Линейное программирование в Excel. Решение задач линейного программирования с помощью Excel

Рассмотрим пример задачи линейного программирования.

Требуется определить, в каком количестве надо выпустить продукцию четырех типов Прод1, Прод2, Прод3, Прод4, для изготовления которой требуются ресурсы трех видов: трудовые, сырье и финансы. Количество ресурса каждого вида, необходимое для выпуска единицы продукции данного типа, называется нормой расхода. Нормы расхода, а также прибыль, получаемая от реализации единицы каждого типа продукции, приведены на рис. 1.

Ресурс

Прод1

Прод2

Прод3

Прод4

Знак

Наличие

Прибыль

Трудовые

Сырье

Финансы

Рисунок 1.

Математическая модель задачи имеет вид:

где x j – количество выпускаемой продукции j-го типа; F – функция цели; в левых частях выражений ограничений указаны величины потребного ресурса , а правые части показывают количество имеющегося ресурса .

Ввод условий задачи

Для решения задачи с помощью Excel следует создать форму для ввода исходных данных и ввести их. Форма ввода показана на рис. 2.

В ячейку F6 введено выражение целевой функции как суммы произведений значений прибыли от выпуска единицы продукции каждого типа на количество выпускаемой продукции соответствующего типа. Для наглядности на рис. 3 представлена форма ввода исходных данных в режиме вывода формул.

В ячейки F8:F10 введены левые части ограничений для ресурсов каждого вида.

Рисунок 2.

Рисунок 3.

Решение задачи линейного программирования

Для решения задач линейного программирования в Excel используется мощный инструмент, называемый Поиск решения . Обращение к Поиску решения осуществляется из меню Сервис , на экран выводится диалоговое окно Поиска решения (рис. 4).

Рисунок 4.

Ввод условий задачи для поиска ее решения состоит из следующих шагов:

1 Назначить целевую функцию, для чего установить курсор в поле Установить целевую ячейку окна Поиск решения и щелкнуть в ячейке F6 в форме ввода;

2 Включить переключатель значения целевой функции, т.е. указать ее Равной Максимальному значению ;

3 Ввести адреса изменяемых переменных (x j): для этого установить курсор в поле Изменяя ячейки окна Поиск решения, а затем выделить диапазон ячеек B3:E3 в форме ввода;

4 Нажать кнопку Добавить окна Поиск решения для ввода ограничений задачи линейного программирования; на экран выводится окно Добавление ограничения (рис. 5) :

Ввести граничные условия для переменных x j (x j ³0), для этого в поле Ссылка на ячейку указать ячейку В3, соответствующую х 1 , выбрать из списка нужный знак (³), в поле Ограничение указать ячейку формы ввода, в которой хранится соответствующее значение граничного условия, (ячейка В4), нажать кнопку Добавить ; повторить описанные действия для переменных х 2 , х 3 и х 4 ;

Ввести ограничения для каждого вида ресурса, для этого в поле Ссылка на ячейку окна Добавление ограничения указать ячейку F9 формы ввода, в которой содержится выражение левой части ограничения, наложенного на трудовые ресурсы, в полях Ограничение указать знак £ и адрес Н9 правой части ограничения, нажать кнопку Добавить ; аналогично ввести ограничения на остальные виды ресурсов;

После ввода последнего ограничения вместо Добавить нажать ОК и возвратиться в окно Поиск решения.

Рисунок 5.

Решение задачи линейного программирования начинается с установки параметров поиска:

В окне Поиск решения нажать кнопку Параметры , на экран выводится окно Параметры поиска решения (рис. 6);

Установить флажок Линейная модель, что обеспечивает применение симплекс-метода;

Указать предельное число итераций (по умолчанию – 100, что подходит для решения большинства задач);

Установить флажок , если необходимо просмотреть все этапы поиска оптимального решения;

Нажать ОК , возврат в окно Поиск решения .

Рисунок 6.

Для решения задачи нажать кнопку Выполнить в окне Поиск решения , на экране – окно Результаты поиска решения (рис. 7), в котором содержится сообщение Решение найдено. Все ограничения и условия оптимальности выполнены. Если условия задачи несовместны, то выводится сообщение Поиск не может найти подходящего решения . Если целевая функция не ограничена, то появляется сообщение Значения целевой ячейки не сходятся .

Рисунок 7.

Для рассматриваемого примера решение найдено и результат оптимального решения задачи выводится в форме ввода: значение целевой функции, соответствующее максимальной прибыли и равное 1320, указывается в ячейке F6 формы ввода, оптимальный план выпуска продукции х 1 =10, х 2 =0, х 3 =6, х 4 =0 указывается в ячейках В3:С3 формы ввода (рис. 8).

Количество использованных для выпуска продукции ресурсов выводится в ячейки F9:F11: трудовых – 16, сырья – 84, финансов – 100.

Рисунок 8.

Если при установке параметров в окне Параметры поиска решения (рис. 6) был установлен флажок Показывать результаты итераций , то будут показаны последовательно все шаги поиска. На экран будет выводиться окно (рис. 9). При этом текущие значения переменных и функции цели будут показаны в форме ввода. Так, результаты первой итерации поиска решения исходной задачи представлены в форме ввода на рисунке 10 .

Рисунок 9.

Рисунок 10.

Чтобы продолжить поиск решения, следует нажимать кнопку Продолжить в окне Текущее состояние поиска решения .

Анализ оптимального решения

Прежде чем, перейти к анализу результатов решения, представим исходную задачу в форме

введя дополнительные переменные у i , представляющие собой величины неиспользованных ресурсов.

Составим для исходной задачи двойственную задачу и введем дополнительные двойственные переменные v i .

Анализ результатов поиска решения позволит увязать их с переменными исходной и двойственной задач.

С помощью окна Результаты поиска решения можно вызвать отчеты трех типов, позволяющие анализировать найденное оптимальное решение:

Результаты,

Устойчивость,

Пределы.

Для вызова отчета в поле Тип отчета выделить название нужного типа и нажать ОК .

1 Отчет по результатам (рис. 11) состоит из трех таблиц:

Таблица 1 содержит сведения о целевой функции; в столбце Исходно указывается значение целевой функции до начала вычислений;

Таблица 2 содержит значения искомых переменных x j , полученных в результате решения задачи (оптимальный план выпуска продукции);

Таблица 3 показывает результаты оптимального решения для ограничений и для граничных условий.

Для Ограничений в графе Формула приведены зависимости, которые были введены при задании ограничений в окне Поиск решения ; в графе Значение указаны величины использованного ресурса; в графе Разница показано количество неиспользованного ресурса. Если ресурс используется полностью, то в графе Состояние выводится сообщение связанное ; при неполном использовании ресурса в этой графе указывается не связан. Для Граничных условий приводятся аналогичные величины с той лишь разницей, что вместо неиспользованного ресурса показана разность между значением переменной x j в найденном оптимальном решении и заданным для нее граничным условием (x j ³0).

Именно в графе Разница можно увидеть значения дополнительных переменных y i исходной задачи в формулировке (2). Здесь у 1 =у 3 =0, т.е. величины неиспользованных трудовых и финансовых ресурсов равны нулю. Эти ресурсы используются полностью. Вместе с тем, величина неиспользованных ресурсов для сырья у 2 =26, значит, имеются излишки сырья.

Рисунок 11.

2 Отчет по устойчивости (рис. 12)состоит из двух таблиц.

В таблице 1 приводятся следующие значения:

Результат решения задачи (оптимальный план выпуска);

- Нормир. стоимость , т.е. величины, показывающие, насколько изменится целевая функция при принудительном включении единицы продукции соответствующего типа в оптимальный план;

Коэффициенты целевой функции;

Предельные значения приращения коэффициентов целевой функции, при которых сохраняется оптимальный план выпуска.

В таблице 2 содержатся аналогичные данные для ограничений:

Величины использованных ресурсов;

- Теневая цена , показывающая, как изменится целевая функция при изменении величины соответствующего ресурса на единицу;

Допустимые значения приращений ресурсов, при которых сохраняется оптимальный план выпуска продукции.

Рисунок 12.

Отчет по устойчивости позволяет позволяет получить двойственные оценки.

Как известно, двойственные переменные z i показывают, как изменится целевая функция при изменении ресурса i-го типа на единицу. В отчете Excel двойственная оценка называется Теневой ценой .

В нашем примере сырье не используется полностью и его ресурс у 2 =26. Очевидно, что увеличение количества сырья, например, до 111 не повлечет за собой увеличения целевой функции. Следовательно, для второго ограничения двойственная переменная z 2 =0. Таким образом, если по данному ресурсу есть резерв, то дополнительная переменная будет больше нуля, а двойственная оценка этого ограничения равна нулю.

В рассматриваемом примере трудовые ресурсы и финансы использовались полностью, поэтому их дополнительные переменные равны нулю (у 1 =у 3 =0). Если ресурс используется полностью, то его увеличение или уменьшение повлияет на объем выпускаемой продукции, и следовательно, на величину целевой функции. Двойственные оценки ограничений на трудовые и финансовые ресурсы отличны от нуля, т.е. z 1 =20, z 3 =10.

Значения двойственных оценок находим в Отчете по устойчивости , в таблице 2, в графе Теневая цена .

При увеличении (уменьшении) трудовых ресурсов на единицу целевая функция увеличится (уменьшится) на 20 единиц и будет равна

F=1320+20×1=1340 (при увеличении).

Аналогично, при увеличении объема финансов на единицу целевая функция будет

F=1320+10×1=1330.

Здесь же, в графах Допустимое увеличение и Допустимое уменьшение таблицы 2, показаны допустимые пределы изменения количества ресурсов j-го вида. Например, для при изменении приращения величины трудовых ресурсов в пределах от –6 до 3,55, как показано в таблице, структура оптимального решения сохраняется, т.е наибольшую прибыль обеспечивает выпуск Прод1 и Прод3, но в других количествах.

Дополнительные двойственные переменные также отражены в Отчете по устойчивости в графе Нормир. стоимость таблицы 1.

Если основные переменные не вошли в оптимальное решение, т.е. равны нулю (в примере х 2 =х 4 =0), то соответствующие им дополнительные переменные имеют положительные значения (v 2 =10, v 4 =20). Если же основные переменные вошли в оптимальное решение (х 1 =10, х 3 =6), то их дополнительные двойственные переменные равны нулю (v 1 =0, v 3 =0).

Эти величины показывают, насколько уменьшится (поэтому знак минус в значениях переменных v 2 и v 4) целевая функция при принудительном выпуске единицы данной продукции. Следовательно, если мы захотим принудительно выпустить единицу продукции вида Прод3, то целевая функция уменьшится на 10 единиц и будет равна 1320 -10×1 =1310.

Обозначим через Dс j изменение коэффициентов целевой функции в исходной модели (1). Эти коэффициенты определяют прибыль, получаемую при реализации единицы продукции j-го вида.

В графах Допустимое увеличение и Допустимое Уменьшение таблицы 1 Отчета по устойчивости показаны пределы изменения Dс j , при которых сохраняется структура оптимального плана, т.е. будет выгодно по-прежнему выпускать продукцию вида Продj. Например, при изменении Dс 1 в пределах -12£ Dс 1 £ 40, как показано в отчете, по-прежнему будет выгодно выпускать продукцию вида Прод1. При этом значение целевой функции будет F=1320+x 1 ×Dс j =1320+10×Dс j .

3 Отчет по пределам приведен на рис. 13. В нем показывается, в каких пределах могут изменяться значения x j , вошедшие в оптимальное решение, при сохранении структуры оптимального решения. Кроме этого, для каждого типа продукции приводятся значения целевой функции, получаемые при подстановке в оптимальное решение значения нижнего предела выпуска изделий соответствующего типа при неизменных значениях выпуска остальных типов. Например, если при оптимальном решении х 1 =10, х 2 =0, х 3 =6, х 4 =0 положить х 1 =0 (нижний предел) при неизменных х 2 , х 3 и х 4 , то значение целевой функции будет равно 60×0+70×0+120×6+130×0=720.

Решим данную задачу графическим методом в табличном редакторе Microsoft Excel (рис. 1). Для построения ОДР, и линий уровня воспользуемся Мастером диаграмм . ОДР представляет собой многоугольник с вершинами в точках: (0;0), (0;6), (2;5), (4;3), (5;0).

При перемещении линии уровня в направлении вектора получаем оптимальное решение в точке с координатами (2;5).

Аналогичным образом можно решить данную задачу графическим методом в табличном редакторе OpenOffice.org Calc воспользовавшись пунктом меню Диаграмма .



Решение ЗЛП в Microsoft Excel и OpenOffice.org Calc с помощью встроенной функции Поиск решения

В табличном процессоре Microsoft Excel существует встроенная функция Поиск решения , с помощью которой можно решить задачу линейного программирования. Если данный модуль установлен, его можно запустить выбрав команду Сервис/Поиск решения (рис. 2). На экране появится диалоговое окно Поиск решения (рис. 3).

Р и с. 2. Р и с. 3.

Если такого пункта в меню Сервис не оказалось, следует загрузить соответствующую программу-надстройку. Для этого выберите команду Сервис/Надстройки (рис. 4) и в диалоговом окне Надстройки установите флажок в строке Поиск решения (рис. 5).

Разберем решение ЗЛП с помощью функции Поиск решения на примере задачи 1.

1. Создадим таблицу для ввода исходных данных: переменных, целевой функции, ограничений.

2. Введем начальные нулевые значения для и .

3. Зададим целевую функцию в ячейке D41 и ограничения в ячейках Е39, Е40 и E41 (рис. 6).

Р и с. 4. Р и с. 5.

4. Выберем команду Сервис/Поиск решения , в открывшемся окне Поиск решения установим целевую ячейку D41, зададим условие отыскания максимального значения (рис. 7).

5. В поле Изменяя ячейки установим ссылку на ячейки С40 и С41, которые будут изменены (можно ввести адреса или имена ячеек с клавиатуры или указать диапазон ячеек на рабочем листе с помощью мыши). При щелчке на кнопке Предположить автоматически выделяются ячейки, на которые есть прямая или косвенная ссылка в формуле целевой ячейки (рис. 7).


6. Определим ограничения, для этого щелчком по кнопке Добавить откроем диалоговое окно Добавление ограничения . Введем ограничения для ячеек E39, E40, E41. Ограничения можно задать как для изменяемых ячеек, так и для целевой ячейки, а также для других ячеек, прямо или косвенно присутствующих в модели (рис. 8, 9).

Р и с. 8. Р и с. 9.

7. Щелчком на кнопке Параметры откроем диалоговое окно Параметры поиска решения . В данном окне выберем линейную модель и неотрицательные значения (неотрицательные значения для ячеек С40 и С41 можно было также установить при определении ограничений). Подробнее узнать о задаваемых параметрах можно щелкнув на кнопке Справка (рис. 10).

8. После того как все параметры и ограничения заданы, запускаем поиск решения, щелкнув на кнопке Выполнить (рис. 9). По мере того как идет поиск, отдельные его шаги отражаются в строке состояния. Когда поиск будет закончен, в таблицу будут внесены новые значения и на экране появится диалоговое окно Результаты поиска решения , сообщающие о завершении операции (рис. 11).

Решение найдено. Все ограничения и условия оптимальности выполнены. Сохраним найденное решение. В этом случае таблица будет обновлена. В случае необходимости всегда можно будет восстановить исходные данные с помощью отчета. Для выбора типа отчета достаточно выделить название нужного отчета в списке Тип отчета (или несколько названий, удерживая нажатой клавишу Сtrl ). Они будут вставлены на отдельных листах в рабочую книгу перед листом с исходными данными.

Предлагаемые отчеты содержат следующую информацию:

отчет Результаты содержит сведения о начальных и текущих значениях целевой ячейки и изменяемых ячеек, а также о соответствии значений заданным ограничениям;

отчет Устойчивость отражает найденный результат, а также нижние и верхние предельные значения для изменяемых ячеек;

отчет Пределы показывает зависимость решений от изменения формулы или ограничений.

Если планируется использовать созданную модель в дальнейшем, найденное решение можно сохранить как сценарий. Для этого в диалоговом окне Результаты поиска решения необходимо щелкнуть на кнопке Сохранить сценарий .

Аналогично Поиск решения осуществляется в OpenOffice.org Calc.

Задание

1. Решить задачи 2 и 3 графическим методом.

2. Решить задачи 2 и 3 в редакторе Microsoft Excel или OpenOffice.org Calc используя встроенную функцию Поиск решения .

3. Сравнить и проанализировать полученные результаты.

4. Ответить на контрольные вопросы.

5. Оформить отчет.

Задача 2. Фармацевтическая фирма Ozark ежедневно производит не менее 800 фунтов некой пищевой добавки – смеси кукурузной и соевой муки, состав которой представлен в таблице 2.

Таблица 2

Диетологи требуют, чтобы в пищевой добавке было не менее 30% белка и не более 5% клетчатки. Фирма Ozark хочет определить рецептуру смеси минимальной стоимости с учетом требований диетологов.

Задача 3. Предприятие, специализирующееся на производстве трикотажного полотна двух видов, использует для своего производства четыре вида сырья (шерстяную, хлопковую, вискозную, и акриловую нити), запасы которого на планируемый период составляют соответственно 80, 80, 260 и 410 бобин. В приведенной ниже таблице даны технологические коэффициенты, т.е. расход каждого вида сырья на производство одного метра каждого вида трикотажа.

Таблица 3

Прибыль от реализации 1м трикотажного полотна первого вида составляет 2 у.е., а трикотажного полотна второго вида 3 у.е. Необходимо определить оптимальный план выпуска трикотажного полотна первого и второго вида, чтобы обеспечить максимальную прибыль от их реализации.

Контрольные вопросы

1. Что означает составить математическую модель ЗЛП?

2. Из каких этапов состоит графический метод решения ЗЛП?

3. Какова геометрическая интерпретация решения системы линейных неравенств с двумя переменными?

4. Как определяется направление наискорейшего возрастания целевой функции?

5. Какое решение называется оптимальным решением ЗЛП?

6. В каком случае ЗЛП имеет множество решений?

7. При каких условиях ЗЛП может быть неразрешима?

8. Как установить модуль Поиск решения ?

9. Для чего предназначена кнопка Предположить в окне Поиск решения ?

10. Какие типы отчетов можно получить при решении ЗЛП с помощью встроенной функции Поиск решения ?

Лабораторная работа №2

Симплексный метод. Задача определения оптимального плана выпуска продукции. Использование встроенных функций редакторов Microsoft Excel и OpenOffice.org Calc для построения математической модели и решения ЗЛП.

Цель лабораторного занятия:

Приобретение навыков решения ЗЛП симплекс-методом. Освоение приемов записи математической модели ЗЛП с большим количеством неизвестных в табличных редакторах Microsoft Excel и OpenOffice.org Calc с помощью встроенной функций СУММПРОИЗВ. Приобретение навыков решения ЗЛП с большим количеством неизвестных с помощью функции Поиск решения .

Задачи лабораторного занятия:

1. Освоение симплекс-метода решения ЗЛП.

2. Построение математической модели задачи в табличных редакторах Microsoft Excel и OpenOffice.org Calc с помощью встроенной функций СУММПРОИЗВ.

3. Нахождение максимума (минимума) целевой функции с помощью команды Поиск решения .

4. Анализ полученных результатов.

5. Оформление отчета.

1. Краткие теоретические сведения.

2. Решение ЗЛП симплекс методом без использования табличных редакторов.

3. Решение ЗЛП на определение оптимального плана выпуска продукции в Microsoft Excel и OpenOffice.org Calc с помощью встроенной функции Поиск решения .

4. Задание.

5. Контрольные вопросы.

Краткие теоретические сведения

В основу симплекс-метода (симплексного метода) легла идея последовательного улучшения решения.

Геометрический смысл симплексного метода состоит в последовательном переходе от одной вершины многогранника ограничений (называемой первоначальной) к соседней, в которой линейная целевая функция принимает лучшее или, по крайней мере, не худшее значение. Этот процесс осуществляется до тех пор, пока не будет найдено оптимальное решение – вершина, где достигается оптимальное значение целевой функции (если задача имеет конечный оптимум).

Реализация симплекс-метода предусматривает содержание трех основных элементов:

1. Определение какого-либо первоначального допустимого базисного решения задачи (базисное решение называется допустимым, если значения, входящих в него переменных неотрицательны);

2. Правила перехода к лучшему (точнее, не худшему) решению;

3. Критерий проверки оптимальности найденного решения.

Для использования симплексного метода задача линейного программирования должна быть приведена к каноническому виду, т.е. система ограничений должна быть представлена в виде уравнений.

Практические расчеты при решении прикладных задач симплексным методом выполняются в настоящее время с помощью компьютерных программ, таких как табличный процессор Microsoft Excel, пакеты прикладных программ MathCAD, Math Lab и др. Однако, если расчеты осуществляются вручную, удобно использовать так называемые симплексные таблицы.

Введение

4.1. Исходные данные

4.2. Формулы для вычислений

4.3. Заполнение диалогового окна «Поиск решения»

4.4. Результаты решения

Заключение

Cписок литературы

Введение

линейный программирование excel оптимизационный задача

Решение широкого круга задач электроэнергетики и других отраслей народного хозяйства основывается на оптимизации сложной совокупности зависимостей, описанных математически с помощью некоторой «целевой функции» (ЦФ). Подобные функции можно записать для определения затрат на топливо для электростанций, на потери электроэнергии при транспорте ее от электростанции к потребителям и многие другие проблемные задачи. В таких случаях требуется найти ЦФ при определенных ограничениях, накладываемых на ее переменные. Если ЦФ линейно зависит от входящих в ее состав переменных и все ограничения образуют линейную систему уравнений и неравенств, то такая частная форма оптимизационной задачи получила название «задачи линейного программирования».

Тема курсовой работы «Решение задач линейного программирования в MS Excel», на примере «транспортная задача» взятой из области общей энергетики, получить практические навыки в использовании электронных таблиц Microsoft Excel и решения оптимизационных задач линейного программирования.

1. Исходные данные для решения задачи

Исходные данные включают в себя - схему расположения угольных бассейнов (УБ) и электрических станций (ЭС) с указанием транспортных связей между ними, таблицы, содержащие сведения о годовой производительности и удельной цене топлива УБ, установленной мощности, числе часов использования установленной мощности и удельный расход топлива на ЭС, расстояниях между УБ и ЭС и удельной стоимости перевозки топлива по трассам УБ-ЭС.

Рис.1. Исходные данные

2. Краткие сведения об электронных таблицах MS Excel

Рис. 2. Вид окна приложения

Табличными процессами называют пакеты программ, предназначенных для создания электронных таблиц и манипулирование их данными. Применение электронных таблиц упрощает работу с данными, позволяет автоматизировать вычисление без использования специального программирования. Наиболее широкое применение - в экономических и бухгалтерских расчетах. MS Excel предоставляет пользователю возможность:

.Использовать сложные формулы, содержащие встроенные функции.

2.Организовывать связи ячеек и таблиц, при этом изменение данных в исходных таблицах автоматически изменяет результаты в итоговых таблицах.

.Создавать сводные таблицы.

.Применять к таблицам сортировку и фильтрацию данных.

.Осуществлять консолидацию данных (объединение данных из нескольких таблиц в одну).

.Использовать сценарии - поименованные массивы исходных данных, по которым формируются конечные итоговые значения в одной и той же таблице.

.Выполнять автоматизированный поиск ошибок в формулах.

.Защищать данные.

.Использовать структурирование данных (скрывать и отображать части таблиц).

.Применять автозаполнение.

.Применять макросы.

.Строить диаграммы.

.Использовать автозамену и проверку орфографии.

.Использовать стили, шаблоны, автоформатирование.

.Обмениваться данными с другими приложениями.

Ключевые понятия :

.Рабочая книга - основные документы, хранится в файле.

2.Лист (объем: 256 столбцов, 65536 строк).

.Ячейка - наименьшая структурная единица размещения данных.

.Адрес ячейки - определяет положение ячейки в таблице.

.Формула - математическая запись вычислений.

.Ссылка - запись адреса ячейки в составе формулы.

.Функция - математическая запись, указывающая на выполнение определенных вычислительных операций. Состоит из имени и аргументов.

Ввод данных :

Данные могут быть следующих типов -

·Числа.

·Текст.

·Функции.

·Формулы.

Вводить можно -

·В ячейки.

·В строку формул.

Если на экране в ячейке после ввода появляется ########, значит число длинное и в ячейке не помещается, то надо увеличить ширину ячейки.

Формулы - определяют, каким образом величины в ячейках связаны друг с другом. Т.е. данные в ячейке получаются не заполнением, а автоматически вычисляются. При изменении содержимого ячеек, на которые есть ссылка в формуле, меняется и результат в вычисляемой ячейке. Все формулы начинаются знаком =. Далее могут следовать -

·Ссылка на ячейку (например, А6).

·Функция.

·Арифметический оператор (+, -, /, *).

·Операторы сравнения (>, <, <=, =>, =).

Можно вводить формулы прямо в ячейку, но удобнее вводить с помощью строки формул.

Функции - это стандартные формулы для выполнения определенных задач. Функции используются только в формулах.

Способ: Вставка - Функция или в строке формул щелкнуть на = . Появится диалоговое окно со списком десяти недавно использованных функций. Для расширения списка выбрать Другие функции…, откроется другое диалоговое окно, где функции сгруппированы по типам (категориям), приведено описание назначения функции и их параметров.

Полное описание по работе с электронными таблицами MS Excel, можно найти в учебниках и пособиях (специализированных).

3. Математическая постановка задачи

По критерию минимума затрат на топливо для ЭС указанного района электроснабжения необходимо определить их оптимальное топливоснабжение от трех угольных бассейнов с учетом ограничения по потребностям ЭС и производительности УБ.

Исходные данные задачи и переменные, подлежащие определению в ходе ее решения, можно представить в виде табл.3


Обозначение данных:

Вуб1, Вуб2, Вуб3 - производительность угольных бассейнов, тыс.тонн;

Суб1, Суб2, Суб3 - стоимость топлива на угольных бассейнах, у.е./тонн;

Lу - длина железнодорожного пути между УБ к ЭС, км;

Су - удельная стоимость перевозки топлива по трассе от УБ к ЭС, у.е./тонна*км (С111213212223313233);

Ву - объем топлива, доставляемого от УБ на ЭС, тыс.тонн;

ВЭС1, ВЭС2, ВЭС3 - годовая потребность в топливе первой, второй, третьей ЭС соответственно, тыс.тонн;

Ву - являются параметрами переменными целевой функции, подлежащими определению в процессе решения задачи;

Необходимо определить оптимальный объем топлива (Ву), доставляемые от УБ к каждой из ЭС, при которых суммарные затраты на топливо для всех трех ЭС будут минимальными.

Целевой функцией, подлежащей оптимизации в процессе решения задачи, будут суммарные затраты на топливо для всех трех ЭС.

4. Решение задачи линейного программирования

.1 Исходные данные

Рис. 4. Исходные данные

4.2 Формулы для вычислений

Рис.5. Промежуточные расчеты

4.3 Заполнение диалогового окна «Поиск решения»

Рис. 6. Процесс оптимизации.

Рис.6.1.Задание ограничений (топлива должно быть>0).

Рис.6.2.Задание ограничений (кол-во привез. = кол-ву потреблен. топлива).

Рис.6.3.Задание ограничений (годовая отгрузка, не превышать производ. УБ1).

Рис.6.4.Задание ограничений (годовая отгрузка, не превышать производ. УБ2).

Рис.6.5.Задание ограничений (годовая отгрузка, не превышать производ. УБ3).

.4 Результаты решения

Рис.8. Результаты решения задачи

Ответ: Количество топлива (тыс. тонн), доставлено на:

ЭС4 из УБ1 составляет 118,17тн;

ЭС6 из УБ1 составляет 545,66тн;

ЭС5 из УБ2 составляет 19,66тн;

ЭС6 из УБ2 составляет 180,34тн;

ЭС5 из УБ3 составляет 277,94тн;

ЭС6 из УБ3 составляет 526,00тн;

ЭС4 всего 118,17тн;

ЭС5 всего 297,60тн;

ЭС6 всего 1252,00тн;

Затраты на топливо составили (у.е.):

Для ЭС4 - 496314,00.

Для ЭС5 - 227064,75.

Для ЭС6 - 23099064,78.

Суммарные затраты для всех ЭС составляют - 23822443,53 у.е.;

Заключение

Краткие сведения об электронных таблицах MS Excel. Решение задачи линейного программирования. Решение с помощью средств Microsoft Excel экономической оптимизационной задачи, на примере "транспортной задачи". Особенности оформления документа MS Word.

В курсовой работе показано как создавать и работать при оформлении документа MS Word, в рамках которого рассмотрено решение экономической оптимизационной задачи, на примере «транспортная задача», взятой из области общей энергетики, средствами Microsoft Excel.

Ввод условий задачи состоит из следующих основных шагов:

    Создание формы для ввода условий задачи.

    Ввод исходных данных.

    Ввод зависимостей из математической модели.

    Назначение целевой функции.

    ввод ограничений и граничных условий.

Ход решения задачи:

Форма для ввода условий задачи:

Переменные

Значение

Коэффициент в целевой функции

(формула)

Ограничения

Коэффициенты в ограничениях

Правая часть ограничения

Поочередно в представленную форму заносятся коэффициенты целевой функции, ограничений, их знаки, формулы описания целевой функции и ограничений, представленные в математической модели задачи.

Для описания формулы целевой функции и ограничений используется диалоговое окно Мастер функций; категория функций – математические; функция СУММПРОИЗВ. (в диалоговом окне в массиве 1 указывается интервал ячеек значения переменной В3:С3, в массиве 2 – коэффициенты при этих переменных. В функции это интервал ячеек В4:С4, в ограничениях – В8:C8, В9:C9 и т.д.)

Решение задачи осуществляется с использованием команд Сервис, Поиск решения…

В диалоговом окне Поиск решения заполняем строки, указывая адреса ячеек:

Целевая функция: Е4

Равная: max (min)

Изменяя ячейки: указывается месторасположения переменных (В3:C3)

Ограничения: с использованием клавиши Добавить записываются адреса ячеек с указанием условий ограничений (например: D8>= F8 и т.д.). Обязательным является ввод ограничения целочисленного решения.

Если при вводе задачи возникает необходимость в изменении или удалении внесенных ограничений или граничных условий, то это осуществляется с помощью команд Изменить.., Удалить.

Для получения оптимального решения задачи линейного программирования в Поиске решения задействуется клавиша Параметры…:

Максимальное время: 100 сек

Предельное число итераций: 100

Относительная погрешность 0,000001

Допустимое отклонение: 5%

Устанавливаем флажок Линейная модель, что обеспечивает применение симплекс-метода.

В появившемся окне Поиск решения выполняем команду Выполнить.

Решение найдено, результат оптимального решения приведен в исходной таблице.

Решение задач линейного программирования в Excel

Используя данные прямой двойственной задачи, решите ее в системе Excel, с помощью следующих таблиц

Переменные

Ограничения

Вид ресурса

Коэффициенты в ограничениях

Левая часть ограничения (формула)

Правая часть ограничения