Как работает сенсорный экран в телефоне – что это такое и чем отличается от дисплея. Инфографика: как работает сенсорный экран телефона

Применение

Сенсорные экраны используются в платёжных терминалах , информационных киосках , оборудовании для автоматизации торговли, карманных компьютерах , мобильных телефонах , игровых консолях, операторских панелях в промышленности.

Достоинства и недостатки в карманных устройствах

Достоинства

  • Простота интерфейса.
  • В аппарате могут сочетаться небольшие размеры и крупный экран.
  • Быстрый набор в спокойной обстановке.
  • Серьёзно расширяются мультимедийные возможности аппарата.

Недостатки

Достоинства и недостатки в стационарных устройствах

Достоинства

В информационных и торговых автоматах, операторских панелях и прочих устройствах, в которых нет активного ввода, сенсорные экраны зарекомендовали себя как очень удобный способ взаимодействия человека с машиной. Достоинства:

  • Повышенная надёжность.
  • Устойчивость к жёстким внешним воздействиям (включая вандализм), пыле- и влагозащищённость.

Недостатки

Эти недостатки не позволяют использовать только сенсорный экран в устройствах, с которыми человек работает часами. Впрочем, в грамотно спроектированном устройстве сенсорный экран может быть не единственным устройством ввода - например, на рабочем месте кассира сенсорный экран может применяться для быстрого выбора товара, а клавиатура - для ввода цифр.

Принципы работы сенсорных экранов

Существует множество разных типов сенсорных экранов, которые работают на разных физических принципах.

Резистивные сенсорные экраны

Четырёхпроводной экран

Принцип действия 4-проводного резистивного сенсорного экрана

Резистивный сенсорный экран состоит из стеклянной панели и гибкой пластиковой мембраны. И на панель, и на мембрану нанесено резистивное покрытие. Пространство между стеклом и мембраной заполнено микроизоляторами, которые равномерно распределены по активной области экрана и надёжно изолируют проводящие поверхности. Когда на экран нажимают, панель и мембрана замыкаются, и контроллер с помощью аналогово-цифрового преобразователя регистрирует изменение сопротивления и преобразует его в координаты прикосновения (X и Y). В общих чертах алгоритм считывания таков:

  1. На верхний электрод подаётся напряжение +5В, нижний заземляется. Левый с правым соединяются накоротко, и проверяется напряжение на них. Это напряжение соответствует Y-координате экрана.
  2. Аналогично на левый и правый электрод подаётся +5В и «земля», с верхнего и нижнего считывается X-координата.

Существуют также восьмипроводные сенсорные экраны. Они улучшают точность отслеживания, но не повышают надёжности.

Пятипроводной экран

Пятипроводной экран более надёжен за счёт того, что резистивное покрытие на мембране заменено проводящим (5-проводной экран продолжает работать даже с прорезанной мембраной). На заднем стекле нанесено резистивное покрытие с четырьмя электродами по углам.

Изначально все четыре электрода заземлены, а мембрана «подтянута» резистором к +5В. Уровень напряжения на мембране постоянно отслеживается аналогово-цифровым преобразователем . Когда ничто не касается сенсорного экрана, напряжение равно 5 В.

Как только на экран нажимают, микропроцессор улавливает изменение напряжения мембраны и начинает вычислять координаты касания следующим образом:

  1. На два правых электрода подаётся напряжение +5В, левые заземляются. Напряжение на экране соответствует X-координате.
  2. Y-координата считывается подключением к +5В обоих верхних электродов и к «земле» обоих нижних.

Особенности

Резистивные сенсорные экраны дёшевы и стойки к загрязнению. Резистивные экраны реагируют на прикосновение любым гладким твёрдым предметом: рукой (голой или в перчатке), пером, кредитной картой, медиатором. Их используют везде, где вандализм и низкие температуры не исключены: для автоматизации промышленных процессов, в медицине, в сфере обслуживания (POS-терминалы), в персональной электронике (КПК). Лучшие образцы обеспечивают точность в 4096×4096 пикселей.

Недостатками резистивных экранов являются низкое светопропускание (не более 85% для 5-проводных моделей и ещё более низкое для 4-проводных), низкая долговечность (не более 35 млн нажатий в одну точку) и недостаточная вандалоустойчивость (плёнку легко разрезать).

Матричные сенсорные экраны

Конструкция и принцип работы

Конструкция аналогична резистивной, но упрощена до предела. На стекло нанесены горизонтальные проводники, на мембрану - вертикальные.

При прикосновении к экрану проводники соприкасаются. Контроллер определяет, какие проводники замкнулись, и передаёт в микропроцессор соответствующие координаты.

Особенности

Имеют очень низкую точность. Элементы интерфейса приходится специально располагать с учётом клеток матричного экрана . Единственное достоинство - простота, дешевизна и неприхотливость. Обычно матричные экраны опрашиваются по строкам (аналогично матрице кнопок); это позволяет наладить мультитач . Постепенно заменяются резистивными.

Ёмкостные сенсорные экраны

Конструкция и принцип работы

Ёмкостный (или поверхностно-ёмкостный) экран использует тот факт, что предмет большой ёмкости проводит переменный ток .

Ёмкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом (обычно применяется сплав оксида индия и оксида олова). Электроды, расположенные по углам экрана, подают на проводящий слой небольшое переменное напряжение (одинаковое для всех углов). При касании экрана пальцем или другим проводящим предметом появляется утечка тока. При этом чем ближе палец к электроду, тем меньше сопротивление экрана, а значит, сила тока больше. Ток во всех четырёх углах регистрируется датчиками и передаётся в контроллер, вычисляющий координаты точки касания.

В более ранних моделях ёмкостных экранов применялся постоянный ток - это упрощало конструкцию, но при плохом контакте пользователя с землёй приводило к сбоям.

Ёмкостные сенсорные экраны надёжны, порядка 200 млн нажатий (около 6 с половиной лет нажатий с промежутком в одну секунду), не пропускают жидкости и отлично терпят не токопроводящие загрязнения. Прозрачность на уровне 90%. Впрочем, проводящее покрытие, расположенное прямо на внешней поверхности, всё ещё уязвимо. Поэтому ёмкостные экраны широко применяются в автоматах, лишь установленных в защищённом от непогоды помещении. Не реагируют на руку в перчатке.

Стоит заметить, что из-за различий в терминологии часто путают поверхностно- и проекционно-ёмкостные экраны. По классификации, применённой в данной статье, экран, например, iPhone является проекционно-ёмкостным , а не ёмкостным .

Проекционно-ёмкостные сенсорные экраны

Конструкция и принцип работы

На внутренней стороне экрана нанесена сетка электродов. Электрод вместе с телом человека образует конденсатор ; электроника измеряет ёмкость этого конденсатора (подаёт импульс тока и измеряет напряжение).

Особенности

Прозрачность таких экранов до 90%, температурный диапазон чрезвычайно широк. Очень долговечны (узкое место - сложная электроника, обрабатывающая нажатия). На ПЁCЭ может применяться стекло толщиной вплоть до 18 мм , что приводит к крайней вандалоустойчивости. На непроводящие загрязнения не реагируют, проводящие легко подавляются программными методами. Поэтому проекционно-ёмкостные сенсорные экраны широко применяются и в персональной электронике, и в автоматах, в том числе установленных на улице.

Стоит заметить, что из-за различий в терминологии часто путают поверхностно- и проекционно-ёмкостные экраны. По классификации, применённой в данной статье, экран iPhone (основоположник «бума технологии», примерно 2007 год) является проекционно-ёмкостным.

Сенсорные экраны на поверхностно-акустических волнах

Конструкция и принцип работы

Экран представляет собой стеклянную панель с пьезоэлектрическими преобразователями (ПЭП), находящимися по углам. По краям панели находятся отражающие и принимающие датчики. Принцип действия такого экрана заключается в следующем. Специальный контроллер формирует высокочастотный электрический сигнал и посылает его на ПЭП. ПЭП преобразует этот сигнал в ПАВ, а отражающие датчики его соответственно отражают. Эти отражённые волны принимаются соответствующими датчиками и посылаются на ПЭП. ПЭП, в свою очередь, принимают отражённые волны и преобразовывают их в электрический сигнал, который затем анализируется с помощью контроллера. При касании экрана пальцем часть энергии акустических волн поглощается. Приёмники фиксируют это изменение, а микроконтроллер вычисляет положение точки касания. Реагирует на касание предметом, способным поглотить волну (палец, рука в перчатке, пористая резина).

Особенности

Главным достоинством экрана на поверхностных акустических волнах (ПАВ) является возможность отслеживать не только координаты точки, но и силу нажатия (здесь, скорее, способность точно определять радиус или область нажатия), благодаря тому, что степень поглощения акустических волн зависит от величины давления в точке касания (экран не прогибается под нажатием пальца и не деформируется, поэтому сила нажатия не влечет за собой качественных изменений в обработке контроллером данных о координатах воздействия, который фиксирует только область, перекрывающую путь акустических импульсов). Данное устройство имеет очень высокую прозрачность, так как свет от отображающего прибора проходит через стекло, не содержащее резистивных или проводящих покрытий. В некоторых случаях для борьбы с бликами стекло вообще не используется, а излучатели, приёмники и отражатели крепятся непосредственно к экрану отображающего устройства. Несмотря на сложность конструкции, эти экраны довольно долговечны. По заявлению, например, американской компании Tyco Electronics и тайваньской фирмы GeneralTouch, они выдерживают до 50 млн касаний в одной точке, что превышает ресурс 5-проводного резистивного экрана. Экраны на ПАВ применяются, в основном, в игровых автоматах, в охраняемых справочных системах и образовательных учреждениях. Как правило, экраны ПАВ различают на обычные - толщиной 3 мм, и вандалостойкие - 6 мм. Последние выдерживают удар кулаком среднего мужчины или падение металлического шара весом 0.5 кг с высоты 1.3 метра (по данным Elo Touch Systems). На рынке предлагаются варианты подключения к компьютеру как через интерфейс RS232, так и через интерфейс USB. На данный момент большей популярностью пользуются контроллеры к сенсорным экранам ПАВ, поддерживающие и тот, и другой тип подключения - combo (данные Elo Touch Systems).

Главным недостатком экрана на ПАВ являются сбои в работе при наличии вибрации или при воздействии акустическими шумами, а также при загрязнении экрана. Любой посторонний предмет, размещённый на экране (например, жевательная резинка), полностью блокирует его работу. Кроме того, данная технология требует касания предметом, который обязательно поглощает акустические волны, - то есть, например, пластиковая банковская карточка в данном случае неприменима.

Точность этих экранов выше, чем матричных, но ниже, чем традиционных ёмкостных. Для рисования и ввода текста они, как правило, не используются.

Инфракрасные сенсорные экраны

Принцип работы инфракрасной сенсорной панели прост - сетка, сформированная горизонтальными и вертикальными инфракрасными лучами, прерывается при касании к монитору любым предметом. Контроллер определяет место, в котором луч был прерван.

Особенности

Инфракрасные сенсорные экраны боятся загрязнений и поэтому применяются там, где важно качество изображения, например, в электронных книгах . Из-за простоты и ремонтопригодности схема популярна у военных. Часто на таком принципе делают клавиатуры домофонов . Данный тип экрана применяется в мобильных телефонах компании Neonode.

Оптические сенсорные экраны

Стеклянная панель снабжена инфракрасной подсветкой. На границе «стекло-воздух» получается полное внутреннее отражение , на границе «стекло - посторонний предмет» свет рассеивается. Остаётся заснять картину рассеяния, для этого существуют две технологии:

Особенности

Позволяют отличить нажатия рукой от нажатий какими-либо предметами, есть мультитач . Возможны большие сенсорные поверхности, вплоть до классной доски .

Тензометрические сенсорные экраны

Реагируют на деформацию экрана. Точность тензометрических экранов невелика, зато они отлично выдерживают вандализм. Применение аналогично проекционно-ёмкостным: банкоматы, билетные автоматы и прочие устройства, расположенные на улице.

Сенсорные экраны DST

Основная статья: Dispersive Signal Technology

Сенсорный экран DST (Dispersiv́e Signal Technology) реагирует на деформацию стекла. Возможно нажатие на экран рукой или любым предметом. Отличительной особенностью является высокая скорость реакции и возможность работы в условиях сильного загрязнения экрана.

Индукционные сенсорные экраны

Индукционный сенсорный экран - это графический планшет со встроенным экраном. Такие экраны реагируют только на специальное перо.

Применяются, когда требуется реакция именно на нажатия пером (а не рукой): художественные планшеты класса high-end, некоторые модели планшетных ПК .

Сводная таблица

Матр 4-пров 5-пров Ёмк Пр-ёмк ПАВ ИК-сетка Опт Тензо DST Индукц
Функциональность
Рука в перчатке Да Да Да Да Да Да Да Да Да
Твёрдый проводящий предмет Да Да Да Да Да Да Да Да Да
Твёрдый непроводящий предмет Да Да Да Да Да Да Да
Мультитач Да 1 Да 7 Да Да Да 1 Да
Измерение силы нажатия Да Да Да Да Да
Предельная прозрачность, % 2 85 75 85 90 90 100 100 100 95 90
Точность 3 Низ Выс Выс Выс Выс Сред Низ Сред Низ Выс Выс
Надёжность
Срок жизни, млн. нажатий 35 10 35 200 ∞ 4 50 ∞ 5 ∞ 4 ??? ∞ 4 ∞ 4
Защита от грязи и жидкостей Да Да Да Да Да Да Да Да Да
Устойчивость к вандализму Да Да Да
Применение 6 Огран Огран Огран Помещ Улица Помещ Помещ Помещ Улица Помещ Огран

1 Поддерживается с ограничениями.
2 Если нужна только стеклянная панель, без каких-либо прозрачных проводящих плёнок - условно 95%. Если не нужна даже она (можно применить штатное покрытие экрана) - условно 100%
3 Высокая - до пикселя (точно отслеживает острое перо). Средняя - до нескольких пикселей (достаточная для нажатий пальцем). Низкая - крупными блоками экрана (невозможно рисование, требуются очень крупные элементы интерфейса).
4 Ограничивается надёжностью электроники
5 Ограничивается загрязнением датчика
6 Огран - аппаратура ограниченного доступа (персональная электроника, промышленная аппаратура). Помещ - общий доступ в охраняемом помещении. Улица - общий доступ на улице.
7 Программная эмуляция, обрабатывает максимум 2 нажатия.

См. также

  • Тачфон

В кинофильме «Крепкий орешек» герой Брюса Уиллиса с большим интересом рассматривает техническую новинку того времени - сенсорную панель для посетителей в Накатоми Плаза.

Ссылки

  • Замена тачскрина Инструкции по замене тачскринов

Примечания

  1. Touch Screen - History of the Touch Screen Computer Interface (англ.)
  2. Company history from Elographics to Elo TouchSystems, 1971 - present - Elo TouchSystems - Tyco Electronics
  3. HP History: 1980s (англ.)
  4. В резистивных экранах существует отдача при нажатии - это делает работу руками более комфортной. Кроме того, в некоторых телефонах удачное нажатие подтверждается вибрацией. Но такой отдачи, конечно же, недостаточно для того, чтобы на ощупь отличить один элемент интерфейса от другого.
  5. Мухин И. А.

В настоящее время уже никого не удивишь сенсорным экраном. Более того, уже странно видеть устройства без сенсора, особенно, когда речь идет о мобильных гаджетах. Это обусловлено стремлением увеличить площадь рабочей поверхности. Но часто ли мы задумываемся о том, какой тип дисплея используется в том или ином устройстве? Случалось ли такое, что, купив новый планшет или смартфон, мы пытаемся управлять им с помощью привычно цифрового пера, но вот незадача, устройство попросту не реагирует на его прикосновение. Видимо, экран выполнен по другой технологии, емкостной, которая постепенно начинает вытеснять своего предшественника, дисплей резистивного типа.

Можно встретить большое количество сенсорных дисплеев, отличающихся не только конструктивными особенностями, но и принципом работы. На сегодняшний день существуют следующие типы сенсорных экранов: резистивный, емкостной, проекционно-емкостной, матричный, сенсорный экран на поверхностно-акустических волнах, инфракрасный, тензометрический, индуктивный.

В настоящий момент в электронной технике используются два основных типа сенсорных экранов: резистивный и емкостной. О них мы и поговорим подробней, а также попытаемся выделить сильные и слабые стороны каждого.

Вначале рассмотрим принцип работы резистивного сенсорного экрана. Он состоит из стеклянной панели и гибкой пластиковой мембраны, на которые нанесено резистивное покрытие. Пространство между стеклом и мембраной заполнено микроизоляторами, которые в свою очередь надежно изолируют проводящие поверхности, равномерно распределившись по активной области экрана. При нажатии на дисплей, панель и мембрана замыкаются, а контроллер с помощью аналогово-цифрового преобразователя регистрирует изменение сопротивления, преобразовывая его в координаты касания. Именно по этой причине на такой экран можно нажимать любым твердым предметом, это может быть, как ноготь, так и специальный стилус, и даже обычный карандаш. Как следствие такого строения, резистивные экраны постепенно изнашиваются, из-за чего и возникает необходимость в периодической калибровке экрана, чтобы при нажатии на дисплей происходила правильная обработка координат точки касания.

Бывают четырех-, восьми-, пяти-, шести- или семиэлектродные экраны. Самыми простыми в изготовлении, следовательно, и самыми дешевыми, являются четырехэлектродные. Они выдерживают всего 3 миллиона нажатий в одну точку. Пятипроводные уже будут значительно надежнее - до 35 миллионов нажатий, в них четыре электрода расположены на панели, а пятый находится на мембране, которая покрыта токопроводящим составом. Стоит отметить, что пятипроводные и последующие версии шести- и семипроводные экраны продолжают работать даже при повреждении части мембраны.

Преимущества

К достоинствам резистивного экрана можно отнести невысокую стоимость его производства, а, следовательно, и устройства, в котором он используется. Кроме этого, стоит отметить, что отзыв сенсора здесь не зависит от состояния поверхности экрана, даже в случае загрязнения, тачскрин остается таким же чувствительным. Следует также выделить точность попадания в нужную точку, т.к. используется густая решетка резистивных элементов.

Недостатки

В качестве недостатков резистивных экранов выделим низкое светопропускание, не более 70% или 85%, поэтому требуется повышенная яркость подсветки. Также это низкая чувствительность, т.е. просто прикасаться пальцем не достаточно, требуется надавливание, так что без цифрового пера или длинных ногтей не обойтись. Данный тип в большинстве случаев не поддерживает мультитач, т. е. экран понимает лишь одно касание. При взаимодействии с экраном нужно прилагать определенные усилия, чтобы передать какую-либо команду, а переусердствовав можно не только поцарапать, но и повредить дисплей. Как уже было сказано выше, для правильного функционирования периодически необходимо производить калибровку экрана.

Емкостной сенсорный экран

Емкостной экран представляет собой стеклянную панель, которая покрыта прозрачным резистивным материалом, в котором, как правило, используется сплав оксида индия и оксида олова. По углам панели установлены электроды, подающие на проводящий слой низковольтное переменное напряжение, они следят за течением зарядов в экране, и передают данные в контроллер, определяя, таким образом, координаты точки касания. До прикосновения экран обладает некоторым электрическим зарядом; при касании пальцем на проводящем слое появляется точка, потенциал которой меньше, чем потенциалы электрода, т. к. тело человека обладает способностью проводить электрический ток и имеет некоторую емкость. На экране нет никаких гибких мембран, что обеспечивает высокую надежность и позволяет снизить яркость подсветки. Данный тип экрана способен одновременно определять координаты двух и более точек касания, что и означает поддержку мультитач.

Подвидом емкостных стали проекционно-емкостные экраны. Работают они по схожему принципу. Отличие заключается в том, что базовые элементы в них расположены не на внешней стороне экрана, а на внутренней, благодаря чему сенсор получается более защищенным. В основном дисплеи такого типа используются в современных мобильных устройствах.

Взаимодействие с емкостным экраном должно осуществляться только проводящим предметом, голым пальцем или специальным стилусом, который обладает электрической емкостью. Количество нажатий до выхода сенсорных элементов из строя достигает более 200 млн раз.

Преимущества

Из плюсов емкостных экранов выделим, что даже на ярком солнце видимость остается достаточно хорошей, чего нельзя сказать о резистивном экране, т. к. он отражает много окружающего света. Преимуществом также стала возможность быстрого и точного распознавания касания без использования дополнительных аксессуаров. Несомненным достоинством экранов этого типа является более длительное время службы сенсора, по сравнению с предыдущим типом. Также появился «многопальцевый» интерфейс или мультитач, хотя далеко не во всех устройствах с экраном такого типа он реализован в полной мере.

Недостатки

К негативным сторонам использования емкостного сенсорного экрана можем отнести более высокую стоимость по причине сложности производства. Взаимодействие с дисплеем возможно только при касании с материалом, который является проводником. По этой причине для работы с ним приобретаются специальные емкостные стилусы или перчатки, особенно это становится актуальным в холодную погоду, а это еще одна статья расходов.

Подводя итог, напомним, что резистивные экраны чувствительны к нажатию, а емкостные реагируют на касание. Точность емкостных дисплеев сравнима с точностью резистивных, но емкостной тип отличается более высокой надежностью за счет отсутствия гибкой мембраны, а меньшее количество слоев делает их более прозрачными.

Бытует мнение, что резистивные дисплеи уже отжили свое, а будущее - за емкостными. Действительно, переход от механико-электрического ввода к электрическому уже много значит, т. к. возросла точность определения координат, и появился мультитач.

Тем не менее, сегодня на рынке электронной техники еще остается большое количество устройств с резистивными экранами, но они потихоньку начинают вытесняться гаджетами с емкостными сенсорами. Наблюдая эту тенденцию, можно предположить, что первые в скором времени и вовсе исчезнут.

Сенсорный экран - это устройство ввода информации, представляющее собой экран, реагирующий на прикосновения к нему.

Основные сравнительные характеристики сенсорных экранов.

МультитачПрозрачность, %ТочностьИзмерение силы нажатияНажатия рукой в перчаткеНажатия проводящим предметомНажатия непроводящим предметомЗащита от грязи
Резистивные Ёмкостные Проекционно-емкостные ПАВ ИК
- + + - +
75-85 90 90 95 100
Выс. Выс. Выс. Выс. Выс.
- - + + -
+ - + + +
+ + + - +
+ - - - +
+ + + - -

Первым наиболее очевидным преимуществом сенсорных технологий является интуитивность и естественность самого действия - прикосновения рукой к экрану.

Второе несомненное преимущество устройств на основе сенсорных экранов, компактность. Установка сенсорных мониторов качественно повысить эффективность обслуживания в кинотеатрах, ресторанах, гостиницах, аэропортах, административных заведениях, где каждый сантиметр рабочего места представляет ценность. Сенсорный монитор (особенно если это жидкокристаллический монитор) позволяет экономить максимум места на рабочей поверхности.

Скорость работы может быть не только вопросом престижа, но и жизненно важным вопросом, в самом прямом смысле этого слова. Представьте, что может означать выигранная секунда, когда требуется максимально быстрая реакция, например, диспетчера охранного центра. Таким образом, быстрый доступ - это третье преимущество сенсорных экранов.

Четвертым преимуществом сенсоров является снижение затрат. Установка сенсорного монитора может существенно повысить скорость и точность действий сотрудника, работающего за компьютером, снизить время, необходимое на обучение сотрудника.

Сенсорный экран - виды:

Резистивный сенсорный экран.

В этой конструкции экран представляет собой стеклянную либо акриловую пластину, покрытую двумя токопроводящими слоями. Слои разделены незаметными глазу прокладками, которые предохраняют сеть вертикальных и горизонтальных проводников от соприкосновения. В момент нажатия слои контактируют и контроллер регистрирует электрический сигнал. Координаты нажатия определяются, исходя из того, на пересечении каких проводников было зарегистрировано воздействие.

Применение

  • Коммуникаторы
  • Сотовые телефоны
  • POS-терминалы
  • Tablet PC
  • Промышленность (устройства управления)
  • Медицинское оборудование

Емкостный (электростатический) сенсорный экран.

В работе емкостного экрана человек участвует не только механическим, но и электрическим образом. До прикосновения экран обладает некоторым электрическим зарядом. Прикосновение пальца меняет картину заряженности, «оттягивая» часть заряда к точке нажатия. Датчики экрана, расположенные по всем четырем углам, следят за течением заряда в экране, определяя, таким образом, координаты «утечки» электронов.

Емкостные экраны также отличаются высокой надежностью (в них отсутствуют гибкие мембраны) и высокой степенью прозрачности. Правда они не годятся для работы стилусом или перчаткой - нажимать на экран необходимо «голым пальцем». Зато впечатляет надежность емкостного экрана - до миллиарда нажатий в одно и то же место.

Применение

  • В охраняемых помещениях
  • Информационные киоски
  • Некоторые банкоматы

Акустический сенсорный экран.

Такие экраны построены с использованием миниатюрных пьезоэлектрических излучателей звука, не слышимого человеком. Стекло такого экрана постоянно незаметно вибрирует под воздействием излучателей, установленных в трех углах экрана. Специальные отражатели особым образом распространяют акустическую волну по всей поверхности экрана. Прикосновение к экрану меняет картину распространения акустических колебаний, что и регистрируется датчиками. По изменению характера колебаний можно вычислить координаты возмущений, внесенных нажатием на экран. Кроме этого, анализируя степень изменения колебаний, можно вычислить силу нажатия на экран. Это полезно при проектировании систем управления промышленным оборудованием, например, для плавного изменения скорости вращения двигателей и других параметров. Среди плюсов акустических экранов - отсутствие покрытий, что повышает надежность и прозрачность экрана.

Данные акустические сенсорные экраны применяются в основном в игровых автоматах, в охраняемых справочных системах и образовательных учреждениях. Как правило экраны различают на обычные - толщиной 3 мм, и вандалстойкие - 6 мм. Последние выдерживают удар кулаком среднего мужчины или падение металлического шара весом 0.5 кг с высоты 1.3.

Главным недостатком экрана являются сбои в работе при наличии вибрации или при воздействии акустическими шумами, а также при загрязнении экрана. Любой посторонний предмет, размещённый на экране (например, жевательная резинка), полностью блокирует его работу. Кроме того, данная технология требует касания предметом, который обязательно поглощает акустические волны.

Инфракрасный сенсорный экран.

Инфракрасные сенсорные экраны представляют собой рамку вокруг монитора, в которой установлены излучатели и приёмники инфракрасного излучения. Минусы этой конструкции - низкое разрешение датчиков и возможность ложного срабатывания в результате посторонней засветки. Зато при больших диагоналях экранов эта технология пока незаменима. К тому же, все вышеперечисленные разновидности сенсорных дисплеев подвержены так называемому «дрейфу активной точки».

Инфракрасные сенсорные экраны боятся загрязнений и поэтому применяются там, где важно качество изображения. Из-за простоты и ремонтопригодности схема популярна у военных. Данный тип экрана применяется и в мобильных телефонах.

Мультитач ,

не является типом сенсорного экрана. По своей сути, технология множественного нажатия – что является вольным переводом словосочетания multi-touch – это дополнение к сенсорному экрану (чаще всего построенному по проекционно-ёмкостному принципу), позволяющее экрану распознавать несколько точек прикосновения к нему. В результате мультитач-экран становится способным к распознаванию жестов.

Сенсорный экран - виды.

По той разнице, как происходит ввод информации, сенсоры экранов подразделяются на два типа: резистивные экраны и емкостные.

Резистивный тип

Резистивный тип – экран, который реагирует на нажатие, практически любым твердым предметом. Как правило, телефоны с этим сенсором идут в комплекте с стилусом — специальной палочкой.

Что можно отнести к преимуществам такого дисплея: цена! они настолько недороги в производстве, занявшие чрезвычайно большую нишу.

Еще одним важным преимуществом является то, что они очень устойчивы к загрязнению. Если сказать совсем просто, то, если Вы видите (хоть как-то) кнопки — то они работают!

Относительно недостатков, то здесь стоит отметить не очень высокую свет проводимость.

Есть два типа резистивных экранов четырехпроводной и пятипроводной

Емкостный тип

Емкостный тип — так же, как и в резистивного типа, существует два типа емкостных экранов — поверхностно-емкостной тип, и проекционно-емкостной тип.

Поверхностно-емкостной тип: экрана использует принцип проведения переменного электрического тока предметом с высокой емкостью.

Сенсор емкостного типа это стеклянная панель покрытая слоем проводника. Электроды, которые расположены по углам экрана подают на него переменное напряжение. Когда человек прикасается пальцем или каким-либо другим ведущим предметом, происходит поток тока. Ток во всех углах экрана регистрируется специальными датчиками и передается в контроллер, что вычисляет координаты точки прикосновения.

Емкостный тип экрана более надежен (рассчитан на 200 млн. прикосновений к одной точке против 35 млн.), не пропускает жидкостей и устойчив к непроводящих загрязнений. Еще одно преимущество этого типа — прозрачность экрана составляет 90%.

Теперь о недостатках — экран не будет работать когда вы будете в перчатке, это первый недостаток. Вторым недостатком является то, что мультитач на нем невозможен.

Проекционно-емкостной тип: С внутри экрана нанесена сетка из электродов. Вместе с телом человека, эти электроды создают конденсатор.

К особенностям этого типа следует отнести: преимущества — прозрачность экрана около 90%, необычайно широкий диапазон температур, многими экранами можно управлять даже когда вы наделы перчатки. Здесь появился мультитач. И, напоследок, эти экраны очень долговечны.

К недостаткам можно отнести цену такого сенсора и сложность производства.

По этому, если вы выбираете с каким сенсорным дисплеем взять телефон, лично я советую взять вам проекционно-емкостной тип.

Многие думают, что эра сенсорных экранов началась в нулевых, с выходом первых КПК (надеюсь, нет таких, кто думает, что первый сенсорный экран появился в iPhone?) Однако это не так - первым потребительским устройством с сенсорным дисплеем стал... телевизор в 1982 году. Годом позже появился первый сенсорный ПК от HP. Через 10 лет, в 1993 году, появился Apple Newton - родоначальник КПК, который ввел моду на стилусы (хотя это скорее была необходимость - экран-то резистивный), и уже в 2007 году с выходом iPhone появился современный емкостный экран в том виде, в котором мы все привыкли его видеть. Так что история сенсорных экранов насчитывает 35 лет, и за это время произошло достаточно много.


Уже из названия понятно, что лежит в основе таких дисплеем - это электрическое сопротивление. Устройство такого экрана просто: над дисплеем находится подложка (дабы при сильном нажатии его не деформировать), после чего идет один резистивный слой, изолятор и второй резистивный слой уже на мембране:


На левый и правый край мембраны и нижний и верхний край резистивного слоя на подложке подведено напряжение. Что происходит, когда мы нажимаем на такой дисплей? Резистивные слои замыкаются, сопротивление меняется, а значит меняется и напряжение - а это легко зарегистрировать, после чего, зная сопротивление единицы резистивного слоя, можно легко узнать сопротивление по обеим осям до точки нажатия, а значит и высчитать саму точку нажатия:


Это - принцип действия четырехпроводного резистивного экрана, и такие уже больше не используются по одной простой причине: малейшее повреждение мембраны с резистивным слоем ведет к тому, что экран перестает корректно работать. А с учетом того, что в такой экран обычно тыкают острым стилусом, добиться повреждения отнюдь не трудно.

Тогда решили сделать по-другому: мембрана стала токопроводящей, а на резистивном слое подложки теперь расположены все 4 электрода, но уже по углам, а напряжение подведено только к мембране - то есть экран стал пятипроводным. Что происходит при нажатии? Мембрана касается резистивного слоя, начинает идти ток, который снимается с 4 электродов, что опять же позволяет, зная сопротивление резистивного слоя, определить точку касания:


Вот этот тип уже более «вандалоустойчив» - даже при порезе мембраны экран продолжит функционировать нормально (кроме, разумеется, места пореза). Но, увы, это не отменяет других проблем, общих для всех резистивных экранов, а их много.

Во-первых, такой экран воспринимает только одно касание: несложно догадаться, что при нажатии сразу двумя пальцами экран будет думать, что вы нажали в середину линии, соединяющей точки нажатия. Вторая проблема - на экран действительно нужно давить, причем желательно острым предметом (ногтем, стилусом). Разумеется, привыкнуть к этому можно, но это зачастую приводило к характерным царапинам, что красоты экрану не добавляло. Третья проблема - такой экран пропускает не более 85% светового потока, и из-за его толщины нет ощущения того, что вы касаетесь пальцем изображения напрямую.

Но, тем ни менее, у него есть и плюсы: во-первых, разбить дисплей в таком экране очень и очень сложно - у него «тройная защита» в виде мембраны, изоляторов и подложки. Второй плюс - экрану безразлично, чем вы в него тыкаете - с ним можно работать и в обычных перчатках (что зимой очень актуально). Но, увы, это достоинства не перевесили недостатки, и с выходом iPhone начался бум на емкостные экраны.

Поверхностно-емкостные экраны

Это, можно сказать, переходный тип между привычными нам емкостными экранами (которые являются проекционными) и старыми резистивными. Принцип действия тут схож с пятипроводным экраном: есть стеклянная пластина, покрытая резистивным слоем, и 4 электрода по углам, которые подают на пластину небольшое переменное напряжение (почему не постоянное - объясню чуть ниже). При нажатии на такой экран токопроводящим заземленным предметом мы получаем в месте нажатия утечку тока, которую легко можно зарегистрировать:


Тут и разгадка, почему напряжение переменное - с постоянным при плохом заземлении могут быть перебои в работе, а с переменным такого нет.

Проблем у них тоже хватает: экран теперь менее защищен, и при повреждении стеклянной пластины перестает работать весь. Опять же не поддерживается мультитач, и более того - теперь экран не реагирует на руку в перчатке или же стилусы - они в основном не проводят ток.

Единственный плюс такого экрана - он стал тоньше и прозрачнее резистивного, но в общем-то это оценили немногие. Но все изменилось с выходом iPhone, где применялся несколько другой тип сенсорного экрана, который уже поддерживал мультитач.

Проекционно-емкостные экраны

Вот мы уже и подобрались к современному типу сенсорных экранов. По принципу работы он существенно отличается от предыдущих - тут электроды расположены сеткой на внутренней стороне экрана (а не 4 электрода по углам), и при нажатии на экран палец образует с электродами конденсаторы, по емкости которых и можно определить местоположение нажатия:

С таким устройством экрана можно нажимать на него сразу несколькими пальцами - если они расположены достаточно далеко (дальше, чем два соседних электрода в сетке), то такие нажатия будут определяться как разные - именно так и появился мультитач, сначала на 2 пальца в iPhone, а сейчас уже и на 10 пальцев в планшетах. Большее количество нажатий уже не нужно (людей больше чем с 10 пальцами маловато), да и определение одновременно больше чем 5-7 нажатий накладывает серьезную нагрузку на контроллер тача.

Из плюсов такого экрана, кроме поддержки мультитача - возможность сделать OGS (One Glass Solution): защитное стекло экрана с интегрированной сеткой электродов и дисплей представляют из себя одно целое: в таком случае толщина оказывается наименьшей, и кажется, что вы пальцами касаетесь изображения. Это же приводит к проблеме хрупкости: при появлении трещины на стекле гарантированно рвется сетка электродов, и экран перестает реагировать на нажатия.

Это - основные типы сенсорных экранов, однако есть и многие другие. Начнем, пожалуй, с самого старого типа, с которого сенсорные экраны и начинались.

Инфракрасные экраны

Опять же принцип действия понятен из названия: по краям экрана расположено множество светоизлучателей и приемников в ИК-диапазоне. При нажатии палец перекрывает часть света, что и позволяет определить местоположение нажатия. Плюсами таких экранов на заре их появления было то, что ими можно было оснастить любой дисплей, что и было сделано с телевизором в 1982. Минусы также очевидны - толщина такой конструкции оказывается внушительной, а точность позиционирования - достаточно низкой.

Тензометрические экраны

Экраны, которые реагируют на нажатие (сильное нажатие). Огромный их плюс в том, что они максимально «антивандальные», поэтому их и применяют в различных банкоматах, стоящих на улице.

Индукционные экраны

Из названия опять же все понятно: внутри экрана есть катушка индуктивности и сетка проводов. При касании экрана специальным активным пером меняется напряженность созданного магнитного поля - с помощью этого и регистрируется нажатие. Самый главный плюс такого экрана - максимально возможная точность, поэтому они хорошо зарекомендовали себя в дорогих графических планшетах.

Оптические экраны

Принцип основан на полном внутреннем отражении: стекло подсвечивается инфракрасной подсветкой, и пока нажатия нет, на границе стекла и воздуха лучи света полностью отражаются (то есть нет преломленного луча). При нажатии на такой экран появляется преломленный луч, а по углу преломления (ну или отражения) можно высчитать точку нажатия.

Экраны на поверхностно-акустических волнах

Пожалуй, одни из самых сложно устроенных экранов. Принцип работы заключается в том, что в толще стекла создаются ультразвуковые колебания. При прикосновении к вибрирующему стеклу волны поглощаются, а специальные датчики по углам это регистрируют и высчитывают точку прикосновения:


Плюсом этой технологии является то, что прикасаться к экрану можно любым предметом, не обязательно токопроводящим и заземленным. Минус - экран боится любых загрязнений, так что использовать его, например, в дождь, будет невозможно.

DST экраны

Их принцип действия основан на пьезоэлектрическом эффекте - при деформации диэлектрика он поляризуется, а значит - возникает разность потенциалов - а ее уже можно посчитать. Из плюсов - очень быстрая скорость реакции и возможность работы при серьезно загрязненном экране. Минус - для определения местоположения пальца он должен постоянно двигаться.

Вот в общем-то и все типы сенсорных экранов. Конечно, большинство из них диковинные и вы вряд ли с ними столкнетесь, но само разнообразие и развитие этой технологии радует.