Программируем Raspberry Pi на голом железе. Программирование Raspberry Pi – это легко, особенно на Python

Raspberry PI - это устройство имеющее достаточную производительность для того чтобы на его основе могли быть построены роботы способные распознавать образы, выполнять работу людей и прочие подобные устройства для автоматизации и выполнения сложных вычислительных действий. Т.к. тактовая частота процессора Raspberry PI 3 м.б. 1.2 ГГц а его разрядность 32 бита то Raspberry PI 3 значительно превосходит обычное Arduino у которого тактовая частота как правило 16 МГц а разрядность микроконтроллера 8 бит, Arduino безусловно занимает своё место в выполнении операций не требующих большой производительности но когда её уже не хватает Raspberry PI "приходит на помощь" и перекрывает такой большой диапазон возможных применений что можно быть абсолютно уверенным в целесообразности приобретения данного одноплатного компьютера Raspberry PI 3 (можно заказать по ссылке) . Т.к. Raspberry PI - это компьютер то для того чтобы его использовать нужно на него установить операционную систему (хотя существуют обходные пути но всё же лучше и проще установить операционную систему (ос далее)). Существует много ос которые можно установить на Raspberry Pi но одной из самых популярных (для использования с Raspberry Pi), наиболее подходящих для начинающих является ос Raspbian. Для того чтобы установить ос на Raspberry Pi понадобиться micro sd карта с расширителем для того чтобы её можно было вставить в обычный компьютер и записать на неё ос. Sd карта должна иметь не менее 4Гб памяти при установке полной версии Raspbian и не менее 8Гб для установки минимальных версий Raspbian. Минимальные версии могут не иметь (и скорее всего не имеют) графического интерфейса и много всего остального что может считаться лишним и занимает место. Для избежания проблем с отсутствием необходимых файлов, можно поставить полную версию. Можно использовать SD карту 10го класса и с 32Гб памяти (проверено работает (как см. видео ниже)). После приобретения карты памяти её надо вставить в компьютер в соответствующий разъём, после этого посмотреть с какой буквой появился диск в разделе "мой компьютер" и запомнить, потом надо скачать ос с официального сайта https://www.raspberrypi.org/downloads/raspbian/ нажав кнопку "Download ZIP" под "RASPBIAN JESSIE" для скачивания полной версии или под "RASPBIAN JESSIE LITE" для скачивания облегчённой но, для начинающих, лучше выбрать "RASPBIAN JESSIE" т.е. полную версию. После скачивания архива "RASPBIAN JESSIE" его нужно разархивировать, потом скачать программу (или от сюда https://yadi.sk/d/SGGe1lMNs69YQ), установить её, открыть, далее нужно в правом верхнем углу указать букву диска (запомненную ранее), найти разархивированный образ ос

И нажать кнопку "write".

После чего выведется окно с предупреждением и в этом окне надо нажать кнопку "Yes",

После того как запись закончиться и появится окно сообщающее об успешной записи (Write Successful) нужно нажать кнопку "Ok" в этом окне.

Потом закрыть программу, вытащить SD карту безопасным способом и вставить в Raspberry Pi.

Далее можно подключить к Raspberry Pi usb клавиатуру (или ps2 через переходник), usb мышь и монитор или телевизор через hdmi кабель или можно подключить ethernet кабель (но это для опытных пользователей поэтому далее рассмотрим первый вариант). После этого надо подключить питание через micro usb например от зарядного устройства от смартфона. После подключения питания начнётся установка операционной системы. Как правило в новых (на момент написания данной статьи) версиях ос уже настроена возможность связи с Raspberry Pi по SSH и поэтому для того чтобы настроить связь с Raspberry Pi 3 по wifi достаточно настроить только wifi, Для этого в правом верхнем углу экрана есть значёк на который нужно нажать и выбрать wifi,

После чего вписать пароль от данного wifi в появившееся текстовое поле,

После этих действий wifi на Raspberry Pi 3 будет настроен и дальше можно будет не используя провода программировать Raspberry Pi 3 удалённо по wifi. После настройки Raspberry Pi 3 можно выключить вписав в командной строке (в программе LXTerminal которую можно открыть двойным кликом по иконке программы) команду sudo halt или нажав соответствующие кнопки выключения в графическом режиме, после окончательного выключения можно отключить питание и при следующей подаче питания Raspberry Pi 3 включиться с wifi. Теперь чтобы программировать Raspberry Pi 3 по wifi нужно выяснить какой у него ip адрес. Для того чтобы это сделать надо подать питание на Raspberry Pi 3, дождаться окончания загрузки ос, зайти в веб интерфейс маршрутизатора (вписав в строке браузера 192.168.1.1 или то что надо для входа в веб интерфейс, ввести логин и пароль), найти вкладку DHCP Leases или что то подобное, найти там строку с raspberry и ip адрес Raspberry Pi 3.

Далее нужно открыть программу PuTTY (если её нет то перед этим скачать (или ) и установить) поставить порт 22, соединение по SSH, вписать в поле "Host Name (or IP Adress)" ip адрес Raspberry Pi 3,

После чего нажать кнопку "Open" внизу окна, далее появиться чёрное окно с предложением ввести логин. По умолчанию логин "pi" - его надо ввести и нажать enter. Далее надо ввести пароль, по умолчанию "raspberry". При вводе пароля он не отображается - это нормально. После того как пароль введён невидимыми буквами нужно нажать enter и если всё было сделано правильно то мы получим доступ к Raspberry Pi 3 если нет то нужно повторить действия. После того как получен доступ к Raspberry Pi 3 можно его программировать, для начала нужно войти в папку "pi" для этого надо вписать команду

И нажать enter (после cd обязательно пробел).
Теперь можно открыть текстовый редактор nano. Nano - это специальный текстовый редактор который есть на большинстве ос на подобии Linux и в котором можно написать программу для Raspberry Pi. Для открытия этого редактора и одновременно с этим создания файла с названием "first" и расширением "py" нужно вписать команду

И нажать enter. Откроется редактор nano и можно заметь что его интерфейс немного отличается но в основном - это то же чёрное поле в которое надо вписывать команды. Т.к. мы хотим управлять портами ввода вывода общего (GPIO) то прежде чем запустить программу по управлению этими портами, нужно подключить к ним какое нибудь устройство чтобы можно было видеть что управление получилось. Надо также отметить что пины настроенные как выходы у Raspberry Pi могут выдавать очень небольшой ток (предполагаю что до 25мА) и учитывая что Raspberry Pi это всё таки не самое дешёвое устройство то настоятельно рекомендуется позаботиться от том чтобы нагрузка на выводы не была слишком большой. Маломощные индикаторные светодиоды, как правило, могут использоваться с Raspberry Pi т.к. им для того чтобы светиться достаточно небольшого тока. Для первого раза можно сделать приспособление с разъёмом, двумя встречно параллельно включёнными светодиодами и резистором с сопротивлением 220Ом включённым последовательно со светодиодами. Т.к. сопротивление резистора 220Ом, ток обязательно проходит через этот резистор и нет параллельных путей его прохода, напряжение на выводах 3.3В то ток не будет больше чем 3.3/220=0.015А=15мА. Подключить это можно к свободным GPIO например к 5 и 13 как на схеме

(распиновка взята с https://en.wikipedia.org/wiki/Raspberry_Pi), выглядеть это может примерно так:

После того как всё аккуратно и правильно подключено и есть уверенность в том что ничего не сгорит можно скопировать в редактор NANO первую простенькую программу на языке Python

Import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
GPIO.setup(13, GPIO.OUT)
GPIO.setup(5, GPIO.OUT)
GPIO.output(13, True)
GPIO.output(5, False)
time.sleep(1)
GPIO.output(13, False)
GPIO.output(5, True)
time.sleep(1)
GPIO.output(13, True)
GPIO.output(5, False)
time.sleep(1)
GPIO.output(13, False)
GPIO.output(5, True)
time.sleep(1)
GPIO.output(13, True)
GPIO.output(5, False)
time.sleep(1)
GPIO.output(13, False)
GPIO.output(5, True)
time.sleep(1)
GPIO.cleanup()

Потом нажать

После выхода из редактора NANO можно ввести команду

Sudo python first.py

После чего светодиоды помигают некоторое количество раз. Т.е. получилось управлять портами ввода вывода общего назначения по wifi! Теперь давайте рассмотрим программу и выясним как это получилось.
Строка:

Import RPi.GPIO as GPIO

Это подключение библиотеки "GPIO" для управления выводами.
Строка:

Это подключение библиотеки "time" для задержек.
Далее идёт установка режима GPIO:

GPIO.setmode(GPIO.BCM)

Конфигурация выводов 5 и 13 как выходы:

GPIO.setup(13, GPIO.OUT)
GPIO.setup(5, GPIO.OUT)

Установка логической единицы на выводе 13, установка логического нуля на выводе 5:

GPIO.output(13, True)
GPIO.output(5, False)

Задержка

Установка логического нуля на выводе 13, установка логической единицы на выводе 5:

GPIO.output(13, False)
GPIO.output(5, True)

Переводит все выводы в исходное состояние и программа завершается. Т.о. можно управлять любыми свободными пинами по wifi и если сделать питание 5В от аккумулятора то уже можно сделать какого нибудь автономного робота или устройство не привязанное проводами к чему либо стационарному. Язык программирования Python (питон) отличается от си подобных языков, например вместо точки с запятой, для завершения команды, в питоне используется перевод строки, вместо фигурных скобок используется отступ от левого края который делается клавишей Tab. В общем Python это очень интересный язык на котором получается легко читаемый простой код. После того как работа (или игра) с Raspberry PI 3 закончена можно его выключить командой

И после полного выключения убрать питание. При подаче питания Raspberry PI 3 включается и с ним снова можно работать (или играть). Заказать Raspberry pi 3 можно по ссылке http://ali.pub/91xb2 . О том как делается настройка Raspberry PI 3 и управление его пинами можно посмотреть на видео:

После успешного мигания светодиодами можно приступить к полномасштабному изучению данного компьютера и созданию проектов используя возможностями Raspberry PI 3 которые ограничены лишь вашим воображением!

Программирование Raspberry Pi 3 - это как раз то, для чего большинство людей и берет этот одноплатный компьютер. Здесь сразу же следует отметить, что в этом материале не будет изложено инструкций, подробно раскрывающих, как и что нужно делать - таких в «сети» полно. Однако, рекомендуется читать официальную документацию и специализированные формы. Вместо этого в статье будут рассмотрены основные моменты, из которых станет понятно, что на Raspberry Pi программирование не отличается сложностью.

Python - это основной язык Raspberry Pi

Почти все владельцы Raspberry Pi понимают, что означает первое слово в названии одноплатника - "малина". Однако второе многие интерпретируют неверно.

Некоторые считают, что оно означает "Пи" (3,14…), другие думают, что это первые две буквы слова Pie (пирог, и в этом есть смысл - "малиновый пирог"). Однако на деле все иначе.

Pi - это сокращение от Python, только с заменой y на i. Так часто делают в программировании. Взять, например, хотя бы KDE, где во многих программах вместо С написано K (в угоду стилю): Konsole (правильно - Console), Konqueror (Conqueror) и т. д.

То есть, как не трудно догадаться, в Raspberry основным языком является "Пайтон". Поэтому владельцу "Малины", который пока не знает никакого ЯП, рекомендуется изучать именно этот. Причин, почему Raspberry Pi 3 программирование на Python наиболее лучшее решение, существует множество.

Вот лишь некоторые из них:

  • работа из коробки в Raspbian;
  • наличие обширной, хорошо документированной официальной библиотеки, которая уже включена в пакет;
  • простота языка и т. д.

Здесь по понятным причинам не будем рассказывать о языке и особенностях программирования на нем - это можно и нужно делать на официальных ресурсах (или, если не позволяет плохое знание английского - на специализированных).

Вместо этого будет рассмотрено, насколько легко можно программировать "Малину". Для примера возьмем Raspberry Pi 3 GPIO программирование. Сделаем предположение, что в наличии имеется все необходимое: провода, светодиод, резистор и прочее, а также присутствует понимание распиновки - нумерации пинов. Также предположим, что светодиод подключен к 11 порту.

Написанный ниже код включает лампочку на 5 секунд, а затем выключает ее:

# вначале подключим необходимую библиотеку

import RPi.GPIO as GPIO

# также понадобится библиотека, которая отвечает за ожидание (она нужна, чтобы установить интервал включения и выключения лампочки)

# чтобы запустить GPIO, понадобится выполнить следующую функцию

GPIO.setmode(GPIO.BOARD)

# теперь Python знает о GPIO, и ему можно указать на то, с каким портом нужно будет работать и что он должен делать (в данном случае - 11-м и он будет работать на выход)

GPIO.output(11, 1)

# теперь выключим (0 - значит false)

GPIO.output(11, 0)

Указанный код можно скопировать, вставить в документ и сохранить его с расширением.py, расположив, например, в домашней директории. Затем его нужно запустить командой: python ~./имя_файла.py.

Если все работает, то оборудование исправно.

Следует отметить, что, если вы плохо понимаете вышеуказанный код, обратитесь к документации и изучите основы программирования на Python, а также библиотеку GPIO. А если у вас есть хотя бы базовое понимание любого ЯП, то осознаете, что приведенный пример предельно прост.

Программирование на других языках под Raspberry

Программирование на C для Raspberry Pi или на других языках программирования почти ничем не отличается от того, что предполагает написание кода под другими платформами. Единственное - необходимы специальные библиотеки.

Библиотека WiringPi для работы с GPIO

Если интересует Raspberry Pi программирование на C/С++ и работа с GPIO, то требуется установить в систему непосредственно сам gcc, а затем библиотеку wiringPi - ее можно найти на GitHub. В описании к ней присутствует мануал по использованию.

Следует отметить, что для установки библиотек из GitHub, требуется утилита GIT. Если в системе ее нет, понадобится поставить из репозитория (полное имя: git-core).

Программирование "Малины" при помощи Java

Желающие программировать Raspberry Pi на Java, должны обратить внимание на Pi4J - библиотеку, которая предназначена специально для работы с "Малиной". Загрузить и узнать о ее особенностях можно на официальном сайте проекта.

Интересно то, что изначально "Малина" разрабатывалась непосредственно для обучения детей программированию. Создатель этого устройства заметил, что уровень понимания функционирования компьютеров у современных студентов значительно ниже, чем у тех, кто учился в 90-х. Он связал это с тем, что вычислительные устройства стали предельно просты: если раньше увлеченным электроникой детям и подросткам приходилось разбираться в командах терминала и даже самостоятельно писать код, теперь все делается посредством нажатия на пару кнопок.

Поэтому, естественно, предусмотрено визуальное программирование Raspberry Pi. В частности, для этого применяется язык Scratch со специальным сервером - GPIOSERVER. В Сети существует множество мануалов, которые помогают освоиться с соответствующими программами, поэтому рассматривать их смысла нет.

Перечисленными языками не ограничиваются возможности "Малинки". С ней можно взаимодействовать в том числе и при помощи PHP, Ruby, Perl и прочих ЯП. Почти под каждый популярный язык существуют хоть и не официальные, но зато рабочие и достаточно функциональные библиотеки. Однако опять следует упомянуть, что лучше для программирования Raspberry использовать именно "Пайтон".

До сих пор Raspberry Pi остается одним из самых популярных технологических гаджетов.На эту плату Вы можете установить практически любую операционную систему. Но сегодня мы поговорим о том, как писать программы для этой платы без операционной системе, пользуясь лишь аппаратными средствами.

В чем подвох?

На первый взгляд задача кажется тривиальной: скачиваем keil, создаем проект… Но все не так просто. Все среды программирования(keil, IAR, Atolic) поддерживают максимум ARM9.У нас же ARM11. Это связано с негласным правилом, что на голом железе пишут до ARM9, а после на Линуксе. Но все-таки есть одна лазейка: arm-none-eabi-gcc поддерживает любой ARM.
Вторая проблема заключается в том, что под данный процессор(BCM2835) нет никаких конфигурационных файлов, header"ов и т.д. Здесь нам на помощь придет загрузчик Raspberry Pi. И ничего, что он пропритетарный. Он выполняет две функции: инициализирует процессор и его периферию, а также передает управление ядру kernel.img. Мы просто замаскируем свою программу под ядро и загрузчик её запустит.

Что нам понадобится?

1) Сама Raspberry Pi, карта памяти к ней и питание.
2) Даташит на процессор
3) Компьютер с установленным Linux (но может быть можно и на Винде. Не знаю, не пробовал).
4) Кросскомпилятор, установленный на компьютере из пункта 3. Я использую arm-none-eabi-gcc
5) Содержимое этой папочки.

Приготовления.

Нам нужно отформатировать карту памяти в FAT16 и закинуть на нее содержимое этой папки . Это загрузчик плюс ядро. Затем удаляем оттуда файлы kernel.img и kernel_emergency.img. Это ядро Linux, а оно нам не нужно.

Первая программа.

Теперь мы можем приступить к написанию первой программы. Создаем файл main.c и пишем следующий код
int main (void) { while(1) { } } void exit (void) { while(1) { } }
Как видите, эта программа ничего не делает. Функция exit зачем-то нужна компилятору.
Теперь соберем её.
arm-none-eabi-gcc -O2 -mfpu=vfp -mfloat-abi=hard -march=armv6zk -mtune=arm1176jzf-s -nostartfiles main.c -o kernel.elf
arm-none-eabi-objcopy kernel.elf -O binary kernel.img

Полученный файл kernel.img кидаем на карту памяти. Готово!

GPIO

Вряд ли Вас устроит программа, которая не будет делать абсолютно ничего. Сейчас попробуем зажечь лампочку.
Для начала объявим адрес, по которому лежит GPIO(это можно прочитать в даташите).
#define GPIO_BASE 0x20200000UL

И объявим переменную, которая определяют, что порт настроен на выход (GPIO_GPFSEL1) и переменную, подающую низкий уровень(то есть лампочка горит) на порт (GPIO_GPCLR0).
#define GPIO_GPFSEL1 1
#define GPIO_GPCLR0 10

Ну и наконец модифицируем главную функцию для зажигания лампочки:
volatile unsigned int* gpio; int main(void) { gpio = (unsigned int*)GPIO_BASE; gpio |= (1 << 16); gpio = (1 << 16); while(1) { } }

Собираем, прошиваем и радуемся.

В следующей части попробуем поиграться с таймерами и прерываниями.

Вычислительных возможностей платы Raspberry Pi 3(далее по тексту Rpi3) более чем достаточно для разработки программ сразу в целевой системе. Однако процесс разработки можно ускорить и сделать более комфортным, если разрабатывать программное обеспечение для Rpi3 на своем персональном компьютере.

В данной статье я собираюсь описать процесс настройки кросс-компиляции в Eclipse под Windows. Также будет описана настройка Eclipse для работы с удаленной системой Raspbian на Rpi3.

Если вы впервые сталкиваетесь с Eclipse, то установить последнюю версию можно по ссылке Eclipse CDT .
Виртуальную машину Java, необходимую для работы Eclipse, можно загрузить по ссылке JRE .

После установки указанных выше компонентов интегрированная среда разработки Eclipse CDT сможет быть запущена на вашем компьютере. В качестве вспомогательных утилит будем использовать msys из пакета MinGW, поэтому необходимо также загрузить MinGW .

Осталось установить инструментальные средства для кросс-компиляции программ.
Для этого необходимо их загрузить по следующей ссылке toolchain .
На указанном сайте также имеется инструкция на английском языке по установке инструментария tutorial .

После установки инструментария в указанном вами каталоге будут находится также дополнительные утилиты в подкаталоге TOOLS:

  • – утилита для записи образа операционной системы Rpi3 на карту памяти.
  • SmarTTY – консольный SSH – клиент, позволяющий установить соединение с платой по протоколу SSH. Помимо стандартных функций имеет возможность загрузки файлов на плату из меню утилиты.
  • UpdateSysroot – командный файл Windows , запускающий процесс синхронизации файловой системы sysroot платы и инструментария.

Если вы только что приобрели плату Rpi3 и еще не успели установить операционную систему на карту памяти, то утилита WinFlashTool поможет вам это сделать.
Необходимо загрузить с официального источника образ операционной системы Raspbian .
Дальше распакуйте загруженный образ, установите карту памяти в кард-ридер и запишите на нее с помощью WinFlashTool образ операционной системы.

Настройка беспроводной сети WLAN на плате RPi3 описана в моей предыдущей статье.

С помощью утилиты SmarTTY установите соединение с платой. Это необходимо для исключения проблем во время настройки удаленного соединения в Eclipse.
Создайте новое соединение, указав IP -адрес платы, логин и пароль для входа (значения по-умолчанию для логина и пароля pi и raspberry соответственно).



Теперь нужно провести синхронизацию файловой системы sysroot. Для чего это нужно?
Представьте ситуацию, когда вы установили самую последнюю версию образа Raspbian и не выполнили синхронизацию.
В новой версии были добавлены или изменены заголовочные файлы и файлы библиотек. Работая с кросс-компилятором вы используете старые, не идентичные с последней версией системы, заголовочные и библиотечные файлы из каталога sysroot. Поэтому нет никакой гарантии, что успешно собранная на компьютере программа будет работать внутри платы RPi3.
Запускаем скрипт UpdateSysroot на выполнение и наблюдаем за обновлением файлов на компьютере (это может занять несколько десятков минут).

Настало время настроить удаленное соединение с платой Rpi3 в Eclipse . Запускаем Eclipse CDT , выбираем в главном меню пункт Window->Show View->Other… В открывшемся окне выбираем «remote systems».

После этого в нижней части экрана появиться новая вкладка «Remote Systems». В этой вкладке необходимо определить новое соединение, нажав на первую кнопку справа.

В открывшемся окне выбираем тип соединения «Linux».

После проделанных манипуляций в закладке «Remote Systems» появится новое соединение, которое имеет подразделы:

  • Sftp Files – в этом разделе можно просматривать содержимое удаленной файловой системы. Также возможно выполнять копирование файлов с помощью перетаскивания (Drag and Drop) из локального проекта на удаленную машину и обратно.
  • Shell Processes – раздел позволяет просмотреть запущенные на удаленной машине процессы.
  • Ssh Shells – в этом разделе можно открыть новый SSH -терминал и вводить команды прямо из Eclipse. Надобность в отдельной утилите при этом отпадает.






Таким образом с помощью закладки «Remote Systems» мы сможем копировать собранные на компьютере программы в файловую систему Rpi3 , запускать их на выполнение через Ssh Shells и удалять ненужный процесс в разделе Shell Processes .
Настало время создать новый проект в Eclipse и написать простую демонстрационную программу.
Создаем новый проект из главного меню File->New->C Project.

Для сборки я использую собственный , поэтому тип проекта нужно выбрать Makefile project->Empty Project

Далее вы можете просто скопировать мой Makefile в буфер клавиатуры (Ctrl+C) и вставить его в пустой проект Rpi3_Project (Ctrl+V).

Открыв Makefile в первой его строке после комментария вы увидите список используемых целей:

.PHONY: test project all clean

  • test – проверяет установлен ли в системе кросс-компилятор arm-linux-gnueabi-gcc и утилита make.
  • project - создает структуру каталогов внутри проекта.
  • all — производит сборку проекта.
  • clean — производит очистку проекта от временных файлов(в том числе исполняемого).

Теперь нужно убедиться в наличии инструментальных средств. Для этого необходимо выполнить команду make test.
Но сначала нужно добавить все четыре цели в закладку Make Target в правой части экрана.

Двойным щелчком мыши по цели test запускаем ее на исполнение и видим в окне Console примерно следующее:

Если сообщение не было выведено в консоль не смотря на то, что инструментарии arm-linux-gnueabihf и MinGW были ранее установлены, то это может означать только то, что не прописаны пути к инструментам в системной переменной Path . Необходимо добавить в Path путь к каталогу MinGW/msys/1.0/bin и каталогу bin пакета arm-linux-gnueabihf.

Теперь создадим структуру каталогов внутри проекта двойным щелчком на цели project (make project).

Makefile организован таким образом, что для компиляции исходных файлов их названия должны быть добавлены в переменную SRC, все остальные исходники не будут компилироваться даже если они расположены внутри каталога /src.

Структура каталогов проекта такова:

  • bin – каталог, содержащий исполняемый файл после сборки.
  • Debug – каталог с отладочной версией программы, которая не содержит оптимизации кода и содержит отладочную информацию.
  • Release – каталог с финальной версией программы, которая содержит оптимизированный код и не содержит отладочной информации.
  • inc – каталог для заголовочных файлов.
  • obj – содержит временные файлы сборки проекта, имеет подкаталоги Debug и Release.
  • src – исходные файлы проекта.

С помощью данного Makefile можно компилировать исходные файлы, написанные на таких языках программирования как C , C++, Assembler. При этом можно использовать все доступные языки программирования для создания одной программы.

В каталоге /src создадим новый исходный файл main.c, добавим в него следующие строки:

#include int main(int argc, char **argv); int main(int argc, char **argv) { printf("Welcome to the Raspberry Pi 3 programming\n"); return 0; }/* main */

#include

int main (int argc , char * * argv ) ;

int main (int argc , char * * argv )

printf ("Welcome to the Raspberry Pi 3 programming\n" ) ;

return 0 ;

} /* main */

Проверим, чтобы переменная SRC содержала название исходного файла main.c .
Дальше выполним сборку проекта, запустив цель all .
Теперь можно скопировать полученный исполняемый файл в домашний каталог на целевой плате используя перетаскивание файла мышью.

Сделаем правый клик мышью на разделе Ssh Shells для открытия контекстного меню, в котором необходимо выбрать Launch Shell . Откроется новая вкладка Remote Shell , в поле Command которой можно вводить команды оболочки.

Установим права доступа для скопированного файла Rpi3_Project с помощью команды:

sudo chmod 777 Rpi3_Project

Появление в 2012 году миникомпьютера Raspberry Pi пробудило творческую жилку у многих людей, что породило множество новаторских подходов к вычислительным системам, не виданных со времен восьмибитников.


Действительно, можно сказать, что вновь наступил золотой век компьютерной техники. В связи с этим ниже будут представлены 25 проектов, которые можно сделать с Raspberry Pi.




Предоставляет огромный выбор корпусов различных оттенков, выполненных по современной технологии литья пластмасс. И цена у них вполне приемлемая.


2. Сделай свой собственный корпус для Pi




Хотите сделать собственный корпус? В хранится чертеж корпуса, который можно распечатать. Этот шаблон можно вырезать и склеить.

3. Смотрим видео с Raspberry Pi




Теперь, когда ваш Pi находится в красивом корпусе, самое время подключить его к телевизору и смотреть медиа-контент с помощью ОС OpenELEC. Изучив инструкцию , вы сможете настроить всё в кратчайшие сроки.


4. Мини веб-браузер




Поскольку ваш Raspberry Pi подключен к телевизору, то почему бы не посерфить в сети на большом экране? Для этих целей вам нужно что-нибудь получше Midori, поэтому попробуйте Chromium. Просто зайдите в терминал, наберите sudo apt- get install chromium-browser и нажмите Enter.


5. ZX Spectrum Pi




ZX Spectrum получил вторую жизнь внутри Raspberry Pi. Для эмуляции этой 8-битной прелести напечатайте в терминале sudo apt-get install fuse-emulator-common и нажмите Enter. Введите «y» для подстверждения скачивания и установки.


После того, как Fuse будет установлен, и вы вернетесь к командной строке, напишите sudo apt-get install spectrum-roms fuse-emulator-utils и нажмите Enter. И затем, снова вернувшись к командной строке, напечатайте sudo amixer cset numid=3 2 и щелкнитеEnter.





Если Spectrum пробудил ваш аппетит к олдскулу, то оцените проект RetroPie. С помощью него вы можете эмулировать сокровища таких старых консолей, как SNES, Mega Drive и других подобных. Установка выполняется не слишком быстро, но результат того стоит. Следуйте этим инструкциям , и у вас все получится. можно бесплатно скачать классические игры.






8. Windows 3.0 на Pi




Раз уж мы начали говорить о ретро, то можно попробовать запустить DOS 6.22 и Windows 3.0 с помощью QEMU. Для начала посетите Kirsle и извлеките образ VirtualBox (VDI), затем, воспользовавшись VirtualBox, конвертируйте VDI в IMG, напечатав vboxmanage clonehd "image.vdi" "image.img" --format RAW (вместо image введите название вашего образа).


Далее инсталлируйте QEMU, прописав sudo apt-get install qemu . Затем конвертируйте исходный образ в образ QEMU qcow, напечатав qemu- img convert -f raw image.img -O qcow2 image.qcow . Наконец запустите образ, введя qemu image.qcow . Все это, конечно, далеко от совершенства и имеет тенденцию к подвисанию, но все же забавная штука!


9. Робототехника



Роботы — это прикольно, за исключением, наверно, тех, которые пытаются убить всех человеков. Существует множество проектов, связанных с робототехникой. В электронном журнале MagPi (со стр. 9) приводится описание, как сделать роборуку, приводимую в движение с помощью Raspberry Pi.


10. Еще про роботов



Поскольку мы затронули тему про роботов, то есть еще один замечательный проект , предполагающий совместное использование платформы Big Track и Raspberry Pi.


11. Обучение программированию


Raspberry Pi являет собой прекрасную основу для программирования с большим выбором языков программирования. Почитайте о некоторых из них на eLinux wiki .





Scratch — это язык программирования, который легко освоить и с которым достаточно просто работать. Он хорошо подходит для детей, начинающих изучать программирование, а также для создания серьезных проектов. Познакомьтесь с этим .





Хотя вы с помощью эмулятора можете играть в игры, предназначенные для Spectrum, программирование на языке BASIC через эмулятор не представляет собой то же самое. В таком случае воспользуйтесь SpecBAS , являющегося ремейком Sinclair BASIC.





Raspberry Pi мал да удал! Он представляет собой превосходный хакерский инструмент. Попробуйте запустить на нем проверочную систему обхода безопасности .


15. Firefox OS на Pi





16. RISC OS для Pi




Если вы тоскуете по прошлому, тогда попробуйте запустить RISC OS на своемRaspberry Pi. Файлы и полная инструкция находятся .


17. Клавиатура из алюминиевых банок




Клавиатура из пивных банок? Есть и такая! Команда Robofun подключила плату Arduinoвместе 40 алюминиевыми банками к Raspberry Pi. Посмотреть на это можно .


18. Сервер BitTorrent




Если вы частый гость различных торрент-сайтов, так почему бы не создать специальную торрент-машину? Просто подключите ее к своему роутеру и оставьте ее делать свое дело. Документацию, скрипты и файлы можно найти на snapdragon:IT blog .


19. Облачный сервер




Хотите организовать свой облачный сервер? Благодаря OwnCloud вы сможете это сделать. Следуйте инструкциям и настройте скрипт с petRockBlog . И в кратчайшие сроки вы станете облачным провайдером.


20. Беспилотник на Raspberry Pi




Это блестящая концепция — БПЛА на Raspberry Pi. Только подумайте о возможностях! Данное творение Maggie представляет собой, возможно, первый квадрокоптер на основеRaspberry Pi.


21. Погодная станция




Позволит создать прекрасный школьный проект — погодную станцию на Raspberry Pi. Используя погодную станцию с USB компании Maplin этот миникомпьютер может регистрировать всю необходимую информацию.


22. 10-дюймовый сенсорный экран




Используя 10-дюймовый сенсорный экран и преобразователь HDMI-LVDS, вы можете сделать тачскрин с Raspberry Pi. Полный набор может быть куплен на Chalkboard Electronics и затем собран, как в ролике ниже.



23. Домашняя автоматика








Любители игры Minecraft, ликуйте! Она доступна и на Raspberry Pi .





Обычные платы Raspberry Pi предназначены для простой вычислительной работы. Но, ознакомившись с инструкцией ребят из Университета Саутгемптона, вы сможете сделать из своего миникомпьютера суперкомпьютер.


Перевод сайт





   Благодарим Вас за интерес к информационному проекту сайт.
   Если Вы хотите, чтобы интересные и полезные материалы выходили чаще, и было меньше рекламы,
   Вы можее поддержать наш проект, пожертвовав любую сумму на его развитие.