Схема подключения электродвигателя через частотный преобразователь. Регулировка скорости инвертором. Количество выходных сигналов

Используется повсеместно. Основное предназначение – преобразование электричества в механическую силу. Электродвигатель – своего рода противоположность генератора.

Учитывая особенность того, что рассматриваемый механизм работает от электричества, особые требования предъявляются к показателям электроэнергии. Часто можно встретить ситуацию, когда в цепи присутствует частотный преобразователь, который создан специально для асинхронного типа двигателя.

В системе питания, созданной для асинхронного двигателя, рассматриваемый аппарат служит для изменения тока с 1 или 3 фазами, который приходит от сети питания и имеет частоту 50 Гц, в трехфазный ток, показатель частоты от различных условий может быть от 1 до 800 Гц.

Кроме вышеприведенной информации, стоит уточнить следующее:

  1. Для оборудования , которое используется в промышленности, проводят выпуск частотного преобразователя, имеющий электроиндукционный тип. Они представляют собой в некотором роде асинхронный двигатель, который имеет фазный ротор. Определенный режим позволяет работать оборудованию в режиме генератора-преобразователя.
  2. Изменение частоты входного тока используются для изменения скорости вращения выходного вала двигателя. Совершенные механизмы регулирования представлены векторным типом, практически только подобные варианты исполнения присутствуют в продаже.

Приобрести также можно варианты исполнения для бытового использования.

Устройство и принцип работы


Рассматриваемое устройство состоит из следующих элементов:

  1. Мост постоянного тока выступает в качестве выпрямителя. Именно он проводит преобразование, к примеру, промышленного тока с генератора в постоянный.
  2. Инвертор проводит создание переменного тока. При этом, есть возможность контролировать частоту и амплитуду.
  3. Также, в конструкции есть тиристоры или транзисторы , которые обеспечивают подачу рабочего тока к электродвигателю. Они выступают в качестве электрических ключей.
  4. В управляющей части установлен микропроцессор, который проводит управление работой установленных ключей. Также, микропроцессор выполняет ряд других задач: проводит защиту системы, контролирует выходные параметры, диагностирует состояние подаваемого тока.

Многие построены на основе двойного преобразования.

Можно выделить 2 основных класса:

  1. С созданием промежуточного звена.
  2. С образованием непосредственной связи.

2 вышеприведенных класса имеют свои особенности, которые определяют возможность и целесообразность их использования тех или в иных условиях.

Непосредственная связь обуславливается тем, что преобразователь представлен выпрямителем управляемого типа. Используемая система управления проводит отпирание группы тиристоров и также проводит подвод напряжения к обмотке электродвигателя.

В данном случае, напряжение преобразуется путем вырезания синусоид из входного тока. Проведенные измерения показывают, что получаемая частота находится в приблизительном промежутке от 0 до 30 Гц. Использовать подобный вариант исполнения нельзя в регулируемых приводах.

Для того, чтобы использовать незапираемые тиристоры, нужно организовывать сложные системы управления, которые значительно повышают стоимость создаваемой цепи.


При выходе синусоида с непосредственной связью, приводит к следующему:

  1. Появляется гармоник.
  2. Происходят потери в самом электродвигателе.
  3. Происходит перегрев электродвигателя.
  4. Значительно снижается показатель момента.
  5. Создаются сильные помехи.

Кроме этого, компенсаторы значительно повышают стоимость цепи, ее габариты и вес. Включение дополнительного элемента в цепь также приводит к уменьшению показателя КПД из-за возникающих потерь.

Современные цепи питания часто создаются при использовании преобразователя, который имеет промежуточное звено.

В данном случае, проводится процедура, предусматривающая двойное преобразование электрического тока:

  1. Изначально , входное напряжение синусоидального типа с неизменной частотой и амплитудой преобразуется при помощи выпрямителя.
  2. Используются специальные фильтры , которые сглаживают показатели.
  3. Инвертор на выходе проводит преобразование энергии с изменяемым показателем амплитуды и частоты.

Как правило, процедура двойного преобразования приводит к значительному снижению показателя КПД, вследствие чего также ухудшаются показатели соотношения массы и габаритов.

К основным достоинствам преобразователей частоты, которые работают как тиристор, можно отнести следующее:

  1. Возможна работа в системе с большими показателями тока.
  2. Система может быть использована при высоких показателях напряжения.
  3. Есть устойчивость к длительному воздействию большой нагрузки и импульсного воздействия.
  4. Более высокий показатель КПД , который достигает 98%.

Данные особенности являются основными отличительными признаками работы двух типов преобразователей.

Технические характеристики


Использовать частотные преобразователи следует только с учетом эксплуатационных характеристик. К основным техническим характеристикам, на которые нужно обратить внимание, можно отнести:

  1. Диапазон напряжения подаваемого тока. Существуют различные варианты исполнения, которые могут работать при напряжении от 100 до 120 В, от 200 до 240 В. Этот показатель является определяющим при выборе наиболее подходящей модели.
  2. Номинальная мощность подключаемого в цепи электродвигателя. Как правило, показатель измеряется в кВт.
  3. Полная мощность электродвигателя.
  4. Номинальный выходной ток.
  5. Выходное напряжение зачастую не больше показателя напряжения от источника питания, но может быть и меньше.
  6. Диапазон выходной частоты.
  7. Показатель допустимой силы тока на входе.
  8. Частота электричества при входе.
  9. Максимальные отклонения от показателей, которые допустимы при тех или иных случаях.

Подобные параметры должны быть указаны в спецификации преобразователя частот. Если, к примеру, не учесть напряжение подаваемого тока, рассматриваемое устройство будет испорчено.

Подключение преобразователя частот – пошаговая инструкция

Провести подключение преобразователя частоты можно различными схемами. Все зависит от того, с какой целью рассматриваемый элемент включается в сеть, к примеру, для более легкого старта или регулировки частоты вращения.

Довольно простой схемой подключения частотника можно назвать размещение устройства перед ним. Подобное устройство должно быть адоптировано для работы с током, величина его должна составлять величину номинального показателя потребляемого тока электродвигателя.

Стоит отметить, что многие модели частотников могут работать с трехфазной сетью, поэтому можно выбрать обычный трехфазный автомат. На момент возникновения короткого замыкания, одна из фаз проводит обесточивание других. Если же преобразователь частоты рассчитан на однофазную сеть, стоит выбрать выключатель, который рассчитан на утроенный ток одной фазы.

Частотники рассчитаны исключительно на прямое включение в сеть.

Дальнейшая работа по подключению заключается в присоединении фазных проводов к определенным электродвигателя. Также, проводится включение внешнего тормозного резистора в цепь. Кроме этого, в сеть можно включить вольтметр для измерения напряжения в цепи на выходе после преобразователя.

Как правило, современные варианты исполнения частотников имеют подробную инструкцию того, каким образом они должны быть включены в сеть. Подобную информацию стоит учитывать при создании цепи подключения электродвигателя к источнику питания.

Выбор частотного преобразователя


Изначальной задачей каждого производителя можно назвать продать свою продукцию. Именно поэтому, следует обратить внимание на нижеприведенные нюансы правильного выбора:

  1. Скалярный или векторный метод управления. Современные варианты исполнения зачастую имеют векторные методы управления, однако особый режим работы позволяет переключиться на скалярный метод управления. Найти новый частотник без векторного метода управления практически невозможно.
  2. Мощностной ряд. Стоит помнить о том, что мощность потребителя энергии – важный показатель, на который стоит обращать внимание.
  3. Входное напряжение, а точнее допустимый диапазон, определяет то, при каком напряжении преобразователь частоты может работать без сбоев. При этом, важно понять, что падение показателя приведет к остановке частотника, увеличение – к выходу из строя всего оборудования. Поэтому следует обеспечить работу при постоянном показателе входного напряжения.
  4. Диапазон регулировки – также важный показатель, особенно при использовании двигателей, которые работают при высоких показателях номинальной частоты.
  5. Как организовано управление . Современные варианты исполнения имеют специальные пульты, при помощи которых можно вводить необходимые значения.
  6. Срок гарантии косвенно говорит о надежности техники. Однако, стоит помнить о том, что выход из строя при подаче тока с неправильными номинальными показателями нельзя назвать гарантийным случаем.

Вышеприведенные особенности следует учитывать при выборе преобразователя частоты.

Обзоры моделей

Выделим следующие модели рассматриваемого оборудования:

Omron MX2


Стоимость этой модели составляет 15 000 рублей. Значение мощности 0,75 кВт, выходного тока 2,1 А. Вес подобного блока составляет 1,5 кг. Блок компактный и прост в использовании. Данный вариант исполнения имеет встроенный блок управления.

Vacon NXL


Стоимость около 24 000 рублей. Значение мощности 1,1 кВт, выходного тока 3,3. Вес блока составляет 5 кг. Довольно дорогая модель, несмотря на небольшое повышение выходных показателей.

ESQ 2000


Мощный блок, который может работать при 90 кВт. Стоимость около 250 000 рублей. Выходной ток 176 А. Установка имеет вес 50 кг. Рассматриваемая установка одна из самых дорогих. Имеет довольно большие габаритные размеры, несколько напоминает шкаф.

Существует огромное количество моделей, их стоимость зачастую зависит от эксплуатационных характеристик.

Частотные преобразователи предназначены для плавного регулирования скорости асинхронного двигателя за счет создания на выходе преобразователя трехфазного напряжения переменной частоты. В простейших случаях регулирование частоты и напряжения происходит в соответствии с заданной характеристикой V/f , в наиболее совершенных преобразователях реализовано так называемое векторное управление .
Принцип работы частотного преобразователя или как его часто называют - инвертора: переменное напряжение промышленной сети выпрямляется блоком выпрямительных диодов и фильтруется батареей конденсаторов большой емкости для минимизации пульсаций полученного напряжения. Это напряжение подается на мостовую схему, включающую шесть управляемых IGBT или MOSFET транзисторов с диодами, включенными антипараллельно для защиты транзисторов от пробоя напряжением обратной полярности, возникающем при работе с обмотками двигателя. Кроме того, в схему иногда включают цепь "слива" энергии - транзистор с резистором большой мощности рассеивания. Эту схему используют в режиме торможения, чтобы гасить генерируемое напряжение двигателем и обезопасить конденсаторы от перезарядки и выхода из строя.
Блок-схема инвертора показана ниже.
Частотный преобразователь в комплекте с асинхронным электродвигателем позволяет заменить электропривод постоянного тока. Системы регулирования скорости двигателя постоянного тока достаточно просты, но слабым местом такого электропривода является электродвигатель. Он дорог и ненадежен. При работе происходит искрение щеток, под воздействием электроэрозии изнашивается коллектор. Такой электродвигатель не может использоваться в запыленной и взрывоопасной среде.
Асинхронные электродвигатели превосходят двигатели постоянного тока по многим параметрам: они просты по устройству и надежны, так как не имеют подвижных контактов. Они имеют меньшие по сравнению с двигателями постоянного тока размеры, массу и стоимость при той же мощности. Асинхронные двигатели просты в изготовлении и эксплуатации.
Основной недостаток асинхронных электродвигателей – сложность регулирования их скорости традиционными методами (изменением питающего напряжения, введением дополнительных сопротивлений в цепь обмоток).
Управление асинхронным электродвигателем в частотном режиме до недавнего времени было большой проблемой, хотя теория частотного регулирования была разработана еще в тридцатых годах. Развитие частотно-регулируемого электропривода сдерживалось высокой стоимостью преобразователей частоты. Появление силовых схем с IGBT-транзисторами, разработка высокопроизводительных микропроцессорных систем управления позволило различным фирмам Европы, США и Японии создать современные преобразователи частоты доступной стоимости.
Регулирование частоты вращения исполнительных механизмов можно осуществлять при помощи различных устройств: механических вариаторов, гидравлических муфт, дополнительно вводимыми в статор или ротор резисторами, электромеханическими преобразователями частоты, статическими преобразователями частоты.
Применение первых четырех устройств не обеспечивает высокого качества регулирования скорости, неэкономично, требует больших затрат при монтаже и эксплуатации. Статические преобразователи частоты являются наиболее совершенными устройствами управления асинхронным приводом в настоящее время.
Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту f1 питающего напряжения, можно в соответствии с выражением

неизменном числе пар полюсов p изменять угловую скорость магнитного поля статора.
Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.
Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики.
Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.
Закон изменения напряжения зависит от характера момента нагрузки Mс. При постоянном моменте нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте:

Для вентиляторного характера момента нагрузки это состояние имеет вид:

При моменте нагрузки, обратно пропорциональном скорости:

Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статорной обмотке асинхронного двигателя.
Преимущества использования регулируемого электропривода в технологических процессах
Применение регулируемого электропривода обеспечивает энергосбережение и позволяет получать новые качества систем и объектов. Значительная экономия электроэнергии обеспечивается за счет регулирования какого-либо технологического параметра. Если это транспортер или конвейер, то можно регулировать скорость его движения. Если это насос или вентилятор – можно поддерживать давление или регулировать производительность. Если это станок, то можно плавно регулировать скорость подачи или главного движения.
Особый экономический эффект от использования преобразователей частоты дает применение частотного регулирования на объектах, обеспечивающих транспортировку жидкостей. До сих пор самым распространённым способом регулирования производительности таких объектов является использование задвижек или регулирующих клапанов, но сегодня доступным становится частотное регулирование асинхронного двигателя, приводящего в движение, например, рабочее колесо насосного агрегата или вентилятора. При использовании частотных регуляторов обеспечивается плавная регулировка скорости вращения позволяет в большинстве случаев отказаться от использования редукторов, вариаторов, дросселей и другой регулирующей аппаратуры.
При подключении через частотный преобразователь пуск двигателя происходит плавно, без пусковых токов и ударов, что снижает нагрузку на двигатель и механизмы, тем самым увеличивает срок их службы.
Перспективность частотного регулирования наглядно видна из рисунка


Таким образом, при дросселировании поток вещества, сдерживаемый задвижкой или клапаном, не совершает полезной работы. Применение регулируемого электропривода насоса или вентилятора позволяет задать необходимое давление или расход, что обеспечит не только экономию электроэнергии, но и снизит потери транспортируемого вещества.
Структура частотного преобразователя
Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.
Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.
Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.
В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями.
Принцип работы преобразователя частоты
Преобразователь частоты состоит из неуправляемого диодного силового выпрямителя В, автономного инвертора, системы управления ШИМ, системы автоматического регулирования, дросселя Lв и конденсатора фильтра Cв. Регулирование выходной частоты fвых. и напряжения Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления.
Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.
Длительность этих состояний внутри периода ШИМ модулируется по синусоидальному закону. При высоких (обычно 2…15 кГц) тактовых частотах ШИМ, в обмотках электродвигателя, вследствие их фильтрующих свойств, текут синусоидальные токи.


Таким образом, форма кривой выходного напряжения представляет собой высокочастотную двухполярную последовательность прямоугольных импульсов (рис. 3).
Частота импульсов определяется частотой ШИМ, длительность (ширина) импульсов в течение периода выходной частоты АИН промодулирована по синусоидальному закону. Форма кривой выходного тока (тока в обмотках асинхронного электродвигателя) практически синусоидальна.
Регулирование выходного напряжения инвертора можно осуществить двумя способами: амплитудным (АР) за счет изменения входного напряжения Uв и широтно-импульсным (ШИМ) за счет изменения программы переключения вентилей V1-V6 при Uв = const.
Второй способ получил распространение в современных преобразователях частоты благодаря развитию современной элементной базы (микропроцессоры, IBGT-транзисторы). При широтно-импульсной модуляции форма токов в обмотках статора асинхронного двигателя получается близкой к синусоидальной благодаря фильтрующим свойствам самих обмоток.

Такое управление позволяет получить высокий КПД преобразователя и эквивалентно аналоговому управлению с помощью частоты и амплитуды напряжения.
Современные инверторы выполняются на основе полностью управляемых силовых полупроводниковых приборов – запираемых GTO – тиристоров, либо биполярных IGBT-транзисторов с изолированным затвором. На рис. 2.45 представлена 3-х фазная мостовая схема автономного инвертора на IGBT-транзисторах.
Она состоит из входного емкостного фильтра Cф и шести IGBT-транзисторов V1-V6 включенными встречно-параллельно диодами обратного тока D1-D6.
За счет поочередного переключения вентилей V1-V6 по алгоритму, заданному системой управления, постоянное входной напряжение Uв преобразуется в переменное прямоугольно-импульсное выходное напряжение. Через управляемые ключи V1-V6 протекает активная составляющая тока асинхронного электродвигателя, через диоды D1-D6 – реактивная составляющая тока.


И – трехфазный мостовой инвертор;
В – трехфазный мостовой выпрямитель;
Сф – конденсатор фильтра;

Вариант схемы подключения частотного преобразователя фирмы Omron.

Подключение частотных преобразователей с соблюдением требований ЭМС

Монтаж и подключение с соблюдением требований ЭМС подробно описаны в соответствующих руководствах на устройства.

Техническая информация преобразователи

Из данной статьи вы узнаете, что такое рассмотрите его схему, принцип работы, а также узнаете о настройках промышленных образцов. Основной упор будет сделан на изготовление Конечно, для этого вам потребуется иметь хотя бы общее представление о проводниковой технике. Начинать необходимо с того, для каких целей используются преобразователи частоты.

Когда возникает необходимость в ПЧ

Современные преобразователи частоты — это высокотехнологичные устройства, которые состоят из элементов на основе полупроводников. Кроме того, имеется электронная система управления, построенная на микроконтроллере. С ее помощью производится управление всеми важнейшими параметрами электродвигателя. В частности при помощи преобразователя частоты можно изменять скорость вращения Возникает мысль о том, чтобы приобрести частотный преобразователь для электродвигателя. Цена такого устройства для моторов мощностью 0,75 кВт составит примерно 5-7 тыс. руб.

Стоит заметить, что изменить скорость вращения можно при помощи редуктора, построенного на основе вариатора, либо шестеренчатого типа. Но такие конструкции очень большие, применять их не всегда имеется возможность. Ко всему прочему, такие механизмы необходимо своевременно обслуживать, а их надежность крайне мала. Применение частотного преобразователя позволяет уменьшить расходы на обслуживание электрического привода, а также увеличить его возможности.

Основные узлы частотного преобразователя

Любой преобразователь частоты состоит из четырех основных модулей:

  1. Блока выпрямителя.
  2. Устройства фильтрации постоянного напряжения.
  3. Инверторного узла.
  4. Микропроцессорной системы управления.

Все они взаимосвязаны, причем блок управления контролирует работу выходного каскада - инвертора. Именно с его помощью осуществляется изменение выходных характеристик переменного тока.

О нем будет подробно рассказано ниже, приведена схема. Частотный преобразователь для электродвигателя имеет еще несколько особенностей. Стоит отметить, что в состав устройства входит несколько степеней защиты, которые также управляются микроконтроллерным устройством. В частности производится контроль температуры силовых полупроводниковых элементов. Кроме того, имеется функция защиты от короткого замыкания и превышения тока. Частотный преобразователь необходимо подключать к питающей сети посредством защитных устройств. Необходимость в отпадает.

Выпрямитель преобразователя частоты

Это самый первый модуль, через который протекает ток. С его помощью производится выпрямление переменного тока - преобразование в постоянный. Происходит это благодаря использованию таких элементов, как полупроводниковые диоды. Но теперь стоит упомянуть о небольшой особенности. Вы знаете, что питание большей части осуществляется от трехфазной сети переменного тока. Но не везде такая имеется. Конечно, на крупных предприятиях она есть, но в быту ее редко используют, так как проще провести однофазную. Да и с учетом электроэнергии дела обстоят проще.

А преобразователи частоты могут питаться как от трехфазной сети, так и от однофазной. В чем же разница? А она несущественная, в конструкции используются различные типы выпрямителей. Если речь идет про однофазный частотный преобразователь для электродвигателя, то необходимо применять схему на четырех полупроводниковых диодах, включенных по мостовому типу. Но если есть необходимость питания от трехфазной сети, следует выбрать иную схему, состоящую из шести полупроводниковых диодов. Два элемента в каждом плече, в результате вы получите выпрямление переменного тока. На выходе появятся «плюс» и «минус».

Фильтрация постоянного напряжения

На выходе выпрямителя вы имеете постоянное напряжение, но оно обладает большими пульсациями, все еще проскакивает переменная составляющая. Чтобы сгладить все эти «неровности» тока, вам потребуется применять как минимум два элемента - катушку индуктивности и электролитический конденсатор. Но обо всем стоит рассказать более детально.

Катушка индуктивности имеет большое число витков, она обладает некоторым что позволяет немного сгладить пульсации тока, протекающего через нее. Второй элемент - конденсатор, включенный между двумя полюсами. Он обладает поистине интересными свойствами. При протекании постоянного тока он по закону Кирхгофа заменяться должен обрывом, то есть между плюсом и минусом как бы ничего нет. А вот при протекании переменного - проводником, отрезком провода без сопротивления. Как было сказано выше, протекает постоянный ток, но в нем присутствует небольшая доля переменного. И она-то замыкается, в результате чего попросту исчезает.

Инверторный модуль

Инверторный узел, если быть точным, наиболее важный во всей конструкции. С его помощью производится изменение параметров выходного тока. В частности его частоты, напряжения и т. д. Состоит инвертор из шести управляемых транзисторов. Для каждой фазы два полупроводниковых элемента. Стоит отметить, что в инверторном каскаде используются современные сборки из IGBT-транзисторов. Хоть самодельный, хоть частотный преобразователь Delta, самый бюджетный и доступный на сегодняшний день, состоят из одинаковых узлов. Возможности только разные.

Они имеют три входа, столько же выходов, а также шесть точек подключения к устройству управления. Стоит отметить, что при самостоятельном изготовлении частотного преобразователя необходимо производить подбор сборки по мощности. Поэтому вы должны сразу определиться с тем, какой тип электродвигателя будет подключаться к преобразователю частоты.

Микропроцессорная система управления

При самостоятельном изготовлении вряд ли получится достигнуть тех же параметров, которые имеются у промышленных образцов. Причина этого кроется вовсе не в том, что выпускаемые сборки силовых транзисторов являются неэффективными. Дело в том, что в домашних условиях изготовить модуль управления оказывается довольно сложно. Конечно, речь идет не про пайку элементов, а о программировании микроконтроллерного устройства. Самый простой вариант — это изготовить блок управления, при помощи которого можно проводить регулировку скорости вращения, осуществление реверса, защиту по току и от перегрева.

Для изменения необходимо использовать переменное сопротивление, которое подключается к порту ввода микроконтроллера. Это задающее устройство, которое подает сигнал микросхеме. Последняя анализирует уровень изменения напряжения по сравнению с эталонным, которое составляет 5 В. Система управления работает по определенному алгоритму, который пишется до начала программирования. Строго по нему происходит работа микропроцессорной системы. Очень популярны модули управления фирмы Siemens. Частотный преобразователь этого производителя имеет высокую надежность, может использоваться в любом типе электропривода.

Как настроить преобразователь частоты

На сегодняшний день имеется много производителей данного устройства. Но алгоритм настройки у всех практически одинаков. Конечно, провести настройку преобразователя частоты без определенных знаний не получится. Вам необходимо иметь две вещи — опыт в регулировке и руководство по эксплуатации. В последнем имеется приложение, в котором описаны все функции, которые могут быть запрограммированы. Обычно на корпусе частотного преобразователя имеется несколько кнопок. Как минимум четыре штуки должно присутствовать. Две предназначены для переключения между функциями, при помощи остальных производится выбор параметров либо отмена введенных данных. Для перехода в режим программирования необходимо нажать определенную кнопку.

Для каждой модели частотного преобразователя свой алгоритм входа в режим программирования. Поэтому без руководства по эксплуатации невозможно обойтись. Стоит также отметить, что функции разбиты на несколько подгрупп. И запутаться в них не составит труда. Старайтесь не изменять те настройки, которые не рекомендует трогать производитель. Эти параметры нужно менять лишь в исключительных случаях. При выборе функции программирования вы будете видеть на дисплее ее цифро-буквенное обозначение. По мере набора опыта настройка частотного преобразователя будет казаться вам очень простым делом.

Выводы

При эксплуатации, обслуживании либо изготовлении частотного преобразователя необходимо соблюдать все меры предосторожности. Помните, что в конструкции устройства имеются электролитические конденсаторы, которые сохраняют заряд даже после отключения от сети переменного тока. Поэтому, перед тем как производить разборку, необходимо дождаться разряда. Обратите внимание на то, что в конструкции частотных преобразователей присутствуют элементы, которые боятся статического электричества. В частности это относится к микропроцессорной системе управления. Поэтому проводить пайку следует со всеми мерами предосторожности.

Во всем мире с успехом реализуются принципы частотного управления асинхронным электроприводом. Способ предусматривает кроме значительной экономии электроэнергии , усовершенствованное управление работы агрегатов, и ведет к существенному энергосбережению.

Принцип действия

Скорость вращения вала электродвигателя зависит от частоты подаваемого питающего напряжения. Использование частотных преобразователей повсеместно признано самым эффективным методом регулировки скорости вращения . Действие устройства заключается в формировании из значения выходного напряжения (U), характеризуемого постоянной частотой (F) и амплитудой (A), в напряжение с переменными параметрами. Это приводит к изменению величины частоты магнитного поля, изменяющего механическое вращение вала двигателя.

Принимая во внимание, что момент нагрузки постоянен, сила тока зависит от нагрузки, соответственно, происходит изменение подаваемого на клеммы двигателя напряжения пропорционального частоте, это сохраняет неизменным поток намагничивания и постоянный крутящий момент, а также неизменное значение тока.

Как следствие этих процессов, наблюдается постоянная корректировка скорости и вращающего момента в отношении рабочей нагрузки. Потери – минимальны, это достигается при помощи поддержания постоянного скольжения при любой скорости, для всех нагрузок.

Преимущества способа частотного регулирования

  • Управление электродвигателем может осуществляться на значительном расстоянии в удобном для этого месте.
  • Мягкий пуск и уменьшение затрат на техническое обслуживание устройства.
  • Возможность увеличивать производительность с помощью регулирования скорости, в соответствии с требуемой производственной потребностью.
  • Повышенный КПД преобразователя частоты до 97% асинхронной машины и до 95% повышает энергоэффективность за счет способа управления и применяемого электродвигателя.
  • Статический преобразователь применяется для переменного момента (невысокий крутящий момент, небольшие скорости) с уменьшенной величиной напряжения на клеммах присоединения к электродвигателю. Также, для использования в случае неизменного момента и мощности, в таком случае высокая эффективность достигается за счет плавного управления скоростью. Благодаря этим возможностям система может считаться универсальной.
  • Обязательный контроль скорости способствует достижению оптимизации технологического процесса, что способствует высокому качеству продукции.

Характеристики

Сигнал заданного значения напряжения и определенной частоты, получается по прохождении трех этапов – это:

  • Выпрямительный диодный мост.
  • Фильтр постоянного тока для осуществления сглаживания уже выпрямленного значения напряжения при помощи конденсаторов.
  • Инвертор или силовой модуль, работающий на базе IGВT (БТИЗ – биполярный транзистор с изолированным затвором). Этот силовой транзистор может использоваться в качестве ключа со значительным рабочим током в несколько кило-ампер, и с величиной напряжения в несколько киловольт с частотой коммутации более 30 кГц.


Рис №1. Три основных звена, из которых состоит устройство частотного преобразователя.

Типы частотного управления скоростью асинхронной машины

Существует два основных типа управления скоростью вращения, являющимися базовыми способами, это:

  • Скалярное (без использования обратной связи).
  • Векторное управление, обратная связь может применяться, а может отсутствовать.

Характеристика скалярного управления

При использовании этого типа управления, происходит сохранение соотношения U/F в неизменном виде по всему частотному интервалу для сохранения постоянного магнитного потока (Ф) электрического двигателя. Данный метод применяется при отсутствии надобности стремительного реагирования на колебания момента вращения и число оборотов.

Скалярное регулировании позволяет от одного частотного устройства запитать несколько рабочих асинхронных машин. При скалярном регулировании применяется компенсация скольжения за счет снижения скорости. Происходит увеличение постоянного момента вращения за счет повышения коэффициента V/F, это компенсирует понижение значения напряжения на статоре двигателя. Этот способ прост конструктивно и не нуждается в значительной точности и быстром реагировании на изменения числа оборотов вала.

Векторное управление двигателем

Увеличение эффективности в управлении рабочим приводом рекомендуется применить метод регулировки за счет изменения потокосцепления.

Самым точным и наиболее действенным считается метод векторного регулирования фазы тока в статоре машины и соответственно, фазой его магнитного поля относительно ротора. Для этого метода характерно применение датчика позиционирования или положения (энкодера), позволяющего показать точное положение ротора в каждый вращающий момент. Применение датчиков положения способно увеличить стоимость электропривода. С использованием энкодеров скорость можно регулировать с точностью до 0,01%.

Чтобы обойти такое ограничение рекомендуется применять в системе управления электродвигателем, преобразователь интегральных схем ASIC. Он создает адаптивную модель двигателя, выраженную математически с точным указанием величины токов, напряжений, сопротивления статора, индуктивность рассеивания на выходе. Делает возможным создание моделирования тепловых рабочих параметров двигателя при разных режимах работы.

Векторное управление без применения датчиков обратной связи способно обеспечить динамические погрешности, которые присутствуют в электроприводах с замкнутой обратной связью. Векторное управление без использования датчиков простое конструктивно, но весьма ограничено при использовании на невысоких скоростях, он отлично подходит для больших скоростей вращения.

Влияние токов высших гармоник

Важно : для сетей переменного тока система использующая преобразователь частоты служит нелинейной импульсной нагрузкой, где присутствуют токовые гармоники, отрицательно влияющие на качественные параметры линии электропередач в зависимости от значения сопротивления линии. Высшие гармоники обладают более низкой амплитудой и тем легче могут быть отфильтрованы.

Гармонические токи способствуют увеличению электрических потерь и снижение коэффициента мощности, способствуют перегреву элементов сети, например: кабелей, трансформаторов, двигателей, конденсаторов.

Сетевой дроссель или сглаживающий линейный реактор

Для преобразователей частоты обязательно наличие фильтрующего устройства. Снизить гармонические искажения можно за счет применения сетевых дросселей или DC-реакторов. Дроссель препятствует снижению величины напряжения на электродвигателе и способствует повышению его коэффициента мощности. Недостаток дросселя, он может привести нежелательному резонансу в общей системе электроснабжения, это происходит за счет неправильно выбранной комбинации его сопротивления с сопротивлением линии.

Рекомендуется сопротивление сетевого дросселя добавлять к существующему сопротивлению источника питания. При этом учитывается сопротивление трансформаторов и кабельных линий, в этом случае падение напряжения составит 2-4% и послужит для улучшения коэффициента мощности и уменьшения гармонических искажений на выходном токе.

Также сглаживающий реактор улучшает коэффициент мощности и служит для подавления или ослабления высших гармоник. Реактор помогает увеличить срок эксплуатации полупроводников, конденсаторных батарей. За счет этого происходит снижение значения тока выпрямительных диодов и уменьшается пульсация тока через конденсаторы.


Рис №2. Сетевой дроссель (реактор).

Мероприятия, направленные на сглаживание гармоник

Для подавления радиопомех, которые генерируются инвертором, в частотном преобразователе используют фильтр радиопомех и модуль DBR, устройства используются для соответствия требованиям по электромагнитной совместимости.

Также для уменьшения гармоник используют многоуровневый преобразователь, что влечет некоторое увеличение стоимости оборудования, снижает надежность и усложняет управление. Хорошее решение этого вопроса можно наблюдать при улучшении качества ШИМ, выполняется оптимизация временной диаграммы – происходит: пространственно векторная модуляция, улучшается контроль напряжения, повышается эффективность системы (частотный преобразователь + электродвигатель)

Энергосбережение

Повышение КПД электрического двигателя достигается за счет увеличения частоты коммутации. При подключении от преобразователя, происходит сохранение КПД двигателя, по сравнению со стандартными двигателями.

Энергоэффективность достигается за счет снижения тепловых потерь и потерь в железе, это можно нормализировать при снижении скорости. Качество управления происходит вследствие исключения механических устройств, при которых возникают потери, и понижается надежность – это могут быть: заслонки, системы тормозов, задвижки и т. д.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем еще что-нибудь полезное. Всего доброго.

Частотное управление электроприводами активно развивается и все чаще можно услышать о новом методе управления, или улучшенном частотнике, или о внедрении частотного электропривода в какой-то сфере, где ранее никто и подумать не мог что это возможно. Но это факт!

Если мы внимательно рассмотрим электродвигатели, к которым применяют частотное регулирование – то это асинхронные или синхронные трехфазные двигатели. Существует несколько Но ведь есть и однофазные асинхронные машины, почему прогресс не касается их? Почему частотное управление не применяют так активно к однофазным машинам? Давайте рассмотрим.
Содержание:

Принцип работы однофазной асинхронной машины

При однофазном питании асинхронника в нем вместо вращающегося магнитного поля возникает пульсирующее, которое можно разложить на два магнитных поля, которые будут вращаться в разные стороны с одинаковой частотой и амплитудой. При остановленном роторе электродвигателя данные поля создадут моменты одинаковой величины, но различного знака. В итоге результирующий пусковой момент будет равен нулю, что не позволит двигателю запустится. По своим свойствам однофазный электродвигатель похож на трехфазный, который работает при сильном искажении симметрии напряжений:

на рисунке а) показана схема асинхронной однофазной машины, а на б) векторная диаграмма

Основные виды однофазных электроприводов

Как упоминалось однофазный двигатель не может развивать пусковой момент, следствием чего становится невозможность его самостоятельного запуска. Для этого придумали несколько способов компенсации магнитного поля противоположного по знаку основному.

Двигатели с пусковой обмоткой

В данном способе пуска кроме основной обмотки Р, имеющей фазную зону 120 0 , на статор наматывают еще и пусковую П, которая имеет фазную зону 60 0 . Также пусковая обмотка сдвигается относительно рабочей на 90 0 электрических. Для того, чтоб создать фазовый сдвиг между токами обмоток I р и I п последовательно в пусковую обмотку подключают элемент, приводящий к сдвигу фаз ψ (фазосдвигающее сопротивление Z п):

Где: а) схема подключения машины, б) векторные диаграммы при использовании различных сопротивлений.

Наилучшими условиями для пуска будет включения конденсатора в пусковую обмотку. Но поскольку емкость конденсатора довольно велика, соответственно и его стоимость и габариты тоже возрастают. Зачастую его применяют для получения повышенного момента для пуска. Пуск с помощью индуктивности имеет наихудшие показатели и в настоящее время не используется. Довольно часто могут применять запуск с помощью активного сопротивления, при этом пусковую обмотку делают с повышенным активным сопротивлением. После запуска электродвигателя пусковая обмотка отключается. Ниже показаны схемы включений и их пусковые характеристики:

Где: а,б) двигатели с пусковой обмоткой, в,г) конденсаторные

Конденсаторный двигатель

Данный тип электродвигателя имеет две рабочие обмотки, в одну из которых подключают рабочую емкость С р. Данные обмотки сдвинуты относительно друг друга на 90 0 электрических и имеют фазные зоны тоже 90 0 . При этом мощности обеих обмоток равны, но их токи и напряжения различны, также различны количества витков. Иногда величины конденсатора рабочего не достаточно для формирования нужного пускового момента, поэтому параллельно ему могут вешать пусковой, как это показано на рисунке выше. Схема приведена ниже:

Где: а) схема конденсаторного электродвигателя, б) его векторная диаграмма

В данном типе однофазных машин коэффициент мощности cosφ даже выше чем у трехфазных. Это объясняется наличием конденсатора. КПД такого электродвигателя выше, чем однофазного электродвигателя с пусковой обмоткой.

Частотное регулирование однофазных асинхронных электродвигателей

Итак, все чаще появляются предложения частотных преобразователей, которые могут управлять однофазными асинхронными машинами. В силу того что частотники предназначены для работы с трехфазными машинами, то для регулирования оборотов однофазной машинами необходим особый вид частотного преобразователя. Это обусловлено тем, что трехфазные и однофазные машины имеют немного разный принцип работы. Давайте рассмотрим схему включения, которую предоставляет один из официальных производителей частотных преобразователей для однофазных машин:

Это схема прямого подключения. Где: Ф-фаза питающего напряжения, N-нейтральный проводник, L1, L2 – обмотки двигателя, Ср – рабочий конденсатор.

А вот схема подключения преобразователя:

Как мы можем видеть, конденсатор при включении данной схемы отключается. Обмотка L1 переключается к выходу преобразователя фазы А, а L2 к В. Общий провод подключается к выходу С. Тем самым мы фактически получили двухфазную машину. Фазовый сдвиг теперь будет реализовывать частотный преобразователь, а не конденсатор. На выходе преобразователя будет обычное трехфазное напряжение.

Данный способ частотного регулирования трудно назвать однофазным, так как при питания двигателя от сети напрямую необходимо опять восстанавливать схему с конденсатором. Более того, этот способ регулирования частоты НЕ ПОДХОДИТ для машин с пусковой обмоткой, так как сопротивление рабочей и пусковой обмотки не равны, появится асимметрия.

Можем сделать вывод, что данный вид частотного регулирования подходит не всем электродвигателям, а только конденсаторным. Более того, при такой схеме подключения необходимо провести переподключение обмоток внутри электродвигателя (в коробке выводов электродвигателя), что после переподключения не позволит работать ему от сети напрямую. Поэтому если вы собираетесь питать электродвигатель от однофазной сети через частотник, то, может быть стоит купить преобразователь, который питается от однофазной сети, а двигатель обычный, трехфазный. Это лучше с точки зрения работы самой машины, также отсутствуют переделки внутри электрической машины. Если вы собираетесь таким образом модернизировать систему, то внимательно изучите характеристики электродвигателя, преобразователя, чтоб избежать пустой траты средств или выхода из строя элементов системы.