Схема устройства солнечной батареи и принцип работы. Солнечная батарея — принцип работы

Достаточно часто тем, кто проживает в своем собственном доме, приходится сталкиваться с тем, что отключают электроэнергию по техническим причинам или из-за чрезвычайной ситуации. Такие проблемы доставляют не только дискомфорт, но и множество проблем, например, портятся продукты, невозможно заниматься работой, если для этого требуется использование электроприборов. Что делать в такой ситуации? Стоит установить солнечные батареи, которые позволяют решить данную задачу максимально быстро и смогут доставить только пользу и ничего более.

Солнечная батарея (или панель) – это элемент питания (называется фотопластина), меняющий свою проводимость и выделяющий энергию при воздействии солнечных лучей. Именно такое преобразование позволят обогащать жилую конструкцию необходимым электричеством. Как правило, солнечные панели имеют различные виды.

В продажу поступают такие конструкции, как:

  • Монокристаллическая;
  • Поликристаллическая;
  • Аморфная.

У каждой конструкции есть определенная производительность, от чего напрямую зависит принцип работы и цена. Пластиной с минимальной мощностью считается батарея, сделанная на основе монокристаллов, а также у них самая низкая цена. В основном, их стараются использовать в тех условиях, где постоянная подача электричества не является слишком важной.

Владелец частного дома и непосредственно таких батарей должен тщательно следить за тем, чтобы фотоэлектрическая панель была чистой, так как если на ее покрытие будет попадать большое количество таких загрязнений, как снег, помет птиц и даже сухая листва, то это снизит эффективность работы и снизит уровень подаваемого напряжения. Солнечная батарейка для дома работает по особому принципу.

А именно:

  1. Происходит улавливание энергии солнца пластиной, сделанной на основе кремния.
  2. При нагревании происходит высвобождение энергии.
  3. Далее активизируются электроны, это способствует их передвижению по проводнику.
  4. Проводниками ток направляется в полость аккумулятора, это формирует своеобразную подзарядку.
  5. Посредством проводного подключения, ток поступает к бытовым приборам.

Принцип действия установки вполне понятен, но стоит ознакомиться с особенностями проведения обслуживания батарей и требуется ли оно вовсе. Первоначально нужно отметить тот факт, что в солнечной батареи полностью отсутствует движущая часть, так как это стационарные конструкции.

Как проводится обслуживание, чтобы работала солнечная батарея

Как правило, очищение покрытия стоит проводить раз в 7 дней. Специалисты считают, что этого вполне достаточно для поддержания оптимального состояния пластин в чистом виде. Также требуется осуществлять еще ряд процедур, это позволит эксплуатировать панели без проблем, а также исключить образование дефектов и неисправностей.

Обязательно проведение:

  1. Внешнего осмотра на предмет выявления расшатывания креплений и образования трещин в каркасе.
  2. Чистки панели.
  3. Проверки силового кабеля на отсутствие оголенных проводов, что может стать причиной возгорания.
  4. Контролирования и фиксирования состояния автоматики и показателей КИПа.
  5. Отслеживание уровня заряда аккумулятора.
  6. Контроля за состоянием конструктивными узлами блока на предмет выявления коррозийных образований.
  7. Осмотра прочности кожуха панели.

Также необходимы корректировки положения конструкции, это зависит от времени года и подтягивание каждого резьбового соединения. Помимо этого, можно проводить полив панелей из шланга самой обычной проточной водой, для чего достаточно 4 процедур в год.

Безопасный и эффективный ветрогенератор можно собрать своими руками. Все этапы работы описаны на следующей странице:

КПД солнечных батарей и другие параметры

Делают солнечные панели из такого материала, как кремний, и при покупке стоит обращать внимание на такие особенности, как наличие показателя КПД, который должен превышать 20%, высокого уровня сопротивления.

Наличие закаленного стекла, устойчивости к самым суровым погодным условиям, поликристаллического покрытия, если изделие устанавливается в регионе с жаркой температурой, необходимо.

Важно монокристаллическое покрытие для областей с неблагоприятными климатическими условиями. Современные кремниевые солнечные плиты обладают рядом преимуществ. Те, кто уже пользуются подобными установками, отзываются исключительно положительно.

Признают такие изделия:

  • Автономными;
  • Максимально экономичными по средствам, так как не требуется оплата электроэнергии;
  • Очень удобными в эксплуатации, так как не нужна регулировка;
  • Выгодными, так как ресурс пополняется автоматически;
  • Экологическими;
  • Безопасными;
  • Практичными, так как они могут быть, как резерв или основной ;
  • Очень долговечными.

Есть и некоторые недостатки, но на фоне множества положительных качеств их можно назвать не существенными. К ним относят высокую стоимость, низкую устойчивость к погодным катаклизмам, надобность в подготовке места для расположения конструкции, в обслуживании, снижение производительности в зимний период времени, необходимость в модернизации, при необходимости увеличить мощность и, соответственно, производительность.

Виды солнечных батарей

Наиболее доступными по цене изделиями для улавливания солнечной энергии признаны монокристаллические, так как они сделаны по простейшей технологии и по мощности могут существенно уступить другим видам пластин. Каждый вид имеет свои особенности, за счет которых и происходит их выбор.

Солнечные плиты бывают трех видов:

  • Монокристаллические;
  • Поликристаллические;
  • Аморфные.

Панели, сделанные на основе поликристаллического кремния – это самые дорогие изделия, так как они могут накапливать солнечную энергию даже в условиях повышенной облачности и пасмурную погоду. Особенность их состоит в высокой производительности, а также медленном остывании кремниевого расплава. После того как полотно полностью остынет, оно подвергается повторной термообработке.

Такие пластины выпускаются темно-синего цвета.

Если для изготовления плиты используется аморфный кремний, то это изделия, не выпускаемые большими партиями. Данные конструкции находятся на стадии совершенствования, модернизации, так как в продажу поступили некоторые тестовые модели.

Из чего в основном делают солнечные батареи

Многие владельцы думают, что если самостоятельно создал такое оборудование, то для этого нужно просто соблюдать технологию сбора системы, но следует и соответствовать поставленным высоким требованиям.

Состав элементов для улавливания солнечной энергии очень прост, так как все конструкции состоят из:

  • Солнечного модуля;
  • Контролера;
  • Аккумулятора;
  • Инвертора;
  • Первичного преобразователя;
  • Комплекта проводов;
  • Приборов способных отслеживать заряд аккумулятора;
  • Устройства забора мощности у батареи.

Помимо этого, на пластинах могут присутствовать полимерные пленочные рулонные покрытия, которые нужны для защиты от воздействия внешних факторов. Солнечная батарея предназначена для улавливания лучей солнца и преобразования их в электроэнергию.

Устройство солнечной батареи и нюансы проектирования

Как только приобретены все необходимые приспособления, а также материалы и инвентарь можно начинать непосредственное строительство. Тот, кто сам придумал и изобрел самостоятельно солнечную батарею, обязательно начинал с проектирования, в котором были учтены важные моменты.

А именно:

  1. Место расположения конструкции.
  2. Угол наклона изделия.
  3. Просчет несущей способности кровли, если монтаж будет проводиться на саму крышу, а не стены или фундамент дома.

Для каркаса используется алюминиевый уголок, толщина которого должна быть не меньше 35 мм. Объем ячеек должен полностью сходиться с количеством фотоэлементов. Например, 835х690 мм. В раме проделываются отверстия под метизы. На внутреннюю часть уголка наносится герметик в 2 слоя. Рама заполняется полотном оргстекла, поликарбоната, плексигласа или же любого другого материала.

Для того чтобы уплотнить швы между рамой и полотном материала, потребуется провести тщательное прижатие листа по всему периметру.

Изделие оставляется на открытом воздухе до полного высыхания. Стекло фиксируется в 10 точках, в заранее подготовленные отверстия, которые должны быть расположены в угловой части рамки и с каждой стороны. Перед тем как крепить фотоэлементы, нужно провести очищение поверхности от пыли. Далее припаивается провод к плитке, для чего предварительно протираются контакты спиртовым раствором, и укладываются под флюс. При работе с кристаллом, следует быть максимально осторожными, так как он обладает слишком хрупкой структурой.

Укладывается шина по всей длине контакта и медленно прогревается при помощи паяльника. Далее пластины нужно перевернуть, и осуществить те же самые действия. Затем происходит выкладывание фотоэлементов на поверхность оргстекла в рамку, а фиксируются они на монтажную ленту. В качестве фиксатора может быть применен обычный силиконовый клей, который наносится точечным способом. Вполне достаточно одной маленькой капли, так как он очень прочный.

Расположение кристаллов должно быть с зазорами между ними в 3-5 мм, чтобы при нагревании под воздействием лучей ультрафиолета не было деформирования поверхности. Обязательно нужно соединить проводник по краям фотоэлементов с полостью общих шин. Посредством специального устройства тестируется качество пайки. Для герметизации панели, наносится герметик между полотнами плит. Нужно сделать осторожное придавливание полотен, чтобы обеспечить максимальное приклеивание к стеклу. Края рамки также промазываются герметиком.

Боковая сторона каркаса снабжается соединительным разъемом, для подключения диодов Шоттки. Рама закрывается стеклом для защиты и также герметизируются стыки, чтобы избежать проникновение влаги внутрь конструкции. С лицевой стороны нужно обработать панель лаком. Панель устанавливается на крышу, стены или любое другое предназначенное для нее заранее место.

Эффективность панели солнечной батареи

Как уже было отмечено, существуют разные типы солнечных батарей и у каждых из них своя характеристика. Стоит заметить, что есть и гибридные конструкции для улавливания солнечной энергии, однако стоимость их гораздо выше, и в основном они применяются для промышленных зданий.

Естественно, качество и производительность любой солнечной батареи напрямую зависит от эффективности ее фотоэлементов, на что может повлиять такой фактор как:

  • Климатические условия;
  • Погода;
  • Длительность дня и ночи;
  • Равномерность освещения панели;
  • Перепады температуры воздуха;
  • Наличие грязи на пластике;
  • Необратимые потери.

В основном, эффективность или, другими словами, производительность солнечных батарей напрямую зависит от равномерности освещения конструкции. К примеру, если один из фотоэлементов сооружения имеет малую интенсивность освещения в отличие от остальных, то это станет причиной неравномерного распределения лучей солнца при попадании на панель, а значит, будет происходить перегрузка и снижение общей энергоотдачи.

Для уменьшения влияния такого фактора в некоторых случаях попросту отключают тот фотоэлемент, который выходит из строя.

Чтобы обеспечить солнечной батареи максимальную производительность, следует направлять ее точно на солнце в зависимости от времени года. Некоторые владельцы таких конструкций предпочитают устанавливать специальные установки, посредством которых возможно дистанционно управлять или, другими словами, поворачивать сооружение в нужную сторону. Существуют системы с автоматическим поворотом в зависимости от расположения солнца, которые двигаются в течение дня самостоятельно без посторонней помощи по заданной программе.

Помимо этого, на эффективность изделия может повлиять наличие пыли и грязи на пластине, так как происходит затемнение некоторых фотоэлементов и таким образом начинается неравномерное распределение забора энергии солнца, что описано ранее. В продаже есть специальный состав, которым можно покрыть поверхность солнечной батареи и тем самым исключить скапливание на ней загрязнителей различного характера.

Как работает солнечная батарея (видео)

Солнечная батарея – дорогостоящее оборудование, независимо от того, будет оно собрано самостоятельно или же куплено в готовом виде, а надобность в постоянном обслуживании может доставить дискомфорт, но однажды вложившись в это изделие, можно на протяжении длительного времени довольствоваться постоянному присутствию электричества и отсутствию платы за него.

Когда-то, с помощью зеркал, нагревали воду, а сейчас создают целые электростанции на солнечных батареях. Разберем принцип работы солнечной батареи, и почему они так эффективны для получения энергии.

Фотоэлектрические преобразователи солнечной энергии (ФЭП)– это полное название солнечных батарей. Принципы их работы известны более 30 лет, но активно внедряться в быту они начали всего несколько лет назад. Для того чтобы правильно подобрать панели для системы альтернативного обеспечения энергией, необходимо понять принцип их работы.

Принцип работы солнечной батареи

Панель преобразователя состоит из двух тонких пластин из чистого кремния, сложенных вместе. На одну пластину наносят бор, а на вторую фосфор. В слоях, покрытых фосфором, возникают свободные электроны, а в покрытых бором – отсутствующие электроны. Под влиянием солнечного света электроны начинают движение частиц, и между ними возникает электрический ток. Чтобы снять ток с пластин их пропаивают тонкими полосками специально обработанной меди. Одной кремниевой пластины хватит для зарядки маленького фонарика. Соответственно, чем больше площадь панели, тем больше энергии она вырабатывает.

Спаянные между собой пластины,пропускающие УФ лучи, ламинируют пленкой и крепят на стекло. Скрепленные слои заключают в алюминиевую раму.

КПД солнечных батарей

Коэффициент полезного действия панелей преобразователя зависит от нескольких факторов и для традиционных солнечных батарей не превышает 25%, хотя сейчас, используя следящую систему, можно достигнуть показателя и в 40-50 %. Эта система устроена так, чтобы батарея поворачивалась в сторону солнца. Площадь батареи напрямую влияет на ее мощность – первые солнечные батареи, с которыми мы познакомились, были в калькуляторах. Для обеспечения нагрева воды потребуется минимум шесть панелей установленных на крыше.

Также КПД зависит от материала модулей. Пластины изготавливают из монокристаллического, поликристаллического и аморфного кремния и пленок. Самые распространенные и популярные на сегодня (благодаря доступной стоимости) тонкопленочные панели. Они сделаны из тех же материалов, но немного легче, правда, проигрывают по производительности. Максимальный КПД равен 25 %.

Фотоэлектрические системы

Для обеспечения жилья энергией солнца одних панелей не достаточно, для этого понадобится фотоэлектрическая система (ФЭС). Такие системы бывают трех типов:

  • автономные ФЭС – для отдельно стоящих частных домов, в нежилой местности
  • ФЭС соединенные с электросетью – часть приборов запитана от ФЭС, а часть – от централизованной электросети
  • резервные ФЭС – используется только в случае отключения централизованного энергоснабжения.

ФЭС любого типа обязательно состоит из кабелей, контроллера, инвертора и аккумулятора.

Будущее солнечных батарей

По данным исследований экологов и геологов, запасов нефти и газа осталось еще лет на 100. Источники природной энергии (воды, ветра и солнца) неисчерпаемы.

В передовых европейских странах обеспечение новостроек альтернативной энергией – прямая обязанность застройщиков уже с 2007 года. В нашей стране эти проекты продвигаются благодаря энтузиастам от экологии, собирающим вручную ФЭС из подручных материалов. Но таких единицы, веди самому сделать их довольно сложно.

Ряд украинских производителей («Аванте», «Атмосфера», «Ітнелкон України», «СІНТЕК», «Техно-АС») уже выпускают такие панели и обустраивают ФЭС по всей стране. Стоимость продукции, к сожалению, в том же диапазоне, что и зарубежные бренды (Buderus, Wolf, Rehau, Vaillant, Viessmann, Chromagen, Ferroli, Rucelf, Solver).

Солнечная батарея: устройство и принцип работы

Совсем недавно, когда мы ещё ходили в школу, солнечная батарея для выработки электричества казалась чем-то фантастическим. Нам казалось, что их можно использовать только на космических кораблях. Но прошло 20─25 лет и солнечные батарейки не только появились в часах и калькуляторах, но и уже способны обеспечивать электроэнергией частные дома и дачи. А современные солнечные электростанции могут обеспечивать электроэнергией небольшие городки. Широкое распространение солнечные батареи получили европейских странах, США, Израиле и других регионах с высокой солнечной инсоляцией. И их использование уже даёт существенную экономию электроэнергии и горячего водоснабжения.

Солнечная энергия может быть преобразована в тепловую и электрическую. Самые первые шаги в использовании энергии солнца человек сделал именно в направлении получения тепла. Можно сказать, что в этом случае и преобразования нет. Принцип работы прост. Он заключается в сборе солнечного тепла. Поэтому и устройства для этого называются солнечные коллекторы. Принцип работы таких установок заключается в сборе тепла с помощью абсорбера и передачи его теплоносителю. В качестве последнего выступает вода или воздух. Такие установки часто используются для отопления и горячего водоснабжения частных домов. Второй вариант использования – это преобразование её в электричество.

Растения на нашей планете уже миллионы лет преобразуют солнечную энергию химических связей. В результате этого процесса, называемого фотосинтезом, получается глюкоза. Принцип работы фотосинтеза человеку известен уже давно. Подробнее о том, читайте по указанной ссылке.

В этом материале речь у нас пойдёт о получении электричества с помощью солнечных батарей. Для этого используются фотоэлектрические элементы. Это полупроводники на основе кремния, которые вырабатывают постоянный электрический ток под действием света. В качестве материала для фотоэлементов используются соединения кремния с кадмием, медью, индием. Кроме того, они могут отличаться технологией изготовления.

  • Монокристаллические;
  • Поликристаллические;
  • Аморфные.

Фотоэлектрические панели из монокристаллов кремния считаются наиболее эффективными и имеющими высокий КПД. Фотоэлементы из поликристаллического кремния стоят дешевле и имеют самую низкую стоимость получения ватта электроэнергии. Есть также фотоэлектрические элементы на базе аморфного кремния. Из них делают . Выпускаются они из аморфного кремния. Производство таких элементов проще, чем моно и поликристаллов. В результате цена ниже, но КПД оставляют желать лучшего (5─6%). Кроме того, панели из аморфного кремния имеют меньший срок службы, чем предыдущие два типа. Чтобы увеличить эффективность работы элементов, в кремний добавляют медь, селена, галлий, индий.



Фотоэлектрические элементы объединяются в солнечную батарею. Как правило, число фотоэлементов в батарее кратно 36, но есть и другие варианты. Помимо солнечной батареи в состав гелиосистем входят и другие устройства для того, чтобы накапливать и распределять электроэнергию. В частности, это:

  • Аккумулятор (один или несколько);
  • Инвертор (преобразует напряжение из 12 или 24 в 220 вольт);
  • Контроллер для управления зарядом-разрядом аккумулятора и подачи питания в сеть.

По назначению можно выделить две большие группы устройств. Солнечные батареи малой мощности (до десяти ватт) применяются в мобильных гаджетах или power bank для зарядки. Системы больше мощности используются для электрификации частных домов и дач. Они обычно располагаются на крышах и фасадах домов, реже на участках рядом с домом. Есть устройства, которые позволяют отслеживать солнце и менять угол наклона в зависимости от его положения. Теперь посмотрим, как работает солнечная батарея и от чего зависит эффективность её работы.


Как работает солнечная батарея?

Солнечная энергия преобразуется в последовательно подключённых фотоэлементах. Рассмотрим принцип работы солнечной батареи на уровне фотоэлектрических элементов. Основой фотоэлемента является кристалл кремния. Соединения кремния очень распространены в природе. Самый известный – это оксид кремния или песок. Кристалл кремния можно упрощенно назвать большой песчинкой. Кристаллы выращиваются искусственно в лабораторных условиях. Обычно их получают кубической формы, а затем на пластины. Толщина этих пластин всего 200 микрон. Это в 3─4 раза толще волоса человека.

На полученные пластины кремния нанесён с одной стороны слой бора, а с другой ─ фосфора. В местах контакта кремниевой пластины с бором имеется избыток электронов. На другой стороне по границе кремниевой пластины с фосфором недостаёт электронов. Там образуются «дырки», как их принято называть. Такую стыковку границ с избыточным количеством электроном и их недостатком называют p-n переходом.

При попадании солнечного света на фотоэлементы батареи их поверхность бомбардируется фотонами. Они выбивают избыточные электроны на границе с фосфором, и они начинают движение к «дыркам» на границе с бором. Таким образом, возникает электрический ток, являющийся упорядоченным движением электронов. К фотоэлементу подводятся металлические дорожки, через которые и собирается ток. В этом и выражается принцип работы кремниевого фотоэлемента.


Мощность одного фотоэлектрического элемента маленькая, а напряжение составляет около 0,5 вольта. Поэтому их последовательно объединяют в батареи по 36 штук, чтобы получить на выходе 18 вольт. Это хватит для того, чтобы зарядить аккумулятор 12 вольт. Здесь ещё нужно учесть, что заявленное напряжение и мощность будут только при работе батареи с максимальной отдачей, что в реальных условиях редкость. Собранная батарея помещается подложку, закрывается стеклом и герметизируется. Используемое стекло должно пропускать ультрафиолет, поскольку солнечная батарея также преобразует и эту часть спектра. Собранные батареи могут объединяться друг с другом в последовательные и параллельные цепочки. Получается небольшая .

Сегодня солнечные батареи устанавливаются в своих домах и на дачах для экономии электроэнергии. Такие миниатюрные гелиосистемы работают круглый год. Главное, чтобы поверхность панелей была чистой и светило солнце. В ряде случаев их эффективность выше в морозный солнечный день, чем в летний. Это объясняется тем, что разогрев несколько снижает эффективность их работы.

Сразу стоит отметить, что полностью отказаться от электричества из централизованных сетей не получиться. Но, установив солнечную батарею, удастся значительно экономить на коммунальных расходах. Вариант, конечно, не годиться для квартиры. Нормально эксплуатировать такую систему получиться только в загородном доме или на даче, где достаточно места для установки солнечных панелей.

В центральных регионах России гелиосистема окупается примерно за 5 лет. В южных регионах срок окупаемости значительно сокращается. Часто вместе с солнечными батареями устанавливаются коллекторы для отопления дома. Сейчас есть фабричные солнечные коллекторы, которые могут подогревать воду круглый год.


Что касается установки солнечных батарей, то здесь следует отметить следующие моменты:

  • Устанавливать панели нужно на южной стороне крыши, фасада или на участке стороной на юг;
  • Угол наклона соответствует значению широты вашего региона;
  • Рядом не должно быть объектов, отбрасывающих тень на солнечные батареи;
  • Поверхность панелей нужно регулярно очищать от грязи и пыли;
  • Желательно использовать системы с отслеживанием положения солнца.

Теперь вам ясен принцип работы солнечных батарей и их возможности. Понятно, что не следует отказываться от централизованного снабжения электроэнергией. Современные гелиосистемы пока не в состоянии полноценно обеспечивать дом энергией в пасмурную погоду. Но как часть комбинированной системы энергоснабжения дома они очень уместны.


Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Этим вы поможете развитию сайта. Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения к статье оставляйте в комментариях.

Почти 100% всей энергии, которую мы используем в повседневной жизни – это энергия солнца, так или иначе преобразованная. Уголь – это умершие растения, которые жили благодаря фотосинтезу, нефть – растения и животные, которые вымерли миллионы лет назад и росли за счет энергии солнца. Даже когда вы сжигаете дрова – вы даете выход солнечной энергии, которую в себя впитала древесина. По сути, любая тепловая электростанция преобразовывает аккумулированную в виде угля, нефти, газа и др. ископаемых солнечную энергию в электричество.

Солнечная батарея просто делает это напрямую, без участия «посредников». Электричество – наиболее удобная форма применения солнечной энергии. Весь быт человечества сейчас построен вокруг электричества, и цивилизацию без него очень сложно представить. Несмотря на то, что первые фотоэлементы появились более полувека назад, солнечная энергетика пока не нашла должного распространения. Почему? Об этом в конце статьи, а пока разберемся, как это все работает.

Все дело в кремнии

Солнечные батареи состоят из ячеек меньшего размера – фотоэлементов, которые сделаны из кремния.

Солнечная панель состоит из нескольких фотоэлементов.

Важно. Кремний – наиболее распространенный полупроводник на Земле (около 30% всей земной коры)

Кремний располагается между двумя токопроводящими слоями.

"Сэндвич" из кремния и токопроводящих слоев

Каждый атом кремния соединен с соседними четырьмя сильными связями, которые удерживают электроны на месте, поэтому так ток течь не может.

Структура атомов кремния

Для того, чтобы получить ток используют два различных слоя кремния:

  • Кремний N-типа имеет избыток электронов
  • Кремний Р-типа – дополнительные места для электронов (дырки)

Кремний Р и N типа

Там, где соединяются два типа кремния, электроны могут перемещаться через Р-N переход, оставляя положительный заряд на одной стороне и отрицательный на другой.

Чтобы это было легче представить, лучше думать о свете, как о потоке частиц (фотонов), которые ударяются о нашу ячейку настолько сильно, что выбивает электрон из его связи, оставляя дырку. Отрицательно заряженный электрон и место положительно заряженной дырки теперь могут свободно перемещаться, но т.к. мы имеем электрическое поле на Р-N переходе, они движутся только в одном направлении. Электрон – в сторону N-проводника, дырка стремится на Р - сторону пластины.

После "освобождения" электрон стремится к проводнику

Все электроны собираются металлическими проводниками вверху ячейки и уходят во внешнюю сеть, питая токоприемники, аккумуляторы для солнечных батарей или электрический стул для хомяка:) . После проведенной работы электроны возвращаются к обратной стороне пластины и занимают места в тех самых «дырках».

Работа фотоэлемента

Стандартная пластина, 150х150 мм номинально вырабатывает только 0,5 вольта, но если объединить их в одну большую панель, то можно получить бо́льшую мощность и вольтаж. Для зарядки мобильника нужно объединить 12 таких пластин. Для питания дома нужно затратить гораздо больше пластин и панелей.

Благодаря тому, что в фотоэлементах единственной подвижной частью являются электроны, солнечные панели не нуждаются в обслуживании и могут служить 20-25 лет не изнашиваясь и не ломаясь.

Почему человек не перешел на солнечную энергию полностью?

Можно много рассуждать о политике, бизнесе и прочей конспирологии, но в рамках этой статьи хотелось бы рассказать о других проблемах.

  1. Неравномерное распределение солнечной энергии по поверхности планеты. Одни области более солнечные, чем другие и это тоже непостоянною. Солнечной энергии гораздо меньше в пасмурные дни и совсем нет ночью. И чтобы полностью рассчитывать на солнечную энергию, необходимы эффективные способы получения электричества для всех областей.
  2. КПД. В лабораторных условиях удалось достичь результата в 46%. Но коммерческие системы не достигают даже 25% эффективности.
  3. Хранение. Самым слабым звеном в солнечной энергетике является отсутствие эффективного и дешевого способа сохранять полученную электроэнергию. Существующие аккумуляторные батареи тяжелы и значительно снижают эффективность и без того слабые показатели солнечной системы. В целом, хранить 10 тонн угля проще и удобнее, чем 46 мегаватт, выработанных этим же углем или солнцем.
  4. Инфраструктура. Для того, чтобы питать мегаполисы – площадей крыш этих городов будет недостаточно, чтобы удовлетворить все запросы, поэтому для внедрения солнечной энергетики нужно транспортировать энергию, а для этого необходимо строить новые энергетические объекты

Видео о том, как производят солнечные батареи.

В ролике подробно описывается процесс изготовления поликристаллических солнечных батарей, принцип их работы в системе солнечных электростанций, принцип работы контроллера заряда и инвертора.

Получили настолько широкое распространение, что каждый пользователь может заказать комплектующие и самостоятельно своими руками собрать и установить фотоэлектрические панели. Конечно, вопрос цены остаётся актуален, ведь солнечные панели совсем не дешёвый вариант, зато это экологично. А стоимость, с каждым годом становится всё дешевле. Так что каждый, наверняка сталкивался с идеей использования такого источника электричества, но вот принцип работы солнечной батареи знает далеко не каждый.

Видео о том, как работает солнечная батарея

Принцип работы солнечной батареи

Чтобы понять как работает солнечная батарея необходимо разобраться из чего она состоит. Как правило солнечный источник энергии состоит из таких частей:

  • Генератор постоянного тока (она же солнечная панель)
  • Аккумулятор с контролем заряда и инвертором, преобразующим ток в переменный
  • В свою очередь панель состоит из фотоэлектрических преобразователей , которые, говоря простым языком, трансформируют солнечную энергию в электрическую. Чаще всего это поликристаллические или монокристаллические кремниевые батареи. Разница в КПД и технологии производства.

Принцип работы солнечной электростанции заключается в последовательном взаимодействии ряда элементов единой сети. Соединяются элементы в солнечной панели последовательно и параллельно. Делается это для того, чтобы увеличить мощность, напряжение и ток. Плюс, такое соединение обезопасит при выходе из строя одного элемента — остальные детали цепи.

  • Также батареи пронизаны так называемыми диодами. Принцип действия солнечных батарей основывается именно на этих элементах. Такие диоды предохраняют панель во время частичного затемнения. Во время таких затемнений, батарея не прерывает свою работу, но вырабатывает на четверть меньшую мощность. Суть в том, что диоды не дают перегревать солнечные элементы, которые во время затемнения начинают потреблять электричество вместо того, чтобы вырабатывать.
  • Дальше электроэнергия накапливается в аккумуляторах. А после уже отдаётся в систему. Важный момент в том, чтобы количество параллельно и последовательно соединённых элементов в солнечной панели, было расчитано таким образом, чтобы напряжение, которое подведено к аккумуляторам, превышало напряжение самого аккумулятора. Даже с учётом просадки. При этом нагрузочный ток солнечной батареи должен обеспечивать достаточное количество зарядного тока. Этот параметр обязательно учитывается при .
  • Ещё один важный фактор в работе солнечных панелей — полезная мощность. Именно этот показатель отражает экономичность использования для пользователя. Высчитывается такая мощность исходя из напряжения и выходного тока установки. А эти показатели в свою очередь зависят от силы солнечного освещения, которое попадает непосредственно на панель. Кстати, слишком большие температуры для работы солнечных батарей не полезны. Ведь при интенсивном нагревании солнцем, у электровырабатывающих элементов падает так называемая электродвижущая сила. Тем не менее, чем ярче освещения от солнца, тем больший ток вырабатывается.

Теперь немного формул о принципе работы солнечных батарей.

Как работает солнечная панель? К примеру, солнечная батарея замкнута на нагрузку с измерянным сопротивлением (Rн) . В цепи, следовательно, появляется ток (I) . При этом показатель I формируется в прямой зависимости от качества преобразователя в цепи, силой солнечного освещения и сопротивления. Далее разберём . — это напряжение, которое создаётся на зажимах солнечных батарей. В итоге зная эти показатели, мы можем высчитать мощность, которая появляется в нагрузке на установку: Pн = IнUн

Однако оптимальное сопротивление у каждой панели своё и зависит оно от уровня КПД.

  • При пасмурной погоде заряд аккумуляторов из-за меньшей выработки панелями электричества, естественно снижается. Во время такого процесса, электроэнергию принимает приёмник. Другими словами, аккумуляторы работают всегда либо на заряд либо на разряд. Этот механизм взаимодействия управляется контроллером.
  • Чаще всего работа аккумуляторов в цепи устроена таким образом, что они очень быстро заряжаются до 80-90%, а потом долго набирают остаток заряда. На сегодняшний день самые эффективные для использования в системах альтернативного снабжения электроэнергией батареи — гелевые. Такие батареи не требуют обслуживания и неприхотливы в условиях работы. При этом срок службы обычно достигает 10 лет.

Контроллер, резистор и инвертор

  • Контроллер необходим для подключения аккумуляторов в сеть. Он контролирует заряд.
  • Резистор поглощает избыточную мощность выработки электроэнергии.
  • Инвертор необходим для нормального снабжения электросети, кроме тех случаев, когда необходимо запитать приёмники, которые работают от постоянного напряжения, а не от переменного.

Конечно, разобраться во всех тонкостях работы сложно. Но надеемся, Вы найдёте ответы на страничках нашего сайта. Более наглядно работу солнечных элементов можно понять из графических схем.