Быстрый алгоритм медианной фильтрации. Одномерный цифровой медианный фильтр с трехотсчетным окном

Линейные пространственно-инвариантные (ЛПИ) фильтры полезны для реставрации и улучшения визуального качества изображений. Их можно применять, например, при реализации ви-неровских фильтров для снижения уровня шума на изображениях. Однако, чтобы подавить шум и при этом сохранить контурную часть изображений, приходится применять нелинейные или линейные пространственно-неинвариантные (ЛПНИ) фильтры. Ограничения на использование ЛПИ-фильтров в задачах реставрации изображений обсуждаются в .

Многие нелинейные и ЛПНИ-фильтры для реставрации изображений описаны в . В гл. 5 предыдущего тома, посвященного линейным фильтрам , были описаны калма-новские ЛПНИ-фильтры, используемые для подавления шума при реставрации изображений. В гл. 5 и 6 этого тома рассмотрена особая нелинейная процедура - медианная фильтрация. Обнаружено, что применение медианных фильтров эффективно для подавления некоторых видов шума и периодических помех без одновременного искажения сигнала . Такие фильтры стали весьма популярны в обработке изображений и речевых сигналов.

Поскольку теоретический анализ поведения медианных фильт ров очень труден, опубликовано очень мало результатов по этому вопросу. Две главы нашей книги содержат в основном новые результаты, не освещенные до сих пор в открытой литературе. В гл. 5 рассматриваются статистические свойства медианных фильтров. В частности, излагаются различные свойства выходного сигнала медианного фильтра при гауссовском шуме или сумме ступенчатой функции и гауссовского шума на входе.

Глава 6 посвящена детерминированным свойствам медианных фильтров. Особенно интересными представляются результаты, относящиеся к так называемым стабильным точкам медианных фильтров. Стабильной точкой является последовательность (в одномерном случае) или массив (в двумерном случае), которые не изменяются при медианной фильтрации. В гл. 6 Тян показал, что в одномерном случае стабильными точками медианных фильтров являются «локально-монотонные» последовательности. Исключение составляют некоторые периодические двоичные последовательности. В последнее время Галлагер и Вайс сумели устранить это исключение, ограничив длину последовательностей.

В гл. 6 кратко описан эффективный алгоритм медианной фильтрации, основанный на модификации гистограмм. В обсуждается аппаратурная реализация медианной фильтрации в реальном масштабе времени на основе цифровых избирательных схем. Метод нахождения медианы, основанный на двоичном представлении элементов изображения в апертуре фильтра, предложен в , где сравниваются аппаратурная реализация этого метода, алгоритм преобразования гистограмм и метод цифровых избирательных схем по сложности и скорости. Реализация медианных фильтров на двоичном матричном процессоре рассмотрена в . Разработан метод реализации медианных фильтров в конвейерном процессоре, работающем синхронно с видеосигналом .

В гл. 5 и 6 изложен материал главным образом теоретического характера. В качестве дополнения представим здесь некоторые экспериментальные результаты. На рис. 1.1 показаны примеры стабильных точек медианных фильтров. Даны исходное изображение (а) и результаты шестикратного применения трех различных медианных фильтров (б). Дальнейшее применение фильтров не вносит существенных изменений в результаты. Таким образом, изображения на рис. 1.1, б-г являются стабильными точками трех медианных фильтров.

Медианные фильтры особенно удобны для борьбы с импульсным (точечным) шумом. Этот факт иллюстрируется на рис. 1.2. На рис. 1.2, а показан результат передачи изображения 1.1, а по двоичному симметричному каналу с шумом при использовании импульсно-кодовой модуляции. В этом случае на изображении появляется импульсный шум. Применение медианного фильтра позволяет подавить большую часть шумовых выбросов (рис. 1.2, б),

(кликните для просмотра скана)

в то время как линейное сглаживание оказывается совершенно неэффективным (рис. 1.2, в).

Хотя в гл. 5 и 6 обсуждаются двумерные (пространственные) фильтры, очевидно, что к движущимся изображениям, таким, как телевизионные, могут применяться трехмерные медианные фильтры (пространственно-временные), т. е. апертура фильтра может быть трехмерной. Медианная временная фильтрация особенно удобна для подавления пачек шумовых выбросов, включая выпадение строк. Кроме того, она намного лучше, чем временное усреднение (линейное сглаживание), сохраняет движение. В описано несколько экспериментов по временной фильтрации (включая фильтрацию с компенсацией движения). В одном из экспериментов по фильтрации последовательность кадров панорамирования, содержащая белый гауссовский шум и случайные выпадения строк, подвергалась медианной фильтрации и линейному сглаживанию. Кадровая частота последовательности составляла 30 кадров/с, каждый кадр содержал примерно 200 строк по 256 элементов в каждой с 8 бит/отсчет. Панорамирование проводилось горизонтально со скоростью примерно 5 элементов изо бражения на кадр. Результаты по одному кадру показаны на рис. 1.3: зашумленный исходный кадр (а), тот же кадр после линейного сглаживания (б) и кадр, обработанный медианным фильтром (в). Необходимо отметить, что медианный фильтр дает

Рис. 1.3. (см. скан) Временная фильтрация последовательности кадров панорамирования: а - зашумленный оригинал; б - линейное сглаживание по трем кадрам; в - медианная фильтрация по трем кадрам

намного лучшие результаты в отношении снижения числа выпадений строк и сохранения резкости контуров. Однако для подавления гауссовского шума более эффективно линейное сглаживание. Приведенные данные согласуются с теоретическими (см. гл. 5 и 6).

Хотя и медианная фильтрация и линейное сглаживание используются для улучшения субъективного качества изображения, пока не ясно, способствуют ли они дальнейшему машинному анализу изображений - распознаванию образов или измерениям на изображении. Были проведены тщательные исследования влияния линейной и медианной фильтрации на эффективность выделения контуров, анализ формы и текстурный анализ. Некоторые результаты приведены в .

(Б. И. Юстуссон)

Медианная фильтрация является методом нелинейной обработки сигналов, который может быть полезен при подавлении шумов. Она была предложена в качестве инструмента анализа временных рядов Тьюки , в 1971 г. и позже ее стали применять также при обработке изображений. Медианная фильтрация осуществляется посредством движения некоторой апертуры вдоль дискретизированного изображения (последовательности) и замены значения элемента изображения в центре апертуры медианой исходных значений отсчетов внутри апертуры. При этом обычно получается более гладкое, по сравнению с исходным, результирующее изображение (последовательность отсчетов).

Классическая процедура сглаживания состоит в использовании линейной фильтрации нижних частот и во многих случаях является наиболее приемлемой процедурой. Тем не менее в определенных ситуациях медианная фильтрация предпочтительней. Она имеет следующие основные преимущества: 1) медианная фильтрация сохраняет резкие перепады, тогда как линейная низкочастотная фильтрация смазывает такие перепады; 2) медианные фильтры очень эффективны при сглаживании импульсного шума. Эти свойства пояснены на рис. 5.1.

Основная цель главы - представить различные теоретические результаты, касающиеся медианной фильтрации. Автор надеется, что эти результаты помогут составить правильное суждение о практической применимости медианных фильтров.

Рис. 5.1. Последовательности типа граница плюс шум (а) после медианной фильтрации (б), после фильтрации с помощью скользящего среднего

Основные определения, касающиеся медианных фильтров, даны в разд. 5.1. В разд. 5.2 исследуется способность медианных фильтров подавлять шум, а также приведены формулы, которые дают количественные представления о степени подавления шума. Рассматриваются белый, небелый, импульсный и точечный шумы. В разд. 5.3 сравнивается качество фильтрации посредством вычисления скользящего среднего и медианных фильтров на изображениях вида «перепад плюс шум». Влияние медианных фильтров на статистику второго порядка случайного шума обсуждается в разд. 5.4. Для входного сигнала с белым шумом даны точные результаты; для небелого шума с помощью предельных теорем получены приближенные результаты. Частотная характеристика рассматривается посредством оценки отклика фильтра на простую косинусоиду, а также на сигналы более общего вида. В разд. 5.5 представлены некоторые модификации медианных фильтров, которые также обладают свойством сохранения перепадов, но отличаются от простых медианных фильтров другими свойствами. Некоторые применения медиан и других порядковых статистик рассматриваются в разд. 5.6.

В заключение приведен небольшой обзор более ранних работ, касающихся медиан и медианной фильтрации.

Медианы давно использовались и изучались в статистике как альтернатива средним арифметическим значениям отсчетов в оценке выборочных средних значений популяций. Большинство исследований касались медиан и других порядковых статистик последовательностей независимых случайных величин (см. хорошо известные монографии ). Однако медианы зависимых случайных величин также изучались в литературе (см. , где даны дополнительные ссылки).

Как упоминалось выше, скользящая оценка медианы была предложена Тьюки, который применил ее для сглаживания временных рядов, встречающихся в экономических исследованиях. Тьюки также рассматривал итеративную медианную фильтрацию и указывал, что она сохраняет во временных рядах большие резкие изменения их уровня (т. е. перепады). В и применена скользящая медиана при обработке речи для очистки высоких тонов от помех . Разработан метод обработки сигналов для подчеркивания краев, в котором медианный фильтр предназначен для уничтожения ложных колебаний после линейной фильтрации.

Позже медианные фильтры были применены несколькими авторами в обработке изображений. В 1975 г. Прэтт исследовал эффективность медианной фильтрации изображений с нормальным белым и импульсным шумами, а также влияние различных форм апертуры фильтра. Его результаты были опубликованы в . Медианные фильтры были использованы для коррекции шума сканирующих устройств .

Все линейные алгоритмы фильтрации приводят к сглаживанию резких перепадов яркости изображений, прошедших обработку. Этот недостаток, особенно существенный, если потребителем информации является человек, принципиально не может быть исключен в рамках линейной обработки. Дело в том, что линейные процедуры являются оптимальными при гауссовском распределении сигналов, помех и наблюдаемых данных. Реальные изображения, строго говоря, не подчиняются данному распределению вероятностей. Причем, одна из основных причин этого состоит в наличии у изображений разнообразных границ, перепадов яркости, переходов от одной текстуры к другой и т. п. Поддаваясь локальному гауссовскому описанию в пределах ограниченных участков, многие реальные изображения в этой связи плохо представляются как глобально гауссовские объекты. Именно это и служит причиной плохой передачи границ при линейной фильтрации.

Вторая особенность линейной фильтрации - ее оптимальность, как только что упоминалось, при гауссовском характере помех. Обычно этому условию отвечают шумовые помехи на изображениях, поэтому при их подавлении линейные алгоритмы имеют высокие показатели. Однако, часто приходится иметь дело с изображениями, искаженными помехами других типов. Одной из них является импульсная помеха. При ее воздействии на изображении наблюдаются белые или (и) черные точки, хаотически разбросанные по кадру. Применение линейной фильтрации в этом случае неэффективно - каждый из входных импульсов (по сути - дельта-функция) дает отклик в виде импульсной характеристики фильтра, а их совокупность способствует распространению помехи на всю площадь кадра.

Удачным решением перечисленных проблем является применение медианной фильтрации, предложенной Дж. Тьюки в 1971 г. для анализа экономических процессов. Наиболее полное исследование медианной фильтрации применительно к обработке изображений представлено в сборнике . Отметим, что медианная фильтрация представляет собой эвристический метод обработки, ее алгоритм не является математическим решением строго сформулированной задачи. Поэтому исследователями уделяется большое внимание анализу эффективности обработки изображений на ее основе и сопоставлению с другими методами.

При применении медианного фильтра (МФ) происходит последовательная обработка каждой точки кадра, в результате чего образуется последовательность оценок. В идейном отношении обработка в различных точках независима (этим МФ похож на масочный фильтр), но в целях ее ускорения целесообразно алгоритмически на каждом шаге использовать ранее выполненные вычисления.

При медианной фильтрации используется двумерное окно (апертура фильтра), обычно имеющее центральную симметрию, при этом его центр располагается в текущей точке фильтрации. На рис. 3.10 показаны два примера наиболее часто применяемых вариантов окон в виде креста и в виде квадрата. Размеры апертуры принадлежат к числу параметров, оптимизируемых в процессе анализа эффективности алгоритма. Отсчеты изображения, оказавшиеся в пределах окна, образуют рабочую выборку текущего шага.

Рис. 3.10. Примеры окон при медианной фильтрации

Двумерный характер окна позволяет выполнять, по существу, двумерную фильтрацию, поскольку для образования оценки привлекаются данные как из текущих строки и столбца, так и из соседних. Обозначим рабочую выборку в виде одномерного массива ; число его элементов равняется размеру окна, а их расположение произвольно. Обычно применяют окна с нечетным числом точек (это автоматически обеспечивается при центральной симметрии апертуры и при вхождении самой центральной точки в ее состав). Если упорядочить последовательность по возрастанию, то ее медианой будет тот элемент выборки, который занимает центральное положение в этой упорядоченной последовательности. Полученное таким образом число и является продуктом фильтрации для текущей точки кадра. Понятно, что результат такой обработки в самом деле не зависит от того, в какой последовательности представлены элементы изображения в рабочей выборке . Введем формальное обозначение описанной процедуры в виде:

. (3.48)

Рассмотрим пример. Предположим, что выборка имеет вид: , а элемент 250, расположенный в ее центре, соответствует текущей точке фильтрации (рис. 3.10). Большое значение яркости в этой точке кадра может быть результатом воздействия импульсной (точечной) помехи. Упорядоченная по возрастанию выборка имеет при этом вид {45,55,75,99,104,110,136,158,250}, следовательно, в соответствии с процедурой (3.48), получаем . Видим, что влияние “соседей” на результат фильтрации в текущей точке привело к “игнорированию” импульсного выброса яркости, что следует рассматривать как эффект фильтрации. Если импульсная помеха не является точечной, а покрывает некоторую локальную область, то она также может быть подавлена. Это произойдет, если размер этой локальной области будет меньше, чем половина размера апертуры МФ. Поэтому для подавления импульсных помех, поражающих локальные участки изображения, следует увеличивать размеры апертуры МФ.

Из (3.48) следует, что действие МФ состоит в “игнорировании” экстремальных значений входной выборки - как положительных, так и отрицательных выбросов. Такой принцип подавления помехи может быть применен и для ослабления шума на изображении. Однако исследование подавления шума при помощи медианной фильтрации показывает, что ее эффективность при решении этой задачи ниже, чем у линейной фильтрации .

Результаты экспериментов, иллюстрирующие работу МФ, приведены на рис. 3.11. В экспериментах применялся МФ, имеющий квадратную апертуру со

стороной равной 3. В левом ряду представлены изображения, искаженные помехой, в правом - результаты их медианной фильтрации. На рис. 3.11.а и рис. 3.11.в показано исходное изображение, искаженное импульсной помехой. При ее наложении использовался датчик случайных чисел с равномерным на интервале законом распределения, вырабатывающий во всех точках кадра независимые случайные числа. Интенсивность помехи задавалась вероятностью ее возникновения в каждой точке. Если для случайного числа , сформированного в точке , выполнялось условие , то яркость изображения в этой точке замещалась числом 255, соответствующим максимальной яркости (уровню белого). На рис. 3.11.а действием импульсной помехи искажено 5 % (=0.05), а на рис. 3.11.в - 10 % элементов изображения. Результаты обработки говорят о практически полном подавлении помехи в первом случае и о ее значительном ослаблении во втором.

Рис. 3.11. Примеры медианной фильтрации

Рис. 3.11.д показывает изображение, искаженное независимым гауссовским шумом при отношении сигнал/шум дБ, а рис. 3.11.е - результат его фильтрации медианным фильтром. Условия данного эксперимента позволяют сравнивать его результаты с результатами рассмотренной выше линейной фильтрации. В таблице 3.1 приведены данные, дающие возможность такого сравнения. Для различных методов фильтрации в этой таблице приводятся значения относительного среднего квадрата ошибок и коэффициента ослабления шума для случая, когда отношение сигнал/шум на входе фильтра составляет -5 дБ.

Табл.3.1. Сравнение эффективности подавления шума при фильтрации изображений, дБ

масочный фильтр с оптимальн. КИХ

масочный фильтр с равномерн. КИХ

двумерный рекуррентн. фильтр

двумерный фильтр Винера

Наибольшей эффективностью обладает двумерный фильтр Винера, уменьшающий средний квадрат ошибок в 17 раз. Медианный фильтр имеет наименьшую из всех рассмотренных фильтров эффективность, ему соответствует =5.86. Тем не менее, это число свидетельствует о том, что и при его помощи удается значительно снизить уровень шума на изображении.

Вместе с тем, как говорилось выше, и что демонстрирует рис. 3.11.е, медианная фильтрация в меньшей степени сглаживает границы изображения, чем любая линейная фильтрация. Механизм этого явления очень прост и заключается в следующем. Предположим, что апертура фильтра находится вблизи границы, разделяющей светлый и темный участки изображения, при этом ее центр располагается в области темного участка. Тогда, вероятнее всего, рабочая выборка будет содержать большее количество элементов с малыми значениями яркости, и, следовательно, медиана будет находиться среди тех элементов рабочей выборки, которые соответствуют этой области изображения. Ситуация меняется на противоположную, если центр апертуры смещен в область более высокой яркости. Но это и означает наличие чувствительности у МФ к перепадам яркости.

Шумы в изображениях. Никакая система регистрации не обеспечивает идеального качества изображений исследуемых объектов. Изображения в процессе формирования их системами (фотографическими, голографическими, телевизионными) обычно подвергаются воздействию различных случайных помех или шумов. Фундаментальной проблемой в области обработки изображений является эффективное удаление шума при сохранении важных для последующего распознавания деталей изображения. Сложность решения данной задачи существенно зависит от характера шумов. В отличие от детерминированных искажений, которые описываются функциональными преобразованиями исходного изображения, для описания случайных воздействий используют модели аддитивного, импульсного и мультипликативного шумов.

Наиболее распространенным видом помех является случайный аддитивный шум, статистически независимый от сигнала. Модель аддитивного шума используется тогда, когда сигнал на выходе системы или на каком-либо этапе преобразования может рассматриваться как сумма полезного сигнала и некоторого случайного сигнала. Модель аддитивного шума хорошо описывает действие зернистости фотопленки, флуктуационный шум в радиотехнических системах, шум квантования в аналого-цифровых преобразователях и т.п.

Аддитивный гауссов шум характеризуется добавлением к каждому пикселю изображения значений с нормальным распределением и с нулевым средним значением. Такой шум обычно появляется на этапе формирования цифровых изображений. Основную информацию в изображениях несут контуры объектов. Классические линейные фильтры способны эффективно удалить статистический шум, но степень размытости мелких деталей на изображении может превысить допустимые значения. Для решения этой проблемы используются нелинейные методы, например алгоритмы на основе анизотропной диффузии Перрона и Малика, билатеральные и трилатеральные фильтры. Суть таких методов заключается в использовании локальных оценок, адекватных определению контура на изображении, и сглаживания таких участков в наименьшей степени.

Импульсный шум характеризуется заменой части пикселей на изображении значениями фиксированной или случайной величины. На изображении такие помехи выглядят изолированными контрастными точками. Импульсный шум характерен для устройств ввода изображений с телевизионной камеры, систем передачи изображений по радиоканалам, а также для цифровых систем передачи и хранения изображений. Для удаления импульсного шума используется специальный класс нелинейных фильтров, построенных на основе ранговой статистики. Общей идеей таких фильтров является детектирование позиции импульса и замена его оценочным значением, при сохранении остальных пикселей изображения неизменными.

Двумерные фильтры. Медианная фильтрация изображений наиболее эффективна, если шум на изображении имеет импульсный характер и представляет собой ограниченный набор пиковых значений на фоне нулей. В результате применения медианного фильтра наклонные участки и резкие перепады значений яркости на изображениях не изменяются. Это очень полезное свойство именно для изображений, на которых контуры несут основную информацию.

При медианной фильтрации зашумленных изображений степень сглаживания контуров объектов напрямую зависит от размеров апертуры фильтра и формы маски. Примеры формы масок с минимальной апертурой приведены на рис. 16.2.1. При малых размерах апертуры лучше сохраняются контрастные детали изображения, но в меньшей степени подавляется импульсные шумы. При больших размерах апертуры наблюдается обратная картина. Оптимальный выбор формы сглаживающей апертуры зависит от специфики решаемой задачи и формы объектов. Особое значение это имеет для задачи сохранения перепадов (резких границ яркости) в изображениях.

Под изображением перепада понимаем изображение, в котором точки по одну сторону от некоторой линии имеют одинаковое значение а , а все точки по другую сторону от этой линии - значение b , b a . Если апертура фильтра симметрична относительно начала координат, то медианный фильтр сохраняет любое изображение перепада. Это выполняются для всех апертур с нечетным количеством отсчетов, т.е. кроме апертур (квадратные рамки, кольца), которые не содержат начала координат. Тем не менее квадратные рамки и кольца будут лишь незначительно изменять перепад.

Для упрощения дальнейшего рассмотрения ограничимся примером фильтра с квадратной маской размером N × N, при N=3. Скользящий фильтр просматривает отсчеты изображения слева-направо и сверху-вниз, при этом входную двумерную последовательность также представим в виде последовательного числового ряда отсчетов {x(n)} слева-направо сверху-вниз. Из этой последовательности в каждой текущей точке маска фильтра выделяет массив w(n), как W-элементный вектор, который в данном случае содержит все элементы из окна 3×3, центрированные вокруг x(n), и сам центральный элемент, если это предусмотрено типом маски:

w(n) = . (16.2.1)

В этом случае значения x i соответствует отображению слева-направо и сверху-вниз окна 3×3 в одномерный вектор, как показано на рис. 16.2.2.

Элементы данного вектора, как и для одномерного медианного фильтра, также могут быть упорядочены в ряд по возрастанию или убыванию своих значений:

r(n) = , (16.2.2)

определено значение медианы y(n) = med(r(n)), и центральный отсчет маски заменен значением медианы. Если по типу маски центральный отсчет не входит в число ряда 16.2.1, то медианное значение находится в виде среднего значения двух центральных отсчетов ряда 16.2.2.

Приведенные выражения не объясняют способа нахождения выходного сигнала вблизи конечных и пограничных точек в конечных последовательностях и изображениях. Один из простых приемов состоит в том, что нужно находить медиану только тех точек внутри изображения, которые попадают в пределы апертуры. Поэтому для точек, расположенных рядом с границами, медианы будут определены, исходя из меньшего числа точек.

На рис. 16.2.3 приведен пример очистки зашумленного изображения медианным фильтром Черненко /2i/. Зашумление изображения по площади составляло 15%, для очистки фильтр применен последовательно 3 раза.


Медианная фильтрация может выполняться и в рекурсивном варианте, при котором значения сверху и слева от центрального отсчета в маске (в данном случае x 1 (n)-x 4 (n) на рис. 16.2.2) в ряде 16.2.1 заменяются на уже вычисленные в предыдущих циклах значения y 1 (n)-y 4 (n).

Адаптивные двумерные фильтры. Противоречие по зависимости степени подавления шумов и искажения сигнала от апертуры фильтра в некоторой степени сглаживается при применении фильтров с динамическим размером маски, с адаптацией размеров апертуры под характер изображения. В адаптивных фильтрах большие апертуры используются в монотонных областях обрабатываемого сигнала (лучшее подавление шумов), а малые – вблизи неоднородностей, сохраняя их особенности, при этом размер скользящего окна фильтра устанавливается в зависимости от распределения яркости пикселей в маске фильтра. В их основе лежит, как правило, анализ яркости окрестностей центральной точки маски фильтра.

Простейшие алгоритмы динамического изменения апертуры фильтра, симметричного по обеих осям, обычно работают по заданному на основании эмпирических данных пороговому коэффициенту яркости S порог = . В каждом текущем положении маски на изображении итерационный процесс начинается с апертуры минимального размера. Величины отклонения яркости соседних пикселей A(r, n), попавших в окно размером (n x n), относительно яркости центрального отсчета A(r) вычисляются по формуле:

S n (r) = |A(r,n)/A(r) – 1|. (16.2.3)

Критерий, согласно которому производится увеличение размера маски с центральным отсчетом r и выполняется следующая итерация, имеет вид:

max < S порог. (16.2.4)

Максимальный размер маски (количество итераций), как правило, ограничивается. Для неквадратных масок, имеющих размеры (n x m), итерации могут вычисляться с раздельным увеличением параметров n и m, а также с изменением формы масок в процессе итераций.

Фильтры на основе ранговой статистики . В последние два десятилетия в цифровой обработке изображений активно развиваются нелинейные алгоритмы на основе ранговой статистики для восстановления изображений, поврежденных различными моделями шумов. Подобные алгоритмы позволяют избежать дополнительного искажения изображения при удалении шума, а также значительно улучшить результаты работы фильтров на изображениях с высокой степенью зашумленности.

Сущность ранговой статистики обычно заключается в том, что ряд 16.2.1 не включает центральный отсчет маски фильтра, и по ряду 16.2.2 производится вычисление значения m(n). При N=3 по рис. 16.2.2:

m(n) = (x 4 (n)+x 5 (n))/2. (16.2.5)

Вычисление выходного значения фильтра, которым заменяется центральный отсчет, выполняется по формуле:

y(n) =  x(n) + (1-) m(n). (16.2.6)

Значение коэффициента доверия  связывается определенной зависимостью со статистикой отсчетов в окне фильтра (например, полной дисперсией отсчетов, дисперсией разностей x(n)-x i (n) или m(n)-x i (n), дисперсией положительных и отрицательных разностей x(n)-x i (n) или m(n)-x i (n), и т.п.). По существу, значение коэффициента  должно задавать степень поврежденности центрального отсчета и, соответственно, степень заимствования для его исправления значения из отсчетов m(n). Выбор статистической функции и характер зависимости от нее коэффициента  может быть достаточно многообразным и зависит как от размеров апертуры фильтра, так и от характера изображений и шумов.

Медианные фильтры достаточно часто применяются на практике, как средство предварительной обработки цифровых данных. Специфической особенностью и основным достоинством таких фильтров является слабая реакция на отсчеты, резко выделяющиеся на фоне соседних, что позволяет применять медианную фильтрацию для устранения аномальных значений в массивах данных. Характерной особенностью медианного фильтра является его нелинейность. Во многих случаях применение медианного фильтра оказывается более эффективным по сравнению с линейными фильтрами, поскольку процедуры линейной обработки данных являются оптимальными при гауссовом распределении помех, что не всегда характерно для реальных сигналов. В случаях, когда перепады значений сигналов велики по сравнению с дисперсией гауссовского шума, медианный фильтр дает меньшее значение среднеквадратической ошибки выходного сигнала в отношении к входному, незашумленному сигналу при сравнении с оптимальными линейными фильтрами.

Медианный фильтр представляет собой оконный фильтр, последовательно скользящий по массиву сигнала, и возвращающий на каждом шаге один из элементов, попавших в окно (апертуру) фильтра. Выходной сигнал y k скользящего медианного фильтра шириной n для текущего отсчета k формируется из входного временного ряда …, x k -1 , x k , x k +1 ,… в соответствии с формулой:

y k = Me(x k-(n-1)/2 ,…, x k ,…,x k+(n-1)/2 ) ,

где Me(x 1 ,…,x n ) = x ((n+1)/2) – элементы вариационного ряда, т.е. ранжированные в порядке возрастания значений x 1 = min (x 1 ,…, x n ) ≤ x (2) x (3) ≤ … ≤ x n = max (x 1 ,…, x n ) . Ширина медианного фильтра выбирается с учетом того, что он способен подавить импульс шириной (n-1)/2 отсчетов, при условии, что n – нечетное число.

Таким образом, медианная фильтрация реализуется в виде процедуры локальной обработки отсчетов в скользящем окне, которое включает определенное число отсчетов сигнала. Для каждого положения окна выделенные в нем отсчеты ранжируются по возрастанию или убыванию значений. Средний по своему положению отсчет в ранжированном списке называется медианой рассматриваемой группы отсчетов, если число отсчетов нечетно. Этим отсчетом заменяется центральный отсчет в окне для обрабатываемого сигнала. При четном количестве отсчетов медиана устанавливается, как среднее арифметическое двух средних отсчетов. В качестве начальных и конечных условий фильтрации обычно принимается текущее значение сигнала, либо медиана находится только для тех точек, которые вписываются в пределы апертуры.

Благодаря свои характеристикам, медианные фильтры при оптимально выбранной апертуре могут сохранять без искажений резкие границы объектов, подавляя некоррелированные и слабо коррелированные помехи и малоразмерные детали. Ваналогичных условиях алгоритмы линейной фильтрации неизбежно «смазывают» резкие границы и контуры объектов.

Достоинства медианных фильтров.

    Простая структура фильтра, как для аппаратной, так и для программной реализации.

    Фильтр не изменяет ступенчатые и пилообразные функции.

    Фильтр хорошо подавляет одиночные импульсные помехи и случайные шумовые выбросы отсчетов.

Недостатки медианных фильтров.

    Медианная фильтрация нелинейна, так как медиана суммы двух произвольных последовательностей не равна сумме их медиан, что в ряде случаев может усложнять математический анализ сигналов.

    Фильтр вызывает уплощение вершин треугольных функций.

    Подавление белого и гауссового шума менее эффективно, чем у линейных фильтров. Слабая эффективность наблюдается также при фильтрации флюктуационного шума.

    При увеличении размеров окна фильтра происходит размытие крутых изменений сигнала и скачков.

Недостатки метода можно уменьшить, если применять медианную фильтрацию с адаптивным изменением размера окна фильтра в зависимости от динамики сигнала и характера шумов (адаптивная медианная фильтрация). В качестве критерия размера окна можно использовать, например, величину отклонения значений соседних отсчетов относительно центрального ранжированного отсчета /1i/. При уменьшении этой величины ниже определенного порога размер окна увеличивается.