Схема подключения солнечных панелей к контроллеру. Схема подключения солнечных панелей

Одним из самых популярных альтернативных способов обеспечения дома электроэнергией является установка .

Их преимущества очевидны:

  1. Они не занимают столько места, сколько нужно для установки ветряка.
  2. Они работают бесшумно и не доставляют неудобств соседям.

Есть и недостатки, главные среди которых такие:

  1. Солнечные батареи все еще являются недешевым удовольствием.
  2. Установка подобной системы требует специальных знаний и навыков.

Если с первой проблемой каждый из нас по отдельности ничего сделать не может, то во второй разобраться под силу каждому.

Выбор места

Зазор между панелями и поверхностью обязателен Выбирая место для установки солнечных панелей, необходимо учитывать особенности:

  • географические;
  • частные.

Солнечные батареи нужно ставить не просто в освещенных местах, но и под конкретным углом. Особенно это касается монокристаллических панелей.

Примите во внимание: если не оставить зазор между крышей и панелями для циркуляции воздуха, модули будут перегреваться и выгорать.

Угол наклона вычисляется по специальной формуле и зависит от широты, на которой находится дом. Если формулу значительно упростить, система вычисления угла наклона панелей выглядит так:

  • для широты до 25° нужно ее значение умножить на 0,87;
  • для широты от 25 до 50° нужно умножить значение на 0,76 и прибавить 3,1 градуса.

Частные особенности включают в себя условия, в которых находится дом. На крышу не должна падать тень деревьев или других построек.

Если эту проблему невозможно решить, то лучше установить панели не на крыше, а на отдельных столбах во дворе.

Этапы монтажа

Установка комплекта системы солнечных батарей проводится в несколько этапов. Они перечислены ниже.

Имейте в виду: чем короче провода, тем меньше энергии в них теряется.

Нюансы крепежа

Каркасы под солнечные панели Перед началом работ необходимо рассчитать максимально допустимую для кровли нагрузку.

Для правильного размещения солнечных панелей при их монтаже нужно придерживаться перечисленных ниже принципов.

  1. Угол наклона панелей нужно выбирать не произвольно, а отталкиваясь от географических особенностей расположения дома. Как вычислить угол, написано выше в этой статье.
  2. Если угол кровли не соответствует тому, который был найден при расчетах, то можно установить модули на отдельных конструкциях во дворе.
  3. Эффективность панелей повышается, если их лицевые стороны направлены на юг.
  4. Зимой угол наклона батарей следует увеличивать на 14 градусов. Летом его нужно на столько же уменьшать.

Совет специалистов: для возможности регулировки угла наклона модулей можно воспользоваться специальными каркасами. Они позволяют менять угол от 15 до 70 градусов. С помощью этих конструкций батареи можно установить даже на мягкой кровле.

Связка СП между собой

Схема соединения СП Проблем, связанных с , не возникнет, если они все должны быть расположены в одной плоскости.

Но они будут работать по-разному, если располагать их приходится на разных скатах крыши. Те панели, на которые попадает больше света, будут работать эффективнее.

Снизить потери мощности можно за счет установки индивидуального контроллера на батареи каждой плоскости.

Контроллером называется входящий в комплект прибор, обеспечивающий автоматическую работу зарядки и разрядки .

Кроме того, помочь в таком случае может установка отсекающих диодов. Диоды могут быть установлены производителями изначально, или под них может быть оставлено место для самостоятельной интеграции.

Схема подключения

Схема подключения СП. (Для увеличения нажмите) Схема подключения солнечной батареи выглядит следующим образом:

  1. Постоянный ток поступает по проводу в контроллер.
  2. Постоянный ток распределяется контроллером на две ветви: одна ведет к аккумуляторной батарее, чтобы ее подзарядить, вторая питает приборы, потребляющие постоянный ток.
  3. Постоянный ток поступает из аккумулятора в инвертор, который преобразует его в переменный.
  4. Из инвертора переменный ток направляется в распределительную коробку, откуда он распределяется по всему дому.

Имейте в виду: энергоснабжение дома можно сделать более эффективным, добавив дополнительные источники электрического тока. Такое действие, однако, усложнит схему подключения устройств.

Как видите, установка солнечных батарей не является слишком сложной задачей. Все сводится к выполнению пунктов следующего плана:

  • убрать деревья, отбрасывающие тень;
  • правильно определить угол наклона панелей;
  • закрепить панели на крыше (если нужно – следует воспользоваться специальными регулируемыми каркасами);
  • установить в доме необходимые приборы (инвертор, коллектор, аккумуляторы);
  • соединить элементы схемы проводами.

Обратите внимание: в стоимость комплектов солнечных батарей обычно не входит цена фурнитуры, проводки, креплений.

Если вы не уверены, что сможете выполнить подобную работу, лучше доверить дело профессионалам. Ведь при неправильном подключении можно не просто получить ток меньшей мощности, можно вывести из строя дорогую систему.

Смотрите видео, в котором опытные специалисты объясняют нюансы установки солнечных панелей:

Автономные системы электроснабжения загородных объектов позволяют жить в комфорте даже вдалеке от централизованных коммуникаций. Нередко наряду с традиционными схемами используют альтернативные, основанные на использовании энергии солнца.

Чтобы гелиосистема функционировала правильно, необходима грамотно составленная схема подключения солнечных батарей. Потребуется комплект качественного оборудования, способный справляться с возложенными обязанностями.

Мы расскажем, как грамотно спланировать размещение компонентов мини-электростанции. Вы узнаете, как выбрать технические устройства для сборки системы и как их правильно подключить. С учетом наших советов вы сможете соорудить эффективно действующую установку.

Рассмотрим, как устроена и работает гелиосистема для загородного дома. Главное ее назначение – преобразовать энергию солнца в электричество 220 В, которое является основным источником питания для домашних электроприборов.

Основные части, из которых состоит СЭС:

  1. Батареи (панели), преобразующие солнечное излучение в ток постоянного напряжения.
  2. Контроллер, регулирующий заряд АКБ.
  3. Блок аккумуляторных батарей.
  4. Инвертор, преобразующий напряжение АКБ в 220 В.

Конструкция батареи продумана таким образом, что позволяет оборудованию функционировать в различных погодных условиях, при температуре от -35ºС до +80ºС.

Выходит, что правильно установленные будут работать с одинаковой производительностью и зимой, и летом, но при одном условии – в ясную погоду, когда солнце отдает максимальное количество тепла. В пасмурную эффективность работы резко снижается.

Эффективность СЭС в средних широтах велика, но не настолько, чтобы полностью обеспечивать электричеством большие дома. Чаще гелиосистема рассматривается как дополнительный или резервный источник электроэнергии

Вес одной батареи на 300 Вт равен 20 кг. Чаще всего панели монтируют на крышу, фасад или специальные стойки, установленные рядом с домом. Необходимые условия: разворот плоскости в сторону солнца и оптимальный наклон (в среднем 45° к поверхности земли), обеспечивающий перпендикулярное падение солнечных лучей.

При возможности устанавливают трекер, отслеживающий движение солнца и регулирующий положение панелей.

Верхняя плоскость батарей защищена закаленным противоударным стеклом, которое легко выдерживает удары града или тяжелые снежные наносы. Однако необходимо следить за целостностью покрытия, иначе поврежденные кремниевые пластины (фотоэлементы) перестанут работать

Контроллер выполняет насколько функций. Кроме основной – автоматической регулировки заряда АКБ, регулирует подачу энергии от солнечных батарей, предохраняя тем самым аккумулятор от полной разрядки.

При полном заряде контроллер автоматически отключает АКБ от системы. Современные устройства оборудованы панелью управления с дисплеем, показывающим напряжение батарей.

Для самодельных гелиосистем лучшим выбором являются гелевые аккумуляторы, отличающиеся сроком бесперебойного функционирования 10-12 лет. После 10-летней работы их емкость уменьшается примерно на 15-25 %. Это необслуживаемые и абсолютно безопасные устройства, не выделяющие вредных веществ.

Зимой или в пасмурную погоду панели также продолжают работать (если их регулярно очищать от снега), но выработка энергии снижается в 5-10 раз

Стоит знать, что бытовые электростанции способны обслуживать постоянно работающий холодильник, периодически запускаемый погружной насос, телевизор, систему освещения. Чтобы обеспечить энергией функционирование котла или даже микроволновки, потребуется более мощное и очень дорогое оборудование.

Простейшая схема солнечной электростанции, включающая главные составные элементы. Каждый из них выполняет свою функцию, без которой работа СЭС невозможна

Существуют и другие, более сложные , однако данное решение является универсальным и наиболее востребованным в быту.

Шаги подключения батарей к оборудованию СЭС

Подключение происходит поэтапно, обычно в следующем порядке: сначала соединяют контроллер с аккумулятором, затем контроллер с солнечными панелями, затем аккумулятор с инвертором, и уже в последнюю очередь делают разводку по потребителям.

Этап #1: подключение к аккумулятору

Аккумуляторы занимают в сети четко определенное место. Они подключены к солнечным панелям не напрямую, а через контроллер, который регулирует их загрузку/разгрузку. С другой стороны аккумуляторный блок подсоединяют к инвертору, преобразующему ток.

Таким образом, схема подключения к аккумулятору выглядит так:

  • производим соединение аккумулятор/контроллер (затем контроллер/солнечные батареи);
  • соединяем аккумулятор и инвертор.

Возможны и другие варианты подключения, но данный является оптимальным, так как сохраняет незатраченную энергию, а при необходимости отдает ее потребителям.

Существует два варианта приобретения аккумуляторов: в составе полностью готовой к установке солнечной электростанции или отдельно, по заданным параметрам. Недорогой китайский комплект стоит не более 2000 рублей

Если одного аккумулятора недостаточно, приобретают несколько батарей с одинаковыми характеристиками. Их устанавливают в одном месте и подключают последовательно.

Для удобства использования и обслуживания блоки устанавливают на металлическом стеллаже с полимерным покрытием.

Рассмотрим, как аккумулятор подключается к контроллеру и инвертору.

Галерея изображений

Следующий шаг – подключение контроллера к солнечным панелям, а аккумуляторного блока – к инвертору.

Этап #2: подключение к контроллеру

Рассмотрим вариант, который часто используют на практике владельцы загородных домов. Они заказывают недорогое оборудование производства КНР на одной из интернет-площадок.

Бюджетный контроллер с минимальным количеством настроек, оснащенный тремя парами клемм, способный обслужить блок солнечных батарей мощностью 150 Вт. Стоимость – 1300 рублей

Подключение происходит в следующем порядке:

  • Сначала к контроллеру подключают блок аккумуляторных батарей. Это производится намеренно, чтобы проверить, как прибор выявит номинальное напряжение сети (стандартные значения – 12 В, 24 В). При соединении с АКБ используют первую пару клемм.
  • Затем присоединяют непосредственно солнечные панели , используя прилагающиеся к ним провода, а у контроллера – вторую пару клемм.
  • В последнюю очередь устанавливают оборудование для ночного освещени я – именно для этого и предназначена третья пара клемм. Кроме низковольтного освещения, которое действует исключительно после наступления темноты и запитывается от АКБ, другое оборудование использовать нельзя.

При любом виде подключения необходимо следить за полярностью.

Несоблюдение полярности приводит к мгновенной поломке контроллера, а также выходу из строя деталей солнечных панелей.

Схема подключения контроллера с тремя парами клемм. Ночное освещение (12 В) – необязательная функция, поэтому некоторые ее просто не используют. Включение лампочек можно настроить по времени: для работы в вечерние или утренние часы (+)

Контроллер и АКБ постоянно взаимодействуют. Например, во время пиковых нагрузок АКБ представляет собой буфер, осуществляющий защиту контроллера от выхода из строя.

Эти два прибора, как и остальные элементы системы, нельзя рассматривать по отдельности. При сборке солнечной электростанции следует иметь в виду каждое устройство, даже если конкретное подключение его не касается.

Пошаговая инструкция по подключению солнечных панелей к контроллеру

Галерея изображений

После подключения контроллера к аккумулятору и панелям присоединяем инвертор и, при необходимости, низковольтные осветительные приборы.

Этап #3: подключение к инвертору

Инвертор необходимо включать в систему, если приборы в доме работают от 220 В. Но бывают исключения, когда солнечные батареи устанавливают для системы 12 В, в этом случае инвертор не нужен.

Место установки инвертора в системе солнечной электростанции – между аккумуляторным блоком и потребителями энергии, то есть домашними бытовыми устройствами, приборами освещения и др. (+)

Приобретается прибор так же, как и остальные части гелиосистемы: в составе комплекта СЭС или отдельно.

Порядок действий при подключении инвертора к аккумулятору:

Галерея изображений

Если вы ранее не занимались установкой солнечных электростанций, рекомендуем приобретать не отдельные приборы, а систему в комплекте.

Преимущество готовой для монтажа системы – в соответствии параметров оборудования (правильно подобранные по мощности аккумуляторы, необходимое количество солнечных панелей, набор проводов для быстрого подключения).

Логично, что совместимые по емкости, напряжению и мощности приборы будут намного эффективнее преобразовывать солнечную энергию и обеспечивать дом электричеством. Фактически бесплатную «зеленую энергию» можно использовать с , энергоснабжения бытовых устройств.

Выводы и полезное видео по теме

Владельцы загородного жилья уже давно оценили достоинства альтернативной энергии и активно используют СЭС в качестве постоянного или резервного источника. Полезные рекомендации от пользователей солнечных электростанций помогут вам с монтажом собственной системы.

Видео #1. Пошаговый инструктаж по сборке и подключению:

Видео #2. Разбор нередко встречающихся ошибок при выборе и установке оборудования:

Видео #3. Обзор одного из вариантов домашней установки:

Использование альтернативной энергии для нужд человечества – это действительно большой технологический скачок. Сегодня каждый домовладелец может самостоятельно собрать и подключить солнечную электростанцию, питающую дом электричеством. С учетом окупаемости и экологической чистоты это практичное и результативное решение.

Хотите рассказать о том, как собрали небольшую солнечную электростанцию собственными руками? Есть интересные факты и полезные сведения по теме статьи? Пишите, пожалуйста, комментарии в расположенном ниже блоке, делитесь впечатлениями, мнением и тематическими фотоснимками.

Альтернативная энергетика становится все доступнее. Эта статья даст вам полное представление о солнечной энергетике локальных масштабов, видах фотоэлементов и панелей, принципах построения солнечных ферм и экономической обоснованности.

Особенности солнечной энергетики в средних широтах

Для жителей средних широт альтернативная энергетика весьма привлекательна. Даже в северных широтах среднегодовая суточная доза излучения составляет 2,3-2,6 кВт·ч/м 2 . Чем ближе к югу — тем выше этот показатель. В Якутске, например, интенсивность солнечного излучения составляет 2,96, а в Хабаровске — 3,69 кВт·ч/м 2 . Показатели в декабре составляют от 7% до 20% от среднегодового значения, а в июне и июле возрастают вдвое.

Вот пример расчета эффективности солнечных панелей для Архангельска — региона с одним из самых низких показателей интенсивности солнечного излучения:

  • Q — среднегодовое количество солнечной радиации в регионе (2,29 кВт·ч/м 2);
  • К откл — коэффициент отклонения поверхности коллектора от южного направления (среднее значение: 1,05);
  • P ном — номинальная мощность солнечной панели;
  • К пот — коэффициент потерь в электроустановках (0,85-0,98);
  • Q исп — интенсивность излучения, при которой панель испытывалась (обычно 1000 кВт·ч/м 2).

Последние три параметра указываются в паспорте панелей. Таким образом, если в условиях Архангельска работают панели KVAZAR с номинальной мощностью 0,245 кВт, а потери в электроустановке не превышают 7%, то один блок фотоэлементов обеспечит генерацию в размере около 550 Вт·ч. Соответственно, для объекта с номинальным потреблением 10 кВт·ч понадобится около 20 панелей.

Экономическая обоснованность

Сроки окупаемости солнечных панелей посчитать несложно. Умножьте суточное количество производимой энергии в сутки на количество суток в году и на срок эксплуатации панелей без снижения мощности — 30 лет. Рассмотренная выше электроустановка способна генерировать в среднем от 52 до 100 кВт·ч в сутки в зависимости от продолжительности светового дня. Среднее значение составляет около 64 кВт·ч. Таким образом, за 30 лет электростанция в теории должна выработать 700 тыс. кВт·ч. При одноставочном тарифе в 3,87 руб. и стоимости одной панели около 15 000 руб, затраты окупятся за 4-5 лет. Но реальность более прозаична.

Дело в том, что декабрьские значения солнечной радиации меньше среднегодовых примерно на порядок. Поэтому для полностью автономной работы электростанции зимой требуется в 7-8 раз больше панелей, чем летом. Это существенно увеличивает вложения, но уменьшает срок окупаемости. Перспектива введения «зеленого тарифа» выглядит вполне ободряюще, но даже на сегодняшний день можно заключить договор на поставку электроэнергии в сеть по оптовой цене, которая втрое ниже розничного тарифа. И даже этого достаточно, чтобы выгодно продавать 7-8 кратный излишек выработанной электроэнергии в летний период.

Основные типы солнечных панелей

Существует два основных типа солнечных панелей.

Твердые кремниевые фотоэлементы считаются элементами первого поколения и наиболее распространены: около 3/4 рынка. Их существует две разновидности:

  • монокристаллические (черного цвета) имеют высокий КПД (0,2-0,24) и малую цену;
  • поликристаллические (темно-синего цвета) дешевле в производстве, но менее эффективны (0,12-0,18), хотя при рассеянном свете их КПД снижается меньше.

Мягкие фотоэлементы называют пленочными и изготавливают либо из кремниевого напыления, либо путем многослойной композиции. Кремниевые элементы дешевле в производстве, но их КПД в 2-3 раза ниже кристаллических. Однако при рассеянном свете (сумерки, пасмурность) они эффективнее кристаллических.

Некоторые виды композитных пленок имеют КПД около 0,2 и стоят гораздо больше твердых элементов. Их применение в солнечных электростанциях весьма сомнительно: пленочные панели в большей степени подвержены деградации со временем. Основная область их применения — мобильные энергоустановки с низким потреблением энергии.

Гибридные панели включают помимо блока фотоэлементов также коллектор — систему капиллярных трубок для нагрева воды. Преимущество их не только в экономии площади и возможности горячего водоснабжения. За счет водяного охлаждения фотоэлементы меньше теряют в производительности при нагреве.

Таблица. Обзор производителей

Модель SSI Solar LS-235 SOLBAT MCK-150 Canadian Solar CS5A-210M Chinaland CHN300-72P
Страна Швейцария Россия Канада Китай
Тип Поликристалл Монокристалл Монокристалл Поликристалл
Мощность при 1000 кВт·ч/м 2 , Вт 235 150 210 300
Число элементов 60 72 72 72
Напряжение: холостого хода/при нагрузке, В 36,9/29,8 18/12 45,5/37,9 36,7/43,6
Ток: при нагрузке/короткого замыкания, А 7,88/8,4 8,33/8,58 5,54/5,92 8,17/8,71
Вес, кг 19 12 15,3 24
Размеры, мм 1650х1010х42 667х1467х38 1595х801х40 1950х990х45
Цена, руб. 13 900 10 000 14 500 18 150

Оборудование гелиоэнергетического комплекса

Батареи генерируют при работе постоянный ток величиной до 40 В. Чтобы использовать его в бытовых целях, требуется ряд преобразований. За это отвечает следующее оборудование:

  1. Блок аккумуляторных батарей. Позволяет пользоваться выработанной энергией ночью и в часы малой интенсивности. Используются гелиевые аккумуляторы номинальным напряжением 12, 24 или 48 В.
  2. Контроллеры заряда поддерживают оптимальный цикл работы аккумуляторов и переводят требуемую мощность на питание потребителей. Необходимое оборудование подбирается под параметры батарей и аккумуляторов.
  3. Инвертор напряжения трансформирует постоянный ток в переменный и имеет ряд дополнительных функций. Во-первых, инвертор устанавливает приоритет источника напряжения, а при недостатке мощности «подмешивает» питание из другого. Гибридные инверторы позволяют также отдавать излишек вырабатываемой энергии в городскую сеть.

1 — солнечные батареи 12 В; 2 — солнечные батареи 24 В; 3 — контроллер заряда; 4 — АКБ 12 В; 5 — освещение 12 В; 6 — инвертор; 7 — автоматика «умного дома»; 8 — блок АКБ 24 В; 9 — аварийный генератор; 10 — основные потребители 220 В

Применение в домашнем хозяйстве

Солнечные панели могут использоваться в абсолютно любых целях: от компенсации получаемой энергии и питания отдельных линий до полной автономизации энергосистемы , включая отопление и горячее водоснабжение. В последнем случае важную роль играет масштабное применение энергосберегающих технологий — рекуператоров и тепловых насосов.

При смешанном использовании гелиоэнергетики используют инверторы. При этом питание может направляться либо на работу отдельных линий или систем, либо частично компенсировать использование городского электричества. Классический пример эффективной энергосистемы — тепловой насос, питаемый небольшой солнечной электростанцией с блоком аккумуляторов.

1 — городская сеть 220 В; 2 — солнечные батареи 12 В; 3 — освещение 12 В; 4 — инвертор; 5 — контроллер заряда; 6 — основные потребители 220 В; 7 — АКБ

Традиционно панели устанавливают на крышах зданий, а в некоторых архитектурных решениях они полностью заменяют кровельное покрытие. При этом панели необходимо ориентировать на южную сторону таким образом, чтобы падение лучей на плоскость было перпендикулярным.

Подключение солнечных батарей нередко вызывает определенные вопросы, особенно когда требуется соединить несколько модулей. Кажется, что это очень сложный процесс, требующий специфических знаний. А на самом деле схема подключения очень проста, ее легко реализовать и собрать фотобатарею нужной мощности.

Существует три варианта включения батарей в общую цепь. Это последовательное, параллельное и смешанное (последовательно-параллельное) соединения.

В этом случае одноименные клеммы двух модулей соединяются между собой («плюс» с «плюсом», «минус» - с «минусом»). Далее от клемм одного из фотомодулей выводятся провода, которые и подключаются или к контроллеру заряда, или непосредственно к аккумулятору. Таким образом, можно объединять любое количество солнечных батарей, главное – соединять друг с другом только одноименные клеммы.

Эта схема подразумевает соединение «плюса» первого модуля с «минусом» второго, и вывод внешних проводов от «минуса» первого фотомодуля и «плюса» второго. Здесь также не имеет значения, сколько солнечных панелей будет объединено в одну батарею. Главное – не нарушить принцип. «Плюс» первого на «минус» второго, «плюс» второго на «минус» третьего, «плюс» третьего на «минус» четвертого и т.д. Провода от незадействованных клемм («минус» первого модуля и «плюс» последнего) выводятся на контроллер или аккумулятор.

Нередко используется и смешанная схема подключения. В этом случае для начала нужно собрать две группы параллельно соединенных модулей (объединив одноименные клеммы), а затем соединить их между собой последовательно так, как будто это единичные модули, а не группы. Количество групп (равно как и число батарей в них) может быть любым.

Зачем нужны разные соединения

Разные способы коммутации необходимы для получения нужных выходных параметров. К примеру, если требуется обеспечить мощность в 160 Вт и напряжение 12 В, а мощность одной солнечной батареи только 80 Вт при требуемых 12 В, то это означает, что нужно параллельно соединить 2 батареи. В итоге напряжение системы не изменится (12 В), а суммарная выходная мощность станет 160 Вт. Если же необходимо получить выходное напряжение не 12 В, а, скажем, 24 В, то в этом случае применяется последовательное соединение двух модулей. Смешанная схема позволяет регулировать оба параметра одновременно. Таким образом, используя разные типы коммутации можно собрать солнечную электростанцию с оптимально подходящими для работы характеристиками.

Подключение к энергосистеме дома

Что же касается интеграции собранного гелибатареи в энергосистему частного дома, то здесь есть несколько вариантов. Так, самой востребованной является схема с использованием контроллера заряда, батарейного инвертора и аккумуляторных батарей. Напряжение от гелиополя сначала направляется на заряд АКБ и лишь после этого передается на нагрузку.

Нагрузку, как правило, подразделяют на 2 категории: резервируемую (холодильники, газовые котлы, аварийное освещение и т.д.) и не резервируемую (обычное освещение, компьютер и пр.). Потребляемая мощность резервируемых приборов может быть любой, но длительность их автономной работы определяется емкостью АКБ.

Благодаря наличию особого батарейного инвертора становится возможной передача электричества на нагрузки в том случае, если напряжение на АКБ превышает заданное значение. При этом потребители могут запитываться от гелиоэнергии даже при наличии напряжения в центральной электросети. Таким образом, существенно уменьшается внешнее энергопотребление дома.

При отключении центральной сети инвертор запитает резервируемую нагрузку от АКБ. Если гелиополе в это время производит энергию, то инвертор использует и ее. Излишки солнечной энергии, не расходуемые на нагрузку, пойдут на зарядку АКБ. Данная схема отлично подходит для обеспечения автономного энергоснабжения, она работает и при отсутствии центрального напряжения питания. Но при этом не резервируемая нагрузка будет запитываться только от солнца (по остаточной технологии), приоритетными являются резервируемые потребители.

Если же планируется использовать гелиополе лишь для снижения энергопотребления из внешней сети, то можно воспользоваться более простой и дешевой схемой. Она гораздо выгоднее при редких и кратковременных отключениях электричества. Днем гелиополе снабжает энергией потребителей, если этого недостаточно, то электричество забирается из внешней сети. Но при отключении централизованного питания инвертор выключится и солнечная энергия не будет использоваться. Резервируемая нагрузка будет питаться от АКБ.

Солнечные батареи – очень выгодный способ стать независимым от плохой работы общей электросети. Кроме этого, созданная ими электрическая энергия является абсолютно бесплатной.

Особенности подключения

  1. Солнечная панель.
  2. Устройство, которое контролирует заряд.
  3. Аккумулятор.
  4. Инвертор.
  5. Электрическая сеть дома.

Обязательно в эту схему входят предохранители от короткого замыкания и лампочка , которая показывает уровень нагрузки. Предохранители устанавливаются на провода с положительным зарядом перед аккумулятором, лампочкой, инвертором.

Лампочку и аккумуляторы подключают к контроллеру заряда.

Эта схема предусматривает наличие одной солнечной панели или нескольких, работающих с одинаковой нагрузкой.

Несколько батарей соединены одним проводом, площадь поперечного сечения которого всегда больше 4 мм². Если планируется установить на крыше дома несколько солнечных панелей, и часть из них будет наклонена под другим углом, то схема подключения предусматривает наличие контроллера для каждой панели.

Практика показала:

  • Монокристаллические способны генерировать ток в течение 3 десятков лет и даже больше.
  • Более дешевые поликристаллические будут работать на протяжении 20 лет.
  • Гибкие панели имеют срок службы 7-20 лет. Наиболее короткую «жизнь» имеют изделия первого поколения, наиболее длинную – изделия второго поколения. Главным минусом является быстрая деградация. В течение первых 24 месяцев работы их мощность падает на 10-40%.

Используемые на больших солнечных станциях модули смогли работать с одинаковой мощностью в течение 25 лет. Заявленные в описании характеристики выполнялись на 100%. Это говорит об отсутствии деградации. Некоторые из панелей уменьшили выработку на 10%. Производители гарантировали уменьшение выработки на 20%.

Независимо от срока использования светочувствительные элементы никогда не теряют своей производительности. То есть может пройти 50 лет, и они могут производить такое же количество электроэнергии. На ухудшение выработки влияет разрушения защитных пленок, которые позволяют влаге проникать внутрь панели и вызывать коррозию всех соединений. Этот минус приводит к увеличению сопротивления, чрезмерному нагреву, разрушению соединений. Аккумуляторы могут работать 2-15 лет, силовая электроника – 5-20 лет.