнала без недопустимого искажения его помехами.

Чувствительность приемников в зависимости от их назначения может колебаться в широких пределах. Так, чувствительность радиовещательных приемников находится в пределах 50-300 мкВ в зависимости от класса качества. Чувствительность радиолокационных приемников имеет значения порядка 10 -12 - 10 -15 Вт. Для приемников с ферритовой антенной используется понятие чувствительности по напряженности поля. Она имеет значение от 0,3 до 5 мВ/м.

Высокая чувствительность может быть практически реализована лишь в том случае, если уровень внешних помех или собственных шумов на выходе приемника в несколько раз ниже уровня сигнала. Поэтому приемники разных видов необходимо характеризовать не только их чувствительностью, но и так называемой реальной чувствительностью, под которой понимается минимальная ЭДС в антенне, при которой обеспечивается не только нормальная мощность на выходе, но получается определенное превышение уровня сигнала над уровнем внешних помех или собственных шумов.

Избирательностью (селективностью) радиоприемного устройства называется его способность выделять из различных сигналов, отличающихся по частоте, сигнал принимаемой станции. В соответствии с этим избирательность приемника оценивается как относительное ослабление сигналов посторонних радиостанций, работающих на различных волнах, по отношению к сигналам принимаемого передатчика, на волну которого этот приемник настроен. Избирательность осуществляется главным образом входящими в состав приемника колебательными контурами и фильтрами.

Понятие избирательности поясняет рисунок 1.5, на котором показан спектр частот трех радиостанций, из которых две крайние мы рассматриваем как помехи. Из рисунка 1.5 видно, что если фильтры приемника обладают прямоугольной частотной характеристикой, соседние (мешающие) радиостанции не создадут на его выходе никакого сигнала (рисунок 1.5 б). Если же частотная характеристика фильтра далека от идеальной, то на его выходе кроме полез ного сигнала будет прослушиваться помеха (рисунок 1.5 в).

Естественно, что наибольшие трудности представляет ослабление помех от ближайших по частоте посторонних сигналов, т.е. сигналов соседнего частотного канала. Поэтому для оценки качества приемника всегда определяется его селективность в отношении помех соседнего канала.

В первом приближении количественную оценку избирательности можно производить по резонансной характеристике приемника, изображающей зависимость коэффициента усиления от частоты колебаний в антенне. Благодаря применению колебательных контуров и фильтров резонансная характеристика при настройке приемника на какую-либо частоту сигнала имеет вид, подобный рисунку 1.6. Избирательность в отношении помехи на частоте f c определяется вэтом случае как

Где К 0 – коэффициент усиления на частоте настройки; К п – коэффициент усиления на частоте f п.

Селективность удобно определять также в децибелах:

Так как передаваемое сообщение имеет определенную полосу частот, другой не менее важной функцией приемника является прием сигнала высокой частоты со всеми его боковыми частотами, т.е. одновременный прием определенной полосы частот. При этом необходимо, чтобы соотношения между амплитудами составляющих спектра сигнала оставались без изменений. Последнее можно обеспечить лишь при постоянной чувствительности приемника в определенной полосе частот. Поэтому понятно, что идеальная амплитудная частотная характеристика (АЧХ) приемника должна быть прямоугольной. При такой форме приемник одинаково принимает спектр боковых частот полезного сигнала, т.е. полоса пропускания такого устройства однозначно определяется как 2 f . Одновременно приемник с такой АЧХ обладал бы идеальной избирательностью, поскольку не пропускал бы сигналов мешающих станций и помех, частоты которых отличаются на f .

Частотная характеристика реального приемника отличается от прямоугольной. Полосой пропускания в данном случае называют область частот, в пределах которой ослабление спектра принимаемых колебаний не превышает заданного значения. Считается, что искажения будут не заметны на слух, если неравномерность АЧХ в пределах полосы пропускания не превышает 3 дБ. Это соответствует уровню . Именно на этом уровне отсчитывается полоса пропускания. Частотные свойства контура могут быть заданы его добротностью .

Качество воспроизведения принятого сигнала зависит от различного рода искажений сигнала в отдельных каскадах приемника. К этим искажениям относятся частотные, фазовые и нелинейные. На качество принятого сигнала будут влиять также различного рода помехи: атмосферные, промышленные, помехи от соседних по частоте передатчиков, а в диапазонах УКВ - собственные шумы приемника.

Структурные схемы радиоприемников. В настоящее время находят применение приемники прямого усиления, регенеративные, суперрегенеративные, супергетеродинные с одинарным и двойным преобразованиями частоты. Рассмотрим более подробно структурные схемы приемника прямого усиления и супергетеродинного. Ha рисунке 1.7 представлена структурная схема приемника прямого усиления.

Входная цепь (ВЦ) выделяет полезный сигнал из всей совокупности колебаний, наводимых в антенне от различных радиопередатчиков и других источников электромагнитных колебаний, ослабляет мешающие сигналы. Усилитель радиочастоты (УРЧ) усиливает поступающие из входной цепи полезные сигналы и обеспечивает дальнейшее ослабление сигналов мешающих станций. Детектор (Д) преобразует модулированные колебания радиочастоты в колебания, соответствующие передаваемому сообщению: звуковому, телеграфному и др. Усилитель низкой частоты (УНЧ) усиливает продетектированный сигнал по напряжению и мощности до величины, достаточной для приведения в действие оконечного устройства (громкоговорителя, реле, приемной телевизионной трубки и др.). Оконечное устройство (ОУ) преобразует электрические сигналы в исходную информацию (звуковую, световую, буквенную и др.).

Приемник прямого усиления не может обеспечить хорошую избирательность и высокую чувствительность, особенно в ди апазонах коротких и ультракоротких волн. Это объясняется тем, что по мере повышения частоты возрастает полоса пропускания резонансной цепи. Так, полоса пропускания одиночного контура 2f и его добротность Q связаны соотношением , где f с – частота принимаемого сигнала.

На высоких частотах полоса пропускания контура возрастает и кроме полезного сигнала контур будет пропускать помеху.

Заметим, что сделать селективную цепь приемника прямого усиления с прямоугольной или даже близкой к ней характеристикой практически невозможно, так как этот контур должен быть перестраиваемым. Фильтры, обеспечивающие прямоугольные характеристики. - это многоконтурные системы, перестраивать которые одной ручкой настройки невозможно. В связи с этим приемник прямого усиления обладает плохой избирательностью.

От указанных недостатков свободен супергетеродинный приемник (рисунок 1.8). Его отличительной особенностью является использование в нем преобразователя частоты, состоящего из смесителя (С) и гетеродина (Г). На выходе преобразователя мы получаем промежуточную частоту, усиливаемую в дальнейшем усилителем промежуточной частоты (УПЧ).

Преобразователем частоты называется устройство, предназначенное для переноса спектра сигнала из одной области частот в другую без изменения амплитудных и фазовых соотношений между компонентами спектра. Поскольку при таком переносе форма спектра сигнала не меняется, то не будет меняться и закон модуляции сигнала. Изменяется только значение несущей частоты сигнала f с, которая становится равной некоторой преобразованной частоте f пр.

К преобразователю частоты кроме напряжения сигнала с частотой f с, подводится напряжение гетеродина (маломощного автогенератора) с частотой f г. При взаимодействии этих напряжений в преобразователе частоты возникаю составляющие различных комбинационных частот, из которых используется только одна. Обычно используется составляющая f пр = f г – f с.

На практике значение f пр обычно меньше частоты несущей сигнала f с, но больше частоты модулирующего сигнала F c .

Поскольку преобразованная частота f пр занимает промежуточное значение между f с и F с, то она называется промежуточной частотой.

Название супергетеродин составное (супер+гетеродин), в котором слово гетеродин указывает на характерный для супергетеродинных приемников каскад-гетеродин. Этот каскад является неотъемлемой частью преобразователя частоты. Приставка супер означает, что в супергетеродинных приемниках преобразованная частота f пр расположена в области частот выше (сверх) частоты модуляции F c .

Преобразование несущей частоты радиосигнала в промежуточную приводит к улучшению фильтрации соседних каналов радиосвязи. Например, пусть в антенне действует ЭДС сигналов с несущими частотами f 1 = 20 МГц (полезный сигнал) и f 2 = 20,2 МГц. Относительная разность частот между станциями . Контур в радиочастотном диапазонеимеет добротность 20-50, т.е. относительную полосу пропускания 5-2%. В рассматриваемом примере станция f 2 отличается от избранной всего на 1% и поэтому будет создавать заметную помеху. Если произвести преобразование несущей частоты f 1 , то при частоте сигнала гетеродина f г = 20,5 МГц получаются две промежуточные частоты f пр1 = 20,5 - 20 = 0,5 МГц и f пр2 = 20,5 – 20,2 = 0,3 МГц, относительная разность между которыми . Как видно, относительная разность увеличиласьот 1 до 40%. В этих условиях станция, работающая на частоте f 2 , не будет помехой для фильтров преобразователя частоты, настроенных на частоту f пр =0,5 МГц, даже если их добротность соизмерима с добротностью контуров УРЧ.

В супергетеродинных приемниках основное усиление и изби-рательность осуществляются после преобразования частоты в усилителе промежуточной частоты (УПЧ). Важным достоинством супергетеродинного приемника является то, что в процессе его перестройки на другую станцию промежуточная частота f пр не меняется. Достигается это за счет того, что при перестройке приемника на другую частоту сигнала f с одновременно изменяется частотагетеродина f г таким образом, чтобы разность f г – f с = f пр осталась неизменной.

Следовательно, при перестройке супергетеродинного приемника достаточно изменить резонансные частоты входной цепи, УРЧ и гетеродина. Перестраивать УПЧ при этом не требуется. Поскольку УПЧ не перестраивается, то его характеристики не меняются. При этом частотная характеристика контуров УПЧ может быть получена достаточно близкой к прямоугольной, так как в нем могут быть использованы фильтры любой степени сложности. Именно по этой причине супергетеродинные приемники обеспечивают высокую избирательность.

Недостатком супергетеродинных приемников является наличие в них побочных каналов приема, главным из которых является зеркальный.

Зеркальный канал имеет несущую частоту f зерк, отличающуюся от частоты полезного сигнала f с на удвоенную промежуточную частоту f зерк = f с + f пр (рисунок 1.9).

Частоты f с и f зерк расположены зеркально симметрично относительно частоты гетеродина f г. Разность между f зерк и f г равна промежуточной частоте, как и в случае полезного сигнала. Поэтому если на преобразователь частоты поступают сигналы станций f с и f зерк, то на его выходе обе станции дадут напряжение промежуточной частоты. Если сигнал частоты f с является полезным, то сигнал частоты f зерк, попавший на преобразователь, является помехой. Очевидно, что ослабление помехи по зеркальному каналу должно происходить до преобразователя частоты. Для улучшения избирательности по зеркальному каналу промежуточная частота должна быть высокой. Тогда несущие частоты f с и f зерк значительно различаются. При этом коэффициент передачи входной цепи (она тоже обладает резонансными свойствами) на частоте f зерк существенно меньше, чем на частоте f с, и сигнал зеркальной станции будет значительно подавлен входной цепью. При наличии в приемнике УРЧ зеркальная помеха дополнительно подавляется за счет избиpaтeльныx свойств УРЧ.

Однако при высокой промежуточной частоте уменьшается коэффициент устойчивого усиления УПЧ и расширяется его полоса пропускания, что приводит к снижению чувствительности приемника и его избирательности по соседнему каналу. Как видно, требование к величине промежуточной частоты довольно противоречиво.

Другим побочным канатом является канал, частота которого равна промежуточной. Сигнал такой частоты, поступающий на вход преобразователя, без каких-либо изменений попадает па УПЧ. Для его устранения радиовещательные станции не должны работать на промежуточной частоте, а случайные помехи с частотами, близкими к промежуточной, должны быть подавлены соответствующими фильтрами на входе приемника.

В бытовых радиовещательных приемниках несущая частота составляет 465 кГц, т.е. она расположена в окне между границами радиовещательных диапазонов ДВ и СВ - 285,5-525 кГц.

В приемниках, работающих на магистральных линиях радиосвязи, требуются более высокие чувствительность и избирательность как по соседнему, так и по зеркальному каналам. Это невозможно выполнить при выборе одной промежуточной частоты, поэтому в таких приемниках применяют двойное преобразование частоты. При двойном преобразовании частоты первую промежуточную частоту выбирают достаточной высокой (порядка 1 МГц), за счет чего обеспечивается высокая избирательность по зеркальному каналу. Вторая промежуточная частота выбирается достаточно низкой (порядка 100 кГц), что позволяет получить высокий коэффициент устойчивого усиления в каскадах УПЧ и таким образом повысить чувствительность приемника при высокой избирательности по соседнему каналу.

Вопросы для самоконтроля

1.1. Понятие принципа работы системы радиосвязи.

1.2. Назовите основные структурные схемы организации радиосвязи.

1.3. Перечислите основные функциональные узлы радиопередатчика.

1.4. Назовите основные технические показатели радиопередатчиков.

1.5. Приведите классификацию радиоприемных устройств.

1.6. Назовите основные показатели радиоприемных устройств.

1.7. Приведите структурную схему радиоприемника прямого усиления.

1.8. Объясните особенности работы супергетеродинного радиоприемника.

1.9. Из каких соображений выбирается значение промежуточной частоты в супергетеродинном радиоприемнике?

Список рекомендуемой литературы

1. Изюмов Н.М., Линзе Д.П. Основы радиотехники. – М.: Радио и связь, 1983. – 376 с.

2. Катунин Г.П., Мамчев Г.В., Попантонопуло В.Н., Шувалов В.П. Телекоммуникационные системы и сети. Том II. – Новосибирск: Цэрис, 2000. – 624 с.

3. Машкова Т.Т., Степанов С.Н. Основы радиотехники. – М.: Радио и связь, 1992. – 232 с.

4. Радиоприемные устройства / Под ред. Н.Н.Фомина. – М.: Радио и связь, 1996. – 512 с.

Принципы ведения радиосвязи. Канал и линия радиосвязи

Слово “радио” происходит от латинского radiare - излучать или испускать лучи и является общим термином, используемым к любым практическим применениям радиоволн. При этом под радиоволнами понимаются электромагнитные волны, распространяющиеся через открытое пространство (среду распространения радиоволн) без искусственных направляющих сред, таких, как провода или трубы - волноводов. При использовании электромагнитных волн в качестве материального носителя для передачи информации на расстояние приходим к радиосвязи как к одному из способов электросвязи, применяющей для обмена информацией электрические системы передачи. Таким образом, радиосвязь - это электросвязь, осуществляемая посредством радиоволн.

В широком смысле радиосвязь представлена несколькими родами связи, использующими для передачи сообщений различные механизмы распространения радиоволн: вдоль земной поверхности, с применением отражения в разных слоях атмосферы или посредством космических ретрансляторов. Каждый род радиосвязи характеризуется своими принципами, определяемыми, главным образом, особенностями диапазонов используемых для передачи сообщений радиоволн. В дальнейшем, говоря о радиосвязи, будет иметься в виду такой ее род, который дает возможность непосредственной связи между пространственно разнесенными точками на земной поверхности без использования промежуточных пунктов связи, осуществляющих переприем (ретрансляцию) сигналов. При этом ретрансляция, в принципе, может быть применима для повышения дальности связи или в других случаях, например, для повышения эффективности связи в сложных условиях помеховой обстановки. Другой отличительной особенностью того рода радиосвязи, который будет рассмотрен ниже, является возможность передачи и приема сообщений в движении.

Все поступающие от источника для передачи посредством радиоволн сообщения преобразуются в передающем оконечном устройстве в первичный электрический сигнал u (t), представляющий собой изменяющееся во времени напряжение (ток), отображающее сообщения. В зависимости от характера сообщений и вида преобразования первичный электрический сигнал может быть дискретным или непрерывным. В качестве передающего оконечного устройства могут выступать микрофон гарнитуры микрофонно-телефонной (МТГ) или телефонной трубки, телеграфный ключ, телеграфный аппарат и другие технические средства.

Характерной особенностью первичных электрических сигналов является их сравнительно медленное изменение во времени, т. е. низкая частота колебаний. Спектры большинства первичных электрических сигналов ограничены максимальной частотой, не превышающей нескольких килогерц. Такие низкочастотные сигналы не могут эффективно излучаться в среду распространения радиоволн, так как для этого необходимы излучатели, имеющие геометрические размеры, соизмеримые с длиной волны сигнала. Поэтому далее в радиопередатчике первичный электрический сигнал преобразуется в удобный для передачи радиосигнал uс(t). Процесс преобразования называется модуляцией для непрерывных первичных сигналов или манипуляцией для дискретных. В процессе модуляции (манипуляции) первичный электрический сигнал выступает в роли модулирующего сигнала, изменяющего один из параметров (амплитуду, частоту, фазу) высокочастотного гармонического колебания несущей частоты.

В общем случае процессу модуляции первичного электрического сигнала предшествует операция его кодирования, в результате которой последовательность элементов сообщения по определенному правилу заменяется последовательностью кодовых символов.

Радиосигналы по аналогии с первичными электрическими сигналами, которые они отображают, могут быть непрерывными (аналоговыми) или дискретными. В некоторых случаях дискретные сигналы называют цифровыми, поскольку их можно представить в цифровой форме - в виде чисел с конечным числом разрядов. В радиосвязи наибольшее применение нашли цифровые сигналы, имеющие только два дискретных значения. Дискретные сигналы могут использоваться для передачи не только дискретных, но и непрерывных сообщений, и обратно, непрерывные сигналы - для передачи дискретных сообщений.

Радиосигнал с выхода радиопередатчика при помощи соединительной линии, которая называется фидером, подводится к передающей антенне и в виде радиоволн излучается ею в открытое пространство. Скорость распространения радиоволн зависит от свойств среды, при этом максимальная скорость имеет место в свободном пространстве (вакууме), и она совпадает со скоростью света в вакууме, равной 3×108 м/с. В других средах скорость радиоволн меньше и определяется относительными диэлектрической и магнитной проницаемостями среды.

В точке приема радиоволны преобразуются приемной антенной в высокочастотный сигнал, который далее по фидеру подается в радиоприемник, где происходит восстановление переданного первичного электрического сигнала u (t). Для этого выполняются операции, обратные тем, которые были осуществлены в радиопередатчике - демодуляция (детектирование) и декодирование сигнала. В приемном оконечном устройстве (например, телефонах МТГ, телеграфном аппарате, громкоговорителе) первичные сигналы преобразуются в сообщения и подаются их получателю.

Задача преобразования принимаемых сигналов в сообщения более сложная, чем преобразование сообщений в радиосигнал, так как преобразованию подвергается не только переданный радиосигнал, а его смесь с другими сигналами (помехами), которые могут исказить переданное сообщение. Наличие помех при передаче сообщений связано с тем, что среда распространения радиоволн является общей для многих источников электромагнитного излучения, т. е. имеет свободный доступ.

Совокупность технических устройств и среды распространения радиоволн, обеспечивающая передачу сообщений от источника к получателю с помощью радиоволн, называется линией радиосвязи (радиолинией). При этом источники и получатели, использующие линии радиосвязи для передачи и приема сообщений, являются абонентами радиосвязи. Абоненты могут передавать сообщения самостоятельно или с помощью радистов (радиотелеграфистов). Абонентов радиосвязи и радистов, осуществляющих непосредственную передачу сообщений по радиолинии, принято называть корреспондентами.

Структурная схема линии радиосвязи, предназначенной для передачи сообщений между абонентами (корреспондентами) А и Б, показана на рис. 2.1. В ней радиопередатчик (передатчик) и передающую антенну принято объединять в радиопередающее устройство, а радиоприемник (приемник) и приемную антенну - в радиоприемное устройство. Кроме того, передающую антенну и фидер, соединяющий ее с передатчиком, называют передающим антенно-фидерным устройством (АФУ) или трактом, а приемную антенну и фидер, связывающий ее с приемником, - приемным АФУ или трактом.

В общем смысле линию радиосвязи можно считать одним из видов канала электросвязи (канала связи), под которым понимается путь прохождения сигналов электросвязи, обеспечивающий при подключении к его окончаниям абонентских оконечных устройств передачу сообщений от источника к получателю (получателям). Каналам электросвязи в зависимости от вида сети связи присваиваются названия, например, телефонный канал, телеграфный канал, канал передачи данных, канал звукового вещания.

Линия радиосвязи может быть одноканальной или многоканальной. В последнем случае ей принадлежит несколько одновременно действующих каналов связи, по которым передаются сигналы, отображающие различные (иногда одинаковые) сообщения. В отличие от одноканальной в состав многоканальной радиолинии могут входить несколько передающих и приемных оконечных устройств, осуществляющих преобразование сообщений от разных источников в первичные электрические сигналы и обратно. Кроме того, в многоканальной линии радиосвязи должны быть предусмотрены устройства, выполняющие функции объединения и разделения сигналов разных абонентов.

Линии радиосвязи могут быть прямыми, соединяющими абонентов непосредственно, без использования промежуточных пунктов (ретрансляторов радиосигналов), или составными, проходящими через такие пункты (в этом случае в состав радиолинии включаются технические устройства ретранслятора, обеспечивающие прием, преобразование, усиление и последующую передачу радиосигналов, принимаемых от обоих корреспондентов).

Часть линии радиосвязи, которая создает путь прохождения радиосигналов, принято называть каналом радиосвязи (радиоканалом). Границы канала радио-
связи в зависимости от решаемых задач или исследуемых вопросов могут быть выбраны произвольно, лишь бы по каналу проходили радиосигналы, отображающие сообщения. В одних случаях под каналом радиосвязи понимают совокупность технических устройств, обеспечивающих образование радиосигнала и его излучение в радиопередатчике, а также прием радиосигнала и обратное его преобразование в радиоприемнике, и среды распространения радиоволн. В других случаях, например, при рассмотрении свойств каналов электросвязи, каналом радиосвязи называют только среду распространения радиоволн.

Канал радиосвязи, аналогично радиолинии, является частным случаем канала передачи, под которым понимается комплекс технических средств и среды распространения, обеспечивающий передачу сигналов электросвязи в определенной полосе частот или с определенной скоростью между узлами и станциями сети. Радиоканал представляет собой канал передачи, в котором сигналы электросвязи передаются посредством радиоволн. В зависимости от методов передачи сигналов электросвязи канал передачи может быть аналоговым или цифровым (дискретным). Вид канала радиосвязи, кроме того, определяется типом радиоволн, используемых для передачи сообщений.

Канал передачи, параметры которого соответствуют принятым нормам, называется типовым каналом передачи. Типовые каналы передачи в радиосвязи будут рассмотрены в главе 7.

Показанная на рис. 2.1 линия радиосвязи реализует двустороннюю радиосвязь, так как ее состав позволяет обоим корреспондентам и передавать, и принимать сообщения. При односторонней радиосвязи один из корреспондентов осуществляет только передачу сообщений, и другой (или другие) - только прием.

Двусторонняя радиосвязь может быть симплексной или дуплексной. В первом случае передача и прием информации между корреспондентами производятся поочередно, при этом радиообмен возможен на одной частоте или на разнесенных частотах приема и передачи. В этом случае радиосвязь является симплексной одночастотной (или просто симплексной), а во втором - симплексной двухчастотной. При ведении дуплексной радиосвязи передача и прием информации осуществляются одновременно. Причем, если передатчики корреспондентов включены постоянно, независимо от того, происходит передача информации или нет, радиосвязь принято называть дуплексной, а если передатчики включаются только на время передачи информации, а когда передачи нет, выключаются - полудуплексной.

Для передачи сообщений по радиоканалам используется часть спектра электромагнитных колебаний, находящаяся в пределах от 3 кГц до 3000 ГГц. Эта часть спектра называется радиочастотным спектром (радиоспектром), а частоты радиоспектра - радиочастотами. Согласно международному документу - Регламенту радиосвязи, радиоспектр содержит 9 полос (диапазонов), начиная с четвертой. Деление спектра на диапазоны произведено так, что отношение верхней граничной частоты диапазона к его нижней граничной частоте равно 10. При этом верхняя граничная частота любого диапазона включается в него, а нижняя - исключается. В пределах одного диапазона свойства распространения радиоволн практически одинаковы. В табл. 2.1 приведены соответствующие Регламенту радиосвязи наименования, буквенные обозначения (международные и русские) и границы частотных полос, составляющих радиоспектр.

Волны в диапазоне от 10 м до 1 см часто объединяют названием - ультракороткие волны (УКВ), а под сверхвысокими частотами понимают ДМВ, СМВ и ММВ. Первое объясняется тем, что каждый из диапазонов с номерами от 8 и выше, имея особенности распространения, обладает некоторыми общими для всех диапазонов УКВ свойствами; а второе - тем, что в технических устройствах СВЧ для получения и выделения колебаний высоких частот в резонансных цепях вместо традиционных для более низких частот конденсаторов и катушек индуктивности используются другие конструкции: короткие отрезки проводных линий, металлические полоски, волноводы и коробчатые объемные резонаторы. Кроме того, радиоволны диапазонов от 9 и выше часто называют микроволнами.

Радиоволнам присущи общие для электромагнитных волн законы и явления, важнейшими из которых являются:

прямолинейное распространение радиоволн - распространение радиоволн в однородной (или слабо неоднородной) среде непосредственно от источника к месту приема по прямолинейным или близким к ним траекториям;

отражение радиоволн - изменение направления распространения радиоволн вследствие отражения от поверхности раздела двух сред или от неоднородностей среды;

дифракция радиоволн - изменение структуры поля волны под влиянием препятствий, представляющих собой пространственные неоднородности среды распространения, в частности, приводящие к огибанию радиоволной этих препятствий;

рефракция радиоволн - изменение направления распространения радиоволн вследствие изменения скорости их распространения при прохождении через неоднородную среду;

поглощение радиоволн - уменьшение энергии радиоволны вследствие частичного перехода ее в тепловую энергию в результате взаимодействия со средой;

рассеяние радиоволн - преобразование распространяющихся в одном направлении радиоволн в радиоволны, распространяющиеся в различных направлениях;

многолучевое распространение - распространение радиоволн от передающей к приемной антенне по нескольким траекториям;

интерференционные замирания радиоволн - квазипериодические изменения уровня поля вследствие прихода в место приема множества радиоволн с меняющимися во времени друг относительно друга фазами.

Таблица 2.1

Классификация диапазонов радиочастот и радиоволн

Номер полосы

Границы частот

Наименование частот

Границы
длин волн

Наименование волн

Очень низкие

Мириаметровые, или сверхдлинные (МИМВ, СДВ)

Километровые, или длинные

300…3000 кГц

Гектометровые, или средние

Декаметровые, или короткие

(ДКМВ, КВ)

Очень высокие

Метровые

300…3000 МГц

Ультравысокие

Дециметровые

Сверхвысокие

Сантиметровые

Миллиметровые

300…3000 ГГц

Гипервысокие

Децимилли-

метровые

В радиосвязи передача радиосигналов может производиться двумя путями: вдоль земной поверхности и с излучением в ионосферу и от нее обратно к поверхности Земли.

Исходя их этого, различают земные и ионосферные радиоволны.

Радиоволны, распространяющиеся в непосредственной близости (в масштабе длины волны) земной поверхности, называются земными радиоволнами. Земные радиоволны включают прямые волны (распространяющиеся прямолинейно), волны, отраженные от земли, и поверхностные радиоволны (распространяющиеся вдоль поверхности раздела сред). Ионосферными называются радиоволны, распространяющиеся в свободном пространстве путем отражения от ионосферы или рассеяния в ней. Радиосвязь, использующую ионосферные волны, также определяют как ионосферную.

Ионосферу образует ионизированная область атмосферы, расположенная на высотах от 60…80 до 1000…1200 км над Землей. Основным источником ионизации атмосферы, под действием которой нейтральные молекулы и атомы газов, входящие в состав ионосферы, расщепляются на положительно заряженные ионы и свободные электроны, является ультрафиолетовое и рентгеновское излучение Солнца, а также корпускулярные потоки, в основном солнечного происхождения. Кроме того, ионизация атмосферы происходит под действием космических лучей дальних звезд и космической пыли, непрерывно попадающих в атмосферу Земли.

Степень ионизации, характеризуемая электронной плотностью, неодинакова по высоте вследствие неоднородности атмосферы. Поэтому ионосфера приобретает сложную многослойную структуру, в ней образуются ионизированные облака, электронная концентрация которых зависит как от высоты облака, так и от степени солнечной активности, толщины атмосферы и некоторых других причин. Распределение интенсивности ионизации по высоте в реальной атмосфере имеет несколько максимумов. Различают три области D, E, F (в порядке возрастания высоты над поверхностью Земли), в пределах которых существуют три ионизированных слоя того же названия. В дневные часы ионизированный слой F распадается на два слоя F1 и F2. Степень ионизации зависит от времени года, суток и географического месторасположения, причем для разных слоев эти зависимости различны. Средние высоты слоев и степень их ионизации (плотность электронов) показаны в табл. 2.2.

Для каждого слоя характерна своя критическая частота fкр, определяемая как наивысшая частота радиосигнала, при которой происходит отражение вертикально направленной радиоволны от этого слоя. При частоте выше критической радиоволна не отражается, а проходит через ионизированный слой ионосферы.

Одновременно с появлением новых электронов в ионосфере часть имеющихся в ней электронов исчезает, присоединяясь к положительным ионам и нейтральным молекулам. Процесс воссоединения заряженных частиц и образования молекул в атмосфере называется рекомбинацией.

Ионизацию, кроме Солнца, создают метеоры, вторгающиеся в земную атмосферу со скоростями несколько десятков километров в секунду. Метеорное вещество при попадании в плотные слои атмосферы нагревается и испаряется, причем частицы вещества, будучи ионизированными, ионизируют окружающий воздух. За счет этого средний уровень ионизации атмосферы возрастает. Кроме того, за метеором образуется столб ионизированного воздуха, имеющий форму цилиндра, который создает местную ионизацию. След метеора быстро расширяется и рассеивается, существуя в атмосфере от одной до нескольких секунд. Такие ионизированные следы метеоров образуются на высоте 80…120 км над земной поверхностью приблизительно между слоем D и слоем E. Радиосвязь, основанная на использовании отражения радиоволн от ионизированных слоев метеоров, называется метеорной радиосвязью. В линиях метеорной радиосвязи применяется прерывистый режим работы с предварительным накоплением информации и ее последующей передачей в период возникновения метеорных следов.

Радиосвязь организуют между двумя радиостанциями: пере­дающей ПСт и приемной ПрСт (рис. В.1). Первичные электриче­ские сигналы поступают по соединительным линиям на входы α,β устройства А1, предназначенного для объединения первичных электрических сигналов в единый групповой сигнал (ГС). Этот ГС поступает в радиопередатчик.

Радиопередатчиком (РП ) называют устройство для формиро­вания радиочастотного сигнала, подлежащего излучению. Входной групповой сигнал модулирует несущую частоту радиопередатчика. На выходе РП образуется радиочастотный сигнал, который поступает в передающую антенну WА1. Передающей (приемной) антенной называют устройство, предназначенное для излучения (приема) радиоволн. Таким образом, между передающей WА1 и приемной WА2 антеннами распространяются радиоволны. Радио­волнами называют электромагнитные колебания с частотами до 3·10 12 Гц, распространяющиеся в среде без искусственных направ­ляющих линий. Антенна WА2 преобразует принятую радиоволну в радиочастотный сигнал, который поступает в радиопри­емник РПр.

Радиоприемником называют устройство, предназначенное для выделения переданного сигнала из принятого радиочастотного сигнала. Выделенный ГС групповой сигнал подается на устройство А2, которое разделяет его на. первичные электрические сигналы так, что каждый из этих сигналов посту­пает к своему получателю. В А1 и А2 объединение и разделение первичных электрических сигналов может происходить на основе частотного разделения каналов (ЧРК), или временного разделе­ния каналов (ВРК).

Под радиорелейной связью понимают радиосвязь, основанную на ретрансляции радиосигналов дециметровых и более коротких волн станциями, расположенными на поверхности Земли. Сово­купность технических средств и среды распространения радиоволн для обеспечения РРЛ связи образуют радиорелейную линию связи .



Таблица 1

Земной называют радиоволну, распространяющуюся вблизи земной поверхности. Земные радиоволны короче 100 см хорошо распространяются, как правило, только в пределах прямой види­мости. Поэтому радиорелейную линию связи на большие расстоя­ния строят в виде цепочки приемно-передающих радиорелейных станций (РРС ), в которой соседние РРС размещают на расстоя­нии, обеспечивающем радиосвязь прямой видимости, и называют ее радиорелейной линией прямой видимости (РРЛ) . На рис. В.2 это РРС1-РРС2, РРС2-РРСЗ.

Тропосферная радиоволна распространяется между точками земной поверхности по траектории, лежащей целиком в тропосфе­ре. Энергия тропосферной радиоволны короче 100 см рассеивается на неоднородностях тропосферы. При этом часть передаваемой энергии попадает на приемную антенну РРС, расположенной за пределами прямой видимости на расстоянии 250 ...350 км. Це­почка таких РРС образует тропосферную радиорелейную линию (ТРЛ) (рис. В.З).

В зави­симости от метода модуляции, используемого в радиорелейной системе, принято различать аналоговые радиорелейные системы с ЧМ (АРРС), цифровые радиорелейные системы (ЦРРС) и др.

Спутниковая радиосвязь--это связь через ретранслятор, уста­новленный на искусственном спутнике Земли (ИСЗ). Спутнико­вую линию связи (СЛС) образуют две станции, расположенные на Земле, и станция на ИСЗ. Первые получили название земных станций (ЗС), вторая - космической (КС). В отличие от ЗС ра­диостанции РРЛ и ТРЛ называют наземными. Спутниковая ли­ния связи состоит из двух участков: Земля - ИСЗ и ИСЗ - Земля.

Классификация радиорелейных линий связи. Обычно их клас­сифицируют по ряду наиболее существенных признаков. В зависимости от механизма распространения радиоволн различают: РРЛ и ТРЛ.

В зависимости от первичной сети ЕАСС, к которой они принад­лежат, различают магистральные, внутризоновые и местные РРЛ (или ТРЛ).

В зависимости от способа, принятого для формирования ГС, различают аналоговые и цифровые РРЛ (или ТРЛ). В свою оче­редь аналоговые радиорелейные линии связи классифицируют в зависимости от способа, принятого для объединения (разделения) первичных электрических сигналов и метода модуляции несущей: РРЛ (или ТРЛ) с ЧРК и ЧМ и РРЛ с ФИМ-АМ; в зависимости от числа N организуемых каналов ТЧ: малоканальные - N≤24; со средней пропускной способностью - N=60 ...300; с большой пропускной способностью -N=600... 1920.

Цифровые РРЛ клас­сифицируют по способу модуляции несущей: ИКМ-ЧМ, ИКМ-ФМ и другие; в зависимости от скорости передачи двоичных симво­лов В: с малой-В 5<10 Мбит/с, средней В =10...100 Мбит/с и высокой В>100 Мбит/с пропускной способностью.

4. Контрольные вопросы

Глоссарий

Рассмотрим структуру радиосвязи (рис. 2.15).

Микрофон (М) преобразует звуковые колебания речи в электрические колебания тока звуковой (низкой) частоты. Одним из основных блоков радиопередатчика является задающий генератор (ЗГ) (или генератор высокой частоты), преобразующий энергию постоянного тока (специального источника питания) в энергию колебания токов высокой частоты (ВЧ). Усиленный в усилителе низкой частоты (УНЧ) ток звуковой частоты поступает на модулятор (Мод), воздействуя на один из параметров (амплитуду, частоту или фазу) тока высокой частоты. Вырабатываемого задающим генератором. В результате в антенну передатчика подаются токи высокой частоты (радиочастоты), изменяющиеся по амплитуде, частоте или фазе в соответствии с передаваемыми звуковыми колебаниями (передаваемыми первоначальным сообщением). Процесс воздействия на один из параметров ВЧ-сигнала по закону изменения передаваемого первоначального сообщения называется модуляцией , соответственно амплитудной, частотной или фазовой.

Рисунок 2.15 – Структурная схема радиосвязи

Токи высокой частоты, проходя по антенне передатчика, образуют вокруг нее электромагнитное поле. Электромагнитные волны (радиоволны) отделяются от антенны и распространяются в пространстве со скоростью 300000 км/с.

В приемной антенне радиоволнами (электромагнитным полем) наводится ЭДС радиочастоты, создающая модулированный ток ВЧ, который в точности повторяет все изменения тока в передающей антенне. Токи высокой частоты от приемной антенны по фидерной линии передаются на избирательный усилитель высокой частоты (УВЧ). Избирательность обеспечивается резонансным контуром, чаще всего состоящим из параллельно включенных катушки индуктивности и конденсатора, образующих параллельный колебательный контур, имеющий резонанс тока на частоте электромагнитных колебаний, передаваемых передатчиком. К передатчикам радиостанций, работающих на других частотах, данный радиоприемник практически не чувствителен.

Усиленный сигнал подается на детектор (Дет), преобразующий принятые сигналы ВЧ в токи звуковых колебаний, изменяющиеся подобно токам звуковой частоты, создаваемым микрофоном на передающем пункте. Такое преобразование называется детектированием (демодуляцией). Полученный после детектирования ток звуковой или низкой частоты (НЧ) обычно еще усиливается в УНЧ и передается на громкоговоритель (динамик или наушники), который преобразует этот ток НЧ в звуковые колебания.

Радиосвязь бывает одно- и двухсторонней. При односторонней радиосвязи одна из радиостанций осуществляет только передачу, а другая (или другие) – только прием. При двухсторонней радиосвязи радиостанции осуществляют одновременно передачу и прием.

Симплексная радиосвязь – это двухсторонняя радиосвязь, при которой каждый абонент ведет только передачу или только прием поочередно, выключая свой передатчик на время приема (рис. 2.16). Для симплексной связи достаточно одной радиочастоты (одночастотная симплексная радиосвязь). Каждая радиостанция имеет одну антенну, которая при приеме и передаче переключается соответственно на вход радиоприемника или на вход радиопередатчика.

Рисунок 2.16 – Структурная схема симплексной радиосвязи

Симплексная радиосвязь обычно используется при наличии относительно небольших информационных потоков. Для радиосетей с большой нагрузкой характерна дуплексная связь.

Дуплексная радиосвязь – это двухсторонняя радиосвязь, при которой прием и передача ведутся одновременно. Для дуплексной радиосвязи требуются две разные несущие частоты, а передатчики и приемники должны иметь свои антенны (рис. 2.17). Кроме того, на входе каждого приемника устанавливают специальный фильтр (дуплексер ), не пропускающий колебаний радиочастоты собственного передатчика. Достоинствами дуплексной радиосвязи являются ее высокая оперативность и пропускная способность радиосети.

Рисунок 2.17 – Структурная схема дуплексной радиосвязи

Радиосвязь имеет следующие преимущества перед проводной связью:

Ø быстрое развертывание на любой местности и в любых условиях;

Ø высокая оперативность и живучесть радиосвязи;

Ø возможность передачи различных сообщений любому количеству абонентов циркулярно, избирательно или группе абонентов;

Ø возможность связи с подвижными объектами.

Радиопередающие устройства

В функциональном смысле под радиопередающим устройством понимается комплекс оборудования, предназначенный для формирования и излучения радиочастотного сигнала (радиосигнала). В качестве функциональных узлов в состав радиопередатчика входят генератор несущей и модулятор. Кроме того, радиопередающие устройства (особенно мощные) содержат много другого оборудования: источники питания, средства охлаждения, автоматического и дистанционного управления, сигнализации, защиты и блокировки и пр.

Основные показатели радиопередающих устройств условно могут быть разделены на 2 группы: энергетические и показатели электромагнитной совместимости.

Важнейшими энергетическими показателями радиопередающего устройства являются номинальная мощность и промышленный коэффициент полезного действия. Под номинальной мощностью (Р) понимают среднее за период радиочастотного колебания значение энергии, подводимой к антенне. Промышленный коэффициент полезного действия (КПД) представляет собой отношение номинальной мощности Р к общей Р общ, потребляемой от сети переменного тока радиопередающим устройством: η = Р/Р общ · 100% .

Основными показателями электромагнитной совместимости являются диапазон рабочих частот, нестабильность частоты колебаний и внеполосные излучения.

Диапазоном рабочих частот называют полосу частот, в которой радиопередающее устройство обеспечивает работу в соответствии с требованиями стандарта.

Под нестабильностью частоты радиопередатчика понимают отклонение частоты колебаний на его выходе за определенный промежуток времени относительно установленной частоты. Малая нестабильность (высокая стабильность) частоты позволяет ослабить помехи радиоприему.

Внеполосными называют такие излучения , которые расположены вне полосы, отведенной для передачи полезных сообщений. Внеполосные излучения являются источником дополнительных помех радиоприему. При подавлении внеполосных излучений качество передачи сигнала не ухудшается.

По назначению радиопередающие устройства делятся на связные. Радиовещательные и телевизионные. По диапазону рабочих частот радиопередающие устройства подразделяются в соответствии с классификацией видов радиоволн. В зависимости от номинальной мощности радиопередающие устройства делятся на маломощные (до 100 Вт), средней мощности (от 100 до 10000 Вт), мощные (от 10 до 500 кВт) и сверхмощные (свыше 500 кВт).

Специфика эксплуатации позволяет выделить стационарные и подвижные радиопередающие устройства (автомобильные, самолетные, носимые и т.д.).

Радиоприемные устройства

Радиоприем – это выделение сигналов из радиоизлучения. В том месте, где ведется радиоприем, одновременно существуют радиоизлучения от множества естественных и искусственных источников. Мощность полезного радиосигнала составляет очень малую долю мощности общего радиоизлучения в месте радиоприема. Задача радиоприемного устройства сводится к выделению полезного радиосигнала из множества других сигналов и возможных помех, а также к воспроизведению (восстановлению) передаваемого сообщения.

Основными (в смысле универсальности) показателями радиоприемных устройств являются: диапазон рабочих частот, чувствительность, избирательность, помехоустойчивость.

Диапазон рабочих частот определяется диапазоном возможных частот настройки. Другими словами, это область частот настройки, в пределах которой радиоприемное устройство может плавно или скачкообразно перестраиваться с одной частоты на другую.

Чувствительность является мерой способности радиоприемного устройства обеспечивать прием слабых радиосигналов. Количественно оценивается минимальным значением электродвижущей силы (ЭДС) сигнала на входе радиоприемного устройства, при котором имеет место требуемое отношение сигнал-шум на выходе при отсутствии внешних помех.

Избирательностью называется свойство радиоприемного устройства, позволяющее отличать полезный радиосигнал от радиопомехи по определенным признакам, свойственным радиосигналу. Иначе: это способность радиоприемного устройства выделять нужный радиосигнал из спектра электромагнитных колебаний в месте приема, снижая мешающие радиосигналы. Различают пространственную и частотную избирательности. Пространственная избирательность достигается за счет использования антенны, обеспечивающей прием нужных сигналов с одного направления и ослабления радиосигналов с других направлений от посторонних источников. Частотная избирательность количественно характеризует способность радиоприемного устройства выделять из всех радиочастотных сигналов и радиопомех, действующих на входе, сигнал, соответствующий частоте настройки радиоприемника.

Помехоустойчивостью радиоприемного устройства называется его способность противодействовать мешающему действию помех. Количественно помехоустойчивость оценивается тем максимальным значением уровня помехи в антенне, при котором еще обеспечивается прием радиосигналов.

Радиоприемные устройства можно классифицировать по различным признакам. По назначению можно выделить радиовещательные (обычно называемые радиоприемниками или приемниками), телевизионные (телевизоры), профессиональные, специальные радиоприемные устройства. К профессиональным относятся магистральные радиоприемные устройства декаметрового диапазона, радиорелейных и спутниковых линий связи. Среди радиоприемных устройств специального назначения следует назвать, например, радиолокационные, радионавигационные, самолетные и т.д.

Антенны и фидеры

Антенна представляет собой элемент сопряжения между передающим или приемным оборудованием и средой распространения радиоволн. Антенны, имеющие вид проводов или поверхностей, обеспечивают излучение электромагнитных колебаний при передаче, а при приеме они «собирают» падающую энергию. Антенны, состоящие из проводов небольшого поперечного сечения по сравнению с длиной волны и продольными разрезами, называют проволочными . Антенны, излучающие через свой раскрыв – апертуру, называют апертурными . Иногда их называют дифракционными, рефлекторными, зеркальными. Электрические токи таких антенн протекают по проводящим поверхностям, имеющим размеры, соизмеримые с длиной волны или много большие ее.

Электрическая цепь и вспомогательные устройства, с помощью которых энергия радиочастотного сигнала проводится от радиопередатчика к антенне или от антенны к радиоприемнику, называется фидером . К фидерам предъявляются следующие требования: потери энергии высокочастотных сигналов в нем должны быть минимальными; они не должны иметь антенного эффекта, т.е. не должны излучать или принимать электромагнитные волны; обладать достаточной электрической прочностью, т.е. передавать требуемую мощность без опасности электрического пробоя изоляции.

Передающие антенны, используемые в километровом и гектометровом диапазонах радиоволн, соединяются с радиопередатчиком с помощью многопроводных коаксиальных фидеров. В декаметровом диапазоне фидеры обычно выполняются в виде проволочных двух- или четырехпроводных линий. К антеннам метровых радиоволн энергия, как правило, проводится с помощью коаксиального кабеля. На более коротких волнах, в частности в сантиметровом диапазоне, фидер выполняется в виде полой металлической трубы – волновода прямоугольного, эллиптического или круглого сечения.

Классификация и способы распространения радиоволн приведены в таблицах ниже.