Этапы репродукции вируса. Типы инфицирования клеток вирусами. Репродуктивный цикл вирусов. Основные этапы репродукции вирусов. Адсорбция вириона к клетке. способность вызывать образование иммунитета у привитых животных

Подготовительная фаза репродукции вирусов

Лекция 4

Экспрессия вирусного генома. Генетика вирусов

Комплексная цель модуля

Комплексная цель модуля состоит в крайне важно сти объединить лекционный материал, касающийся всœех возможных способов реализации генетического потенциала вирусов, дать студентам представление об базовых этапах репродукции вирусов, биологической сущности всœех фаз и этапов их размножения. В задачу лекционного материала, объединœенного в данный модуль входит крайне важно сть обобщить информацию о репродукции различных вирусов с их генетическим потенциалом, показать сущность процессов. контролирующих наследственность и изменчивость вирусов.

Модуль состоит из четырех лекций, материал которых позволяет решить поставленную цель.

Процесс репродукции вирусов должна быть условно разделœен на две фазы. Первая фаза охватывает события, которые ведут к адсорбции и проникновению вируса в клетку, освобождению его внутреннего компонента и мо­дификации его таким образом, что он способен вызвать инфекцию. Соответственно, первая фаза включает в себя три стадии: 1) адсорбция вируса на клетках; 2) проникно­вение в клетки; 3) раздевание вируса в клетке. Эти стадии направлены на то, чтобы вирус был доставлен в соответствующие клеточные структуры, и его внутренний компонент был освобожден от защитных оболочек. Как только эта цель достигнута͵ начинается вторая фаза репродукции, в течение которой происходит экспрессия вирусного генома. Эта фаза включает в себя стадии: 1) транскрипции, 2) трансляции информационных РНК, 3) репликации генома, 4) сборки вирусных компонентов. Заключительной стадией репродукции является выход вируса из клетки.

АДСОРБЦИЯ

Взаимодействие вируса с клеткой начинается с про­цесса адсорбции, т. е. прикрепления вирусных частиц к клеточной поверхности. Процесс адсорбции возможен при наличии соответствующих рецепторов на поверхности клетки и ʼʼузнающихʼʼ их субстанций на поверхности вируса. Самые начальные процессы адсорбции имеют неспецифический характер, и в базе их может лежать электростатическое взаимодействие положительно и отри­цательно заряженных группировок на поверхности вируса и клетки. При этом узнавание клеточных рецепторов вирус­ными белками, ведущее к прикреплению вирусной частицы к клетке, является высоко специфическим процессом. Белки на поверхности вируса, узнающие специфические группировки на плазматической мембране клетки и обус­ловливающие прикрепление к ним вирусной частицы, называются прикрепительными белками.

Вирусы используют рецепторы, предназначенные для прохождения в клетку необходимых для ее жизнедеятельности веществ: питательных веществ, гормонов, факторов роста и т. д. Рецепторы могут иметь разную химическую природу и представлять собой белки, углеводный компо­нент белков и липидов, липиды. Рецепторами для вирусов гриппа и парамиксовирусов является сиаловая кислота в составе гликопротеидов и гликолипидов (ганглиозидов), для рабдовирусов и реовирусов - также углеводный компонент в составе белков и липидов, для пикорна-и аденовирусов - белки, для некоторых вирусов - липи­ды. Специфические рецепторы играют роль не только в прикреплении вирусной частицы к клеточной поверх­ности. Οʜᴎ определяют дальнейшую судьбу вирусной частицы, ее внутриклеточный транспорт и доставку в определœенные участки цитоплазмы и ядра, где вирус способен инициировать инфекционный процесс. Вирус может прикрепиться и к неспецифическим рецепторам и даже проникнуть в клетку, однако только прикрепление к специфическому рецептору приведет к возникновению инфекции.

Прикрепление вирусной частицы к клеточной поверх­ности вначале происходит путем образования единичной связи вирусной частицы с рецептором. При этом такое прикрепление непрочно, и вирусная частица может легко оторваться от клеточной поверхности (обратимая адсорб­ция). Для того чтобы наступила необратимая адсорбция, должны появиться множественные связи между вирусной частицей и многими молекулами рецепторов, т. е. должно произойти стабильное мультивалентное прикрепление. Количество молекул клеточных рецепторов в участках адсорбции может доходить до 3000. Стабильное связыва­ние вирусной частицы с клеточной поверхностью в ре­зультате мультивалентного прикрепления происходит благодаря возможности свободного перемещения молекул рецепторов в липидном бислое плазматической мембраны, ĸᴏᴛᴏᴩᴏᴇ определяется подвижностью, ʼʼтекучестьюʼʼ белко-во-липидного слоя. Увеличение текучести липидов являет­ся одним из наиболее ранних событий при взаимодействии вируса с клеткой, следствием которого является форми­рование рецепторных полей в месте контакта вируса с клеточной поверхностью и стабильное прикрепление вирусной частицы к возникшим группировкам - необра­тимая адсорбция.

Количество специфических рецепторов на поверхности клетки колеблется между 10 4 и 10 5 на одну клетку. Ре­цепторы ряда вирусов бывают представлены лишь в ограниченном наборе клеток-хозяев, и этим может определяться чувствительность организма к данному вирусу. К примеру, пикорнавирусы адсорбируются только на клетках приматов. Рецепторы для других вирусов, напротив, широко представлены на поверхности клеток различных видов, как, к примеру, рецепторы для ортомиксовирусов и парамиксовирусов, представляющие собой сиалилсодержащие соединœения. По этой причине эти вирусы имеют относительно широкий диапазон клеток, на которых может происходить адсорбция вирусных частиц. Рецепторами для ряда тогавирусов обладают клетки исключительно широкого круга хозяев: эти вирусы могут адсорбироваться и инфицировать клетки как позвоночных, так и беспозвоночных.

Наличие специфических рецепторов на поверхности клетки в ряде случаев обусловливает феномен зависимого от хозяина ограничения, т. е. способность вируса заражать лишь определœенные виды животных. В целом огра­ничения при взаимодействии рецепторных систем вируса и клетки биологически оправданы и целœесообразны, хотя в ряде случаев они являются ʼʼперестраховкойʼʼ. Так, многие линии клеток, устойчивых к вирусам полиомиелита и Коксаки, можно заразить депротеинизированными препаратами РНК, выделœенными из этих вирусов. Такое заражение клеток идет в обход естественных входных путей инфекции через взаимодействие с клеточными рецепторами. Известна потенциальная способность вирусов животных реплицироваться в протопластах дрожжей, грибов и бактерий, а бактериофагов - в клетках живот­ных. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, вирусные ДНК и РНК обладают способностью заражать и более широкий круг хозяев, чем вирусы.

Вирусные прикрепительные белки. Прикрепительные белки могут находиться в составе уникальных органелл, таких как структуры отростка у Т-бактериофагов или фибры у аденовирусов, которые хорошо видны в электрон­ном микроскопе; могут формировать морфологически менее выраженные, но не менее уникальные аранжировки белковых субъединиц на поверхности вирусных мембран, как, к примеру, шипы у оболочечных вирусов, ʼʼкоронуʼʼ у коронавирусов.

Просто организованные вирусы животных содержат прикрепительные белки в составе капсида. У сложно организованных вирусов эти белки входят в состав супер-капсида и представлены множественными молекулами. К примеру, у вируса леса Семлики (альфа-вирус) имеется 240 молекул гликопротеида в одном вирионе, у вируса гриппа - 300-450 гемагглютинирующих субъединиц, у реовируса - 24 молекулы белка, у аденовируса - 12 фибров.

ПРОНИКНОВЕНИЕ ВИРУСОВ В КЛЕТКУ

Исторически сложилось представление о двух альтер­нативных механизмах проникновения в клетку вирусов животных - путем виропексиса (эндоцитоза) и путем слияния вирусной и клеточной мембран. При этом оба эти механизма не исключают, а дополняют друг друга.

Термин ʼʼвиропексисʼʼ, предложенный в 1948 ᴦ. Фазекасом де сан Гро, означает, что вирусная частица попадает в цитоплазму в результате инвагинации участка плазматической мембраны и образования вакуоли, которая содержит вирусную частицу.

Рецепторный эндоцитоз. Виропексис представляет собой частный случай рецепторного или адсорбционного эндоцитоза. Этот процесс является обычным механизмом, благодаря которому в клетку поступают питательные и регуляторные белки, гормоны, липопротеины и другие вещества из внеклеточной жидкости. Рецепторный эндо­цитоз происходит в специализированных участках плаз­матической мембраны, где имеются специальные ямки, покрытые со стороны цитоплазмы особым белком с большой молекулярной массой - клатрином. На дне ямки располагаются специфические рецепторы. Ямки обеспе­чивают быструю инвагинацию и образование покрытых клатрином внутриклеточных вакуолей. Полупериод про­никновения вещества внутрь клетки по этому механизму не превышает 10 мин с момента адсорбции. Количество образующихся в одну минуту вакуолей достигает более 2000. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, рецепторный эндоцитоз представляет собой хорошо слаженный механизм, который обеспечивает быстрое проникновение в клетку чужеродных ве­ществ.

Покрытые вакуоли сливаются с другими, более круп­ными цитоплазматическими вакуолями, образуя рецептосомы, содержащие рецепторы, но не содержащие клатрин, а те в свою очередь сливаются с лизосомами. Таким путем проникшие в клетку белки обычно транспортируют­ся в лизосомы, где происходит их распад на аминокисло­ты; они могут и миновать лизосомы, и накапливаться в других участках клетки в недеградированной форме. Альтернативой рецепторного эндоцитоза является жид­костный эндоцитоз, когда инвагинация происходит не в специализированных участках мембраны.

Большинство оболочечных и безоболочечных вирусов животных проникает в клетку по механизму рецепторного эндоцитоза. Эндоцитоз обеспечивает внутриклеточный транспорт вирусной частицы в составе эндоцитарной вакуоли, поскольку вакуоль может двигаться в любом направлении и сливаться с клеточными мембранами (включая ядерную мембрану), освобождая вирусную частицу в соответствующих внутриклеточных участках. Таким путем, к примеру, ядерные вирусы попадают в ядро, а реовирусы - в лизосомы. При этом проникшие в клетку вирусные частицы находятся в составе вакуоли и отделœены от цитоплазмы ее стенками. Им предстоит пройти ряд этапов, прежде чем они смогут вызвать инфекционный процесс.

Слияние вирусной и клеточной мембран. Для того чтобы внутренний компонент вируса мог пройти через клеточную мембрану, вирус использует механизм слияния мембран. У оболочечных вирусов слияние обусловлено точечным взаимодействием вирусного белка слияния с липидами клеточной мембраны, в результате которого вирусная липопротеидная оболочка интегрирует с клеточ­ной мембраной, а внутренний компонент вируса оказы­вается по другую ее сторону. У безоболочечных вирусов один из поверхностных белков также взаимодействует с липидами клеточных мембран, благодаря чему внутренний компонент проходит через мембрану. Большинство вирусов животных выходит в цитозол из рецепто­сомы. В случае если при эндоцитозе вирусная частица является пассивным пассажиром, то при слиянии она становится активным участником процесса. Белком слияния является один из ее поверхностных белков. К настоящему времени данный белок идентифицирован лишь у парамиксовирусов и ортомиксовирусов. У парамиксовирусов данный белок (F-белок) представляет собой один из двух гликопротеидов, находящихся на поверхности вирусной частицы.

Функцию белка слияния у вируса гриппа выполняет малая гемагглютинирующая субъединица.

Парамиксовирусы вызывают слияние мембран при нейтральном рН, и внутренний компонент этих вирусов может проникать в клетку непосредственно через плазма­тическую мембрану. При этом большинство оболочечных и безоболочечных вирусов вызывают слияние мембран только при низком значении рН - от 5,0 до 5,75. В случае если к клеткам добавить слабые основания (хлорид аммония, f хлороквин и др.), которые в эндоцитарных вакуолях повышают рН до 6,0, слияния мембран не происходит вирусные частицы остаются в вакуолях, и инфекционный процесс не возникает. Строгая зависимость слияния мембран от значений рН обусловлена конформационными изменениями вирусных белков слияния.

В лизосоме постоянно имеется низкое значение рН (4,9). В эндоцитарной вакуоли (рецептосоме) закисление создается за счёт АТФ-зависимого ʼʼпротонового насосаʼʼ еще на клеточной поверхности при образовании покрытой вакуоли. Закисление эндоцитарной вакуоли имеет большое значение для проникающих в клетку физиологических лигандов, так как низкое значение рН способствует диссоциации лиганда от рецептора и рециркуляции рецепторов.

Тот же механизм, который лежит в базе слияния вирусных и клеточных мембран, обусловливает Индуци­рованный вирусами гемолиз и слияние плазматических мембран, прилежащих друг к другу клеток с образованием многоядерных клеток, симпластов и синцитиев. Вирусы вызывают два типа слияния клеток: 1) ʼʼслияние снаружиʼʼ и 2) ʼʼслияние изнутриʼʼ. ʼʼСлияние снаружиʼʼ происходит при высокой множественности инфекции и обнаруживает­ся в течение первых часов после заражения. Этот тип слияния, описанный для парамиксовирусов, обусловлен белками заражающего вируса и не требует внутриклеточ­ного синтеза вирусных компонентов. Напротив, ʼʼслияние изнутриʼʼ происходит при низкой множественности инфек­ции, обнаруживается на сравнительно поздних стадиях инфекционного процесса и обусловлено вновь синтезиро­ванными вирусными белками. ʼʼСлияние изнут­риʼʼ описано для многих вирусов: вирусов герпеса, онко­вирусов, возбудителœей медленных инфекций и др.
Размещено на реф.рф
Этот тип слияния вызывают те же вирусные гликопротеиды, которые обеспечивают проникновение вируса в клетку.

РАЗДЕВАНИЕ

Проникшие в клетку вирусные частицы должны раздеть­ся для того, чтобы вызвать инфекционный процесс. Смысл раздевания состоит в удалении вирусных защитных оболочек, которые препятствуют экспрессии вирусного генома. В результате раздевания освобождается внутрен­ний компонент вируса, который способен вызвать инфек­ционный процесс. Раздевание сопровождается рядом характерных особенностей: в результате распада вирусной частицы исчезает инфекционная активность, в ряде слу­чаев появляется чувствительность к нуклеазам, возникает устойчивость к нейтрализующему действию антител, теряется фоточувствительность при использовании ряда препаратов.

Конечными продуктами раздевания являются сердце­вины, нуклеокапсиды или нуклеиновые кислоты. Для ряда вирусов было показано, что продуктом раздевания являются не голые нуклеиновые кислоты, а нуклеиновые кислоты, связанные с внутренним вирусным белком. На­пример, конечным продуктом раздевания пикорнавирусов является РНК, ковалентно связанная с белком VP g , конеч­ным продуктом раздевания аденовирусов, вируса полиомы и SV40 является ДНК, ковалентно связанная с одним из внутренних вирусных белков.

В ряде случаев способность вирусов вызвать инфек­ционный процесс определяется возможностью их разде­вания в клетке данной системы. Тем самым эта ста­дия является одной из стадий, лимитирующих инфек­цию.

Раздевание ряда вирусов происходит в специализи­рованных участках внутри клетки (лизосомах, структурах аппарата Гольджи, околоядерном пространстве, ядерных порах на ядерной мембране). При слиянии вирусной и клеточной мембран проникновение в клетку сочетается с раздеванием.

Раздевание и внутриклеточный транспорт являются взаимосвязанными процессами: при нарушении правиль­ного внутриклеточного транспорта к местам раздевания вирусная частица попадает в лизосому и разрушается лизосомальными ферментами.

Промежуточные формы при раздевании. Раздевание вирусной частицы осуществляется постепенно в результате серии последовательных реакций. К примеру, в процессе раздевания пикорнавирусы проходят ряд стадий с образо­ванием промежуточных субвирусных частиц с размерами от 156 S до 12 S. Раздевание вирусов ECHO имеет сле­дующие стадии: вирионы (156 S) - А-частицы (130S), РНП и пустые капсиды (80 S) -РНК с терминальным белком (12 S). Раздевание аденовирусов происходит в цитоплазме и ядерных порах и имеет по крайней мере 3 стадии: 1) образование субвирусных частиц с большей плотностью, чем вирионы; 2) образование сердцевин, в которых отсутствует 3 вирусных белка; 3) образование ДНК-белкового комплекса, в котором ДНК ковалентно соединœена с терминальным белком. Вирус полиомы в про­цессе раздевания теряет наружные белки и превращается в субвирусную частицу с коэффициентом седиментации 48 S. Далее частицы связываются с ядерными белками (гистонами) и формируется 190 S комплекс (с коэффи­циентом седиментации 190 S), способный вызвать инфек­ционный процесс. Вирус гриппа вначале теряет липопротеидную оболочку и превращается в субвирусную частицу, из которой после удаления М-белка освобождается нуклеокапсид.

Подготовительная фаза репродукции вирусов - понятие и виды. Классификация и особенности категории "Подготовительная фаза репродукции вирусов" 2017, 2018.


Типы взаимодействия вируса с клеткой. Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и ин-тегративный.

Продуктивный тип - завершается образованием нового поколения вирионов и гибелью (лизисом) зараженных клеток (цитоли-тическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

Абортивный тип - не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов.

Интегративный тип, или вирогения - характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).

Репродукция вирусов осуществляется в несколько стадий, последовательно сменяющих друг друга: адсорбция вируса на клетке; проникновение вируса в клетку; «раздевание» вируса; биосинтез вирусных компонентов в клетке; формирование вирусов; выход вирусов из клетки.

Адсорбция

Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбируется на определенных участках клеточной мембраны - так называемых рецепторах. Клеточные рецепторы могут иметь разную химическую природу, представляя собой белки, углеводные компоненты белков и липидов, липиды. Число специфических рецепторов на поверхности одной клетки колеблется от 10 4 до 10 5 . Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.

Проникновение в клетку

Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорбции вирусов происходят инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.

«Раздевание»

Процесс «раздевания» заключается в удалении защитных вирусных оболочек и освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с клеточной мембраной процесс проникновения вируса в клетку сочетается с первым этапом его «раздевания». Конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.

Биосинтез компонентов вируса

Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.

Реализация генетической информации вируса осуществляется в соответствии с процессами транскрипции, трансляции и репликации.

Формирование (сборка) вирусов

Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически «узнавать» друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, солевых и водородных связей.

Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:

1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм;

2. Сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);

3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;

4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).

Выход вирусов из клетки

Различают два основных типа выхода вирусного потомства из клетки. Первый тип - взрывной - характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип - почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.

Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5-6 ч (вирусы гриппа, натуральной оспы и др.) до нескольких суток (вирусы кори, аденовирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.



Вирусы воспроизводят себе подобные частицы в таком огромном количестве и столь своеобразным способом, что это явление стали именовать репродукцией, так как здесь копируются молекулы нуклеиновых кислот и, согласно заключенной в них генетической информации, синтезируются вирусные белки.

При большом разнообразии механизмов репродукции вирусов общим для всех видов является:

  1. источником мономеров для синтеза нуклеиновых кислот служат нуклеотиды клетки;
  2. источником мономеров для синтеза вирусных белков служат аминокислоты (аминоацил тРНК) клетки;
  3. синтез белков всех вирусов осуществляется на клеточных рибосомах;
  4. источник энергии для биосинтетических процессов при репродукции всех вирусов - аденазинтрифосфорная кислота (АТФ), вырабатываемая в митохондриях клетки;
  5. дисъюнктивный (разобщенный во времени и в пространстве) биосинтез структурных компонентов вирусов. Так, нуклеиновая кислота вируса может реплицироваться, например, в ядре клетки, вирусный белок синтезируется в цитоплазме, а сборка цельных вирионов или нуклеокапсидов может происходить на внутренней поверхности цитоплазматической мембраны. Наконец, сложный липопротеиновый суперкапсид может приобретаться вирусами в процессе почкования;
  6. репликацию нуклеиновых кислот вирусов осуществляют ферменты - полимеразы (ДНК-полимеразы и РНК-синтетазы), которые могут быть клеточными полимеразами, присутствующими в клетке до ее заражения вирусом, либо вирусспецифическими, появляющимися после заражения клетки вирусом, так как биосинтез их закодирован в структуре нуклеиновых кислот самих вирусов или они находятся в вирионе вируса;
  7. точность копирования молекул нуклеиновых кислот при их репликации обеспечивается матричным механизмом и принципом комплементарности.

Взаимодействие вируса с клеткой хозяина - сложный и многостадийный процесс. В результате такого взаимодействия могут развиваться три основные формы клеточной инфекции: продуктивная, абортивная и интегративная.

Продуктивная форма чаще носит литический характер, т. е. заканчивается гибелью и лизисом инфицированной клетки, что происходит после полной сборки дочерней популяции инфицированных вирусных частиц. Гибель клетки могут вызвать следующие факторы: раннее подавление синтеза клеточных белков, накопление повреждающих клетку вирусных компонентов; повреждение лизосом и высвобождение их ферментов в цитоплазму. Такая форма инфекции наблюдается у многих вирусов.

Абортивная форма не завершается образованием инфекционных вирусных частиц или они образуются в гораздо меньшем количестве, чем при продуктивной инфекции. Абортивная инфекция может возникать при следующих обстоятельствах: заражение чувствительных клеток дефектным вирусом, заражение чувствительных клеток в неразрешающих условиях, т. е. при резком изменении условий, при которых происходит инфекционный процесс, заражение нечувствительных клеток стандартным вирусом. В результате клетка либо погибает без продукции инфекционного вируса, либо инфекция прерывается на определенном этапе.

Дефектным называется такой вирус, который не способен проявить все генетические функции, необходимые для образования инфекционного потомства. Существуют дефектные вирусы и дефектные вирусные частицы. Дефектными называют такие вирусы, которые репродуцируются лишь в присутствии вируса-помощника, например аденоассоциированный вирус (семейство парвовирусов), дающий потомство только в присутствии аденовируса - помощника. Дефектные вирусные частицы лишены части генетического материала (от 10 до 90 % генома). Дефектные частицы интерферируют при репродукции с инфекционными вирусными частицами и поэтому их называют дефектными интерферирующими частицами (ДИЧ). Попадая в клетку вместе с инфекционными вирусными частицами, они конкурируют с ними за факторы репродукции и препятствуют образованию инфекционного потомства. Большое количество ДИЧ проявляется при серийном пассивировании вируса с высокой множественностью заражения.

Интегративная форма не приводит к гибели клетки. Нуклеиновая кислота вируса, встроенная в геном клетки-хозяина, функционирует как составная часть клеточного генома. Клетка может сохранить нормальные функции и при ее делении вирусные последовательности могут переходить в геном дочерних клеток. Интеграция может привести к неопластической трансформации клеток. Такие клетки приобретают способность к неограниченному делению.

Интегративная форма инфекции возможна для нескольких семейств: ретровирусов, аденовирусов, вирусов герпеса, паповавирусов и др.

Процесс репродукции вирусов может быть условно разделен на две фазы. Первая фаза охватывает события, которые ведут к адсорбции и проникновению вируса в клетку, освобождению его внутреннего компонента и модификации вируса таким образом, что он способен вызвать инфекцию. Соответственно первая фаза включает три стадии.

I. Адсорбция вируса на клетках.

II. Проникновение в клетки.

III. Раздевание вируса в клетке.

Эти стадии направлены на то, чтобы вирус был доставлен в соответствующие клеточные структуры и его внутренний компонент был освобожден от защитных оболочек. Как только эта цель достигнута, начинается вторая фаза репродукции, в течение которой происходит экспрессия вирусного генома. Эта фаза включает в себя пять стадий:

I. Транскрипция.

II. Трансляция иРНК.

III. Репликация генома.

IV. Сборка вирусных компонентов.

V. Выход вируса из клетки.

Первая фаза репродукции . I. Адсорбция вирионов на поверхности клетки . Прикрепление вирусных частиц к поверхности клетки-хозяина - первая стадия инфекционного процесса. Начальный контакт вируса с клеткой происходит в результате случайного столкновения по типу броуновского движения.

В основе адсорбции лежат два механизма.

Первый из них - неспецифический. Определяется силами электростатического взаимодействия, возникающими между разнозаряженными группами, расположенными на поверхности клетки и вируса. В этом процессе участвуют заряженные положительно аминные группы вирусного белка и кислые фосфатные, сульфатные и карбоксильные группы клеточной поверхности, имеющие отрицательный заряд.

Второй - специфический. Специфичность связи между вирусом и клеткой обусловлена комплементарными клеточными и вирусными рецепторами.

Процесс адсорбции возможен при наличии соответствующих рецепторов на поверхности клетки и «узнающих» их субстанций на поверхности вируса. Узнавание клеточных рецепторов вирусными белками (рецепторами), ведущее к прикреплению вирусной частицы к клетке, является высокоспецифическим процессом. Белки на поверхности вируса, узнающие специфические группировки на плазматической мембране клетки и обусловливающие прикрепление к ним вирусной частицы, называются прикрепительными белками (рецепторами). Рецепторы могут иметь разную химическую природу и представлять собой белки, углеводный компонент белков и липидов. Рецепторами для вирусов гриппа и парамиксовирусов является сиаловая кислота в составе гликопротеидов и гликолипидов, для рабдо — и реовирусов - также углеводный компонент в составе белков и липидов, для пикорна — и аденовирусов - белки, для некоторых вирусов - липиды. Специфические клеточные рецепторы играют роль не только в прикреплении вирусной частицы к клеточной поверхности. Они определяют дальнейшую судьбу вирусной частицы, ее внутриклеточный транспорт и доставку в определенные участки цитоплазмы и ядра, где вирус способен инициировать инфекционный процесс. Вирус может прикрепиться и к неспецифическим рецепторам и даже проникнуть в клетку, однако только прикрепление к специфическому рецептору приведет к возникновению инфекции.

Прикрепление вирусной частицы к клеточной поверхности вначале происходит путем образования единичной связи вирусной частицы с рецептором. Однако такое прикрепление непрочно, и вирусная частица может легко оторваться от клеточной поверхности (обратимая адсорбция). Для того чтобы наступила необратимая адсорбция, должны появиться множественные связи между вирусной частицей и многими молекулами рецепторов, т. е. должно произойти стабильное мультивалентное прикрепление. Количество молекул клеточных рецепторов в участках адсорбции может доходить до 3000.

Количество специфических рецепторов на поверхности клетки колеблется между 10 4 и КР на одну клетку. Рецепторы ряда вирусов могут быть представлены лишь в ограниченном наборе клеток-хозяев, и этим может определяться чувствительность организма к данному вирусу. Например, вирусы полиомиелита адсорбируются только на клетках приматов. Рецепторы для других вирусов, напротив, широко представлены на поверхности клеток различных видов, как, например, рецепторы для ортомиксо — и ларамиксовирусов, представляющие собой сиалилсодержащие соединения, имеют относительно широкий диапазон клеток, на которых может происходить адсорбция вирусных частиц. Рецепторами для ряда тогавирусов обладают клетки широкого круга хозяев: эти вирусы могут адсорбироваться и инфицировать клетки как позвоночных, так и беспозвоночных. Вирусные ДНК и РНК обладают способностью заражать более широкий круг хозяев, чем вирусы. Максимальная скорость адсорбции вируса наблюдается лишь при определенном соотношении концентрации вируса и клеток, влиянии pH, температуры, ионного состава среды.

Адсорбция вируса на клетках происходит в широком диапазоне температур. Она протекает нормально в присутствии катионов и подавляется веществами, несущими высокий отрицательный заряд (сульфатированные полисахариды, гепарин). Для ряда оболочечных вирусов известна обратная закономерность.

Процесс адсорбции состоит из двух быстро следующих друг за другом периодов: обратимого и необратимого. Период обратимого прикрепления может закончиться десорбцией. При длительном контакте вируса с клеткой никакие воздействия не позволяют освободить адсорбированный вирус, наступает стадия необратимой адсорбции. Вирус ящура, например, адсорбируется клетками культуры почки свиней при 2-4 и 37 °С, однако при низкой температуре адсорбция вируса обратима и инфицирования клеток не происходит, так как вирус находится на поверхности клеток и легко может быть десорбирован раствором версена без нарушения целостности клеток, тогда как при 37 °С через 80-90 мин наступала полная необратимая адсорбция вируса. Количество адсорбированного вируса и число инфицированных клеток в основном зависят от множественности заражения и продолжительности адсорбции.

Адсорбированные вирусные частицы могут иметь различную судьбу: большая часть их элюируется, при этом они повреждаются, так как теряют способность к реадсорбции другими клетками и не инфицируют их; другая часть вирусных частиц проникает в клетку и подвергается дезинтеграции; небольшая часть инфекционных вирусных частиц, связанных с клеткой, остается интактной.

Прикрепительные белки могут находиться в составе уникальных органелл, таких, как структуры отростка у Т-бактериофагов или фибры у аденовирусов, которые хорошо видны в электронном микроскопе; могут формировать морфологически менее выраженные, но не менее уникальные структуры белковых субъединиц на поверхности вирусных мембран, как, например, шипы у оболочечных вирусов, «корону» у коронавирусов.

Просто организованные вирусы животных содержат прикрепительные белки в составе капсида. У сложно организованных вирусов эти белки входят в состав суперкапсида и представлены множественными молекулами. Например, у вируса леса Семлики (α-вирус) имеется 240 молекул гликопротеида в одном вирионе, у вируса гриппа - 300-450 гемагглютинирующих субъединиц, у аденовируса - 12 фибров.

Спектр чувствительности клеток к вирусам в значительной степени определяется наличием соответствующих рецепторов. Прикрепление вируса к клетке - непременное, но недостаточное условие для инфицирования, которое определяется прохождением последующих стадий репродукции вируса.

II. Проникновение вируса в клетку . В настоящее время известно два механизма проникновения вируса в клетку: путем рецепторного эндоцитоза и путем слияния вирусной и клеточной мембран. Оба эти механизма не исключают, а дополняют друг друга.

Рецепторный эндоцитоз происходит в специализированных участках плазматической мембраны, где имеются специальные ямки, на дне которых находятся специальные рецепторы. Ямки обеспечивают быструю инвагинацию и образование внутриклеточных вакуолей (за 1 мин образуется более 2 тыс. вакуолей), которые сливаются с цитоплазматическими вакуолями, образуя рецептосомы, а они могут сливаться с лизосомами. Эндоцитоз обеспечивает внутриклеточный транспорт вириона в составе вакуоли, освобождая вирусную частицу в соответствующих внутриклеточных участках. Так, например, ядерные вирусы попадают в ядро, а реовирусы - в лизосомы. Большинство вирусов животных проникает в клетку путем эндоцитоза.

Слияние вирусных и клеточных мембран . У оболочечных вирусов слияние обусловлено точечным взаимодействием вирусного белка путем слияния с липидами клеточной мембраны, в результате вирусная липопротеидная оболочка интегрирует с клеточной мембраной.

У безоболочечных вирусов один из поверхностных белков также взаимодействует с липидами клеточных мембран, в результате внутренний компонент проходит через мембрану и вовнутрь клетки проникает только нуклеопротеид вириона. При данном способе проникновения функционально активный вирусный нуклеопротеид освобождается из вириона в период его прохождения внутрь клетки через плазматическую мембрану, т. е. одновременно происходит проникновение и «раздевание» вириона. Белком слияния у вирусов является один из поверхностных белков, так, у парамиксовирусов это белок (F-белок), у вируса гриппа функцию белка слияния выполняет малая гемагглютинирующая субъединица (НА2).

Большинство вирусов вызывает слияние мембран при низком значении pH - от 5,0 до 5,75.

III. Раздевание - депротеинизация вируса . Проникшие в клетку вирусные частицы должны раздеться для того, чтобы вызвать инфекционный процесс. Смысл раздевания заключается в удалении вирусных защитных оболочек, которые препятствуют экспрессии вирусного генома. В результате раздевания освобождается внутренний компонент вируса, который способен вызвать инфекционный процесс. Раздевание сопровождается рядом характерных особенностей: в результате распада вирусной частицы исчезает инфекционная активность, в ряде случаев появляется чувствительность к нуклеазам, возникает устойчивость к нейтрализующему действию антител, теряется фоточувствительность при использовании ряда препаратов.

Конечными продуктами раздевания являются сердцевины, нуклеокапсиды или нуклеиновые кислоты. Для ряда вирусов было показано, что продуктом раздевания являются не голые нуклеиновые кислоты, а связанные с внутренним вирусным белком. Например, конечный продукт раздевания пикорнавирусов - РНК, ковалентно связанная с белком VPg, конечный продукт раздевания аденовирусов, вируса полиномы и SV40 - ДНК, ковалентно связанная с одним из внутренних вирусных белков.

В ряде случаев способность вирусов вызвать инфекционный процесс определяется возможностью их раздевания в клетке данной системы. Тем самым эта стадия является одной из ограничивающих инфекцию.

Раздевание ряда вирусов происходит в специализированных участках внутри клетки (лизосомах, структурах аппарата Гольджи, околоядерном пространстве, ядерных порах на ядерной мембране). При слиянии вирусной и клеточной мембран проникновение в клетку сочетается с раздеванием.

Раздевание и внутриклеточный транспорт - взаимосвязанные процессы: при нарушении правильного внутриклеточного транспорта к местам раздевания вирусная частица попадает в лизосому и разрушается лизосомальными ферментами.

Раздевание вирусной частицы осуществляется постепенно в результате серии последовательных реакций. Например, в процессе раздевания пикорнавирусы проходят ряд стадий с образованием промежуточных субвирусных частиц с размерами от 156S до 12S. Раздевание аденовирусов происходит в цитоплазме и ядерных порах и имеет по крайней мере три стадии: 1) образование субвирусных частиц с большей плотностью, чем вирионы; 2) образование сердцевин, в которых отсутствует 3 вирусных белка; 3) образование ДНК-белкового комплекса с терминальным белком.

Вирусы оспы раздеваются в две стадии: на первой - ферменты хозяина удаляют наружное покрытие, а на второй - для освобождения вирусной ДНК из сердцевины требуется участие продуктов вирусных генов («раздевающий фермент»), синтезированных после заражения.

Вторая фаза репродукции . I. Транскрипция . Это переписывание информации с ДНК на РНК по законам генетического кода. Осуществляется с помощью специального фермента (РНК-полимеразы), который связывает нуклеотиды путем образования 3’-5′-фосфодиэфирных мостиков. При инициации транскрипции РНК-полимераза связывается со специальным участком ДНК (промотором), удвоенные спирали ДНК разъединяются и функционируют как матрицы, к которым присоединяются комплементарные нуклеотиды благодаря спариванию комплементарных оснований (аденин с тимином, урацил с аденином, гуанин с цитазином и цитазин с гуанином). Таким образом, происходит постепенное удлинение (элонгация) цепи НИК. Терминация (прекращение роста) цепи ГПК происходит на специфических участках ДНК, называемых терминаторами. При этом процессе принимают участие и специальные белки.

Стратегия вирусного генома в отношении синтеза иРНК у разных вирусов различна. У ДНК-содержащих вирусов иРНК синтезируется на матрице одной из нитей ДНК. Формула переноса генетической информации у них такая же, как и в клетке:

ДНК →(транскрипция)→ РНК →(трансляция)→ белок.

ДНК-содержащие вирусы, репродукция которых происходит в ядре, используют для транскрипции клеточную полимеразу. К этим вирусам относятся папова-, аденовирусы, вирусы герпеса. ДНК-содержащие вирусы, репродукция которых происходит в цитоплазме, не могут использовать клеточные ферменты, находящиеся в ядре. Транскрипция их генома осуществляется вирусспецифическим ферментом - ДНК-полимеразой, которая проникает в клетку в составе вириона. К этим вирусам относятся вирусы оспы и иридовирусы.

РНК → белок.

К этой группе вирусов относятся пикорна-, тога-, коронавирусы. У них нет необходимости в акте транскрипции для синтеза вирусспецифических белков. Поэтому транскрипцию как самостоятельный процесс у этих вирусов не выделяют.

Б. У вирусов, геном которых не может выполнять функцию иРНК (минус-нитевые вирусы). В клетке синтезируется комплементарная геному РНК, которая и является информационной. Передача генетической информации у этих вирусов осуществляется по формуле:

РНК → РНК → белок.

У этих вирусов транскрипция выделена как самостоятельный процесс в инфекционном цикле. К ним относятся две группы вирусов животных:

  • вирусы, геном которых представлен односпиральной РНК: ортомиксо-, парамиксо-, рабдо-, буньявирусы;
  • вирусы, геном которых представлен двуспиральной РНК. Среди вирусов животных к ним относятся реовирусы.

В клетке нет фермента, который может полимеризовать нуклеотиды на матрице РНК. Эту функцию выполняет вирусспецифический фермент - РНК-зависимая PHK-полимераза, или транскриптаза, которая находится в составе вирионов и вместе с ними проникает в клетку.

В. Среди РНК-содержащих вирусов животных есть семейство ретровирусов, которые имеют уникальный путь передачи генетической информации. РНК этих вирусов переписывается на ДНК, ДНК интегрирует с клеточным геномом и в его составе переписывается на РНК, которая обладает информационными функциями. Путь передачи генетической информации в этом случае осуществляется по более сложной формуле: РНК → ДНК → PHК → белок

В составе этих вирусов есть уникальный вирусспецифический фермент, который переписывает РНК на кДНК. Этот процесс называется обратной транскрипцией, а фермент - обратная транскриптаза, или ревертаза. Тот же фермент синтезирует нить ДНК на матрице ДНК. Двуспиральная ДНК после замыкания в кольцо интегрирует с клеточным геномом, и транскрипцию интегрированной ДНК в составе клеточных геномов осуществляет клеточная ДНК-зависимая РНК-полимераза.

Транскрипция вирусного генома строго регулируется на протяжении инфекционного цикла. Регуляция осуществляется как клеточными, так и вирусспецифическими механизмами. У некоторых вирусов, в основном ДНК-содержащих, существует три периода транскрипции: сверхранний, ранний и поздний. К ним относятся вирусы оспы, герпеса, папова-, адено — и иридовирусы. В результате сверхранней и ранней транскрипции избирательно считываются сверхранние и ранние гены с образованием сверхранних или ранних иРНК. При поздней транскрипции считывается другая часть вирусного генома - поздние гены с образованием поздних и PHК. Количество поздних генов обычно превышает количество ранних генов. Многие сверхранние гены являются генами для неструктурных белков (ферментов и регуляторов транскрипции) и репликации вирусного генома. Напротив, поздние гены обычно являются генами для структурных белков. Обычно при поздней транскрипции считывается весь геном, но с преобладанием транскрипции поздних генов.

Фактором регуляции транскрипции у ядерных вирусов является транспорт транскриптов из ядра в цитоплазму, к месту функционирования иРНК - полисомам.

Продуктом сверхранней транскрипции вирусов герпеса являются α-белки. Функция одного или нескольких из них необходима для транскрипции следующей группы генов, кодирующих β-белки. В свою очередь, β-белки включают транскрипцию последней группы поздних генов, кодирующих γ-белки. Такой тип регуляции получил название «каскадный».

II. Трансляция . Эго - процесс перевода генетической информации, содержащейся в иРНК на специфическую последовательность аминокислот в синтезируемых вирусспецифических белках. Синтез белка в клетке происходит в результате трансляции иРНК на рибосомах. В рибосомах идет слияние потока информации (в иРНК) с потоком аминокислот, которые приносят транспортные РНК (тРНК). В клетке существует большое количество разнообразных тРНК. Для каждой аминокислоты должна быть своя тРНК.

Молекула тРНК представляет собой односпиральную РНК со сложной структурой в виде кленового листа.

Связывание конкретной тРНК и аминокислоты осуществляет фермент аминоацилсинтетаза. Один конец тРНК связывается с аминокислотой, а другой - с нуклеотидами иРНК, которым они комплементарны. Три нуклеотида на иРНК кодируют одну аминокислоту и называются «триплет» или «кодон», а комплементарные кодону три нуклеотида на тРНК называются «антикодоном».

Процесс транскрипции состоит из трех фаз: инициации элонгации, терминации.

Инициация трансляции - наиболее ответственный этап в процессе трансляции, основанный на узнавании рибосомой иРНК и связывании с ее особыми участками. Рибосома узнает иРНК благодаря «шапочке» (кэп) на 5′-конце и скользит к 3′-концу, пока не достигнет инициаторного кодона, с которого начинается трансляция. В эукариотической клетке инициаторными кодонами являются кодоны АУГ (аденин, урацил, гуанин), кодирующие метионин. С метионина начинается синтез всех полипептидных цепей. Специфическое узнавание рибосомой вирусной и РНК осуществляется за счет вирусспецифических инициаторных факторов.

Вначале с иРНК связывается малая рибосомальная субъединица. К комплексу иРНК с малой рибосомальной субъединицей присоединяются другие компоненты, необходимые для начала трансляции. Это - несколько молекул белка, которые называются «инициаторные факторы». Их, по крайней мере, три в прокариотической клетке и более девяти в эукариотической клетке. Инициаторные факторы определяют узнавание рибосомой специфических иРНК. В результате формируется комплекс, необходимый для инициации трансляции, который называется «инициаторным комплексом». В инициаторный комплекс входят: иРНК; малая рибосомальная субъединица; аминоацил-тРНК, несущая инициаторную аминокислоту; инициаторные факторы; несколько молекул ГТФ (гуанозинтрифосфат).

В рибосоме осуществляется слияние потока информации с потоком аминокислот. Вхождение аминоацил-тРНК в А-центр большой рибосомальной субъединицы является следствием узнавания, а ее антикодон взаимодействует с кодоном иРНК, находящейся в малой рибосомальной субъединице. При продвижении иРНК на один кодон тРНК перебрасывается в пептидильный центр (П-центр), и ее аминокислота присоединяется к инициаторной аминокислоте с образованием первой пептидной связи. Свободная от аминокислоты тРНК выходит из рибосомы и может опять функционировать в транспорте специфических аминокислот. На ее место из A-центра в П-центр перебрасывается новая тРНК, и образуется новая пептидная связь. В A-центре появляется вакантный кодон иРНК, к которому немедленно присоединяется соответствующая тРНК, и происходит присоединение новых аминокислот к растущей полипептидной цепи.

Элонгация трансляции - процесс удлинения, наращивания полипептидной цепи, основанный на присоединении новых аминокислот с помощью пептидной связи. Происходит постоянное протягивание нити иРНК через рибосому и «декодирование» заложенной в ней генетической информации. Часто иРНК функционирует одновременно на нескольких рибосомах, каждая из которых синтезирует одну и ту же полипептидную нить, кодируемую данной иРНК.

Терминация трансляции происходит в тот момент, когда рибосома доходит до терминирующего кодона в составе иРНК (УАА, УГА, УАГ). Трансляция прекращается, и полипептидная цепь освобождается из полирибосомы. После окончания трансляции полирибосомы распадаются на субъединицы, которые могут войти в состав новых полирибосом.

Каждая и PHК функционирует на нескольких рибосомах. Группу рибосом, работающих на одной молекуле иРНК, называют полирибосомой или полисомой. Полисомы могут состоять от 4-6 до 20 и более рибосом.

Вирусспецифические полисомы могут быть как свободными, так и связанными с мембранами. Внутренние белки обычно синтезируются на свободных полисомах, гликопротеиды всегда синтезируются на полисомах, связанных с мембранами.

Поскольку геном вируса животных представлен молекулой, кодирующей более чем один белок, вирусы поставлены перед необходимостью синтеза либо длинной иРНК, кодирующей один гигантский полипептид-предшественник, который затем должен быть нарезан в специфических точках на функционально активные белки, либо коротких моноцистронных иРНК, каждая из которых кодирует один белок. Таким образом, существуют два способа формирования вирусных белков:

первый - иРНК транслируется в гигантский полипептид-предшественник, который после синтеза последовательно нарезается на зрелые функционально активные белки;

второй - иРНК транслируется с образованием зрелых белков или белков, которые лишь незначительно модифицируются после синтеза.

Первый способ трансляции характерен для РНК-содержащих плюс-нитевых вирусов - пикорнавирусов и тогавирусов. Их иРНК транслируется в гигантскую полипептидную цепь, так называемый полипротеид, который сползает в виде непрерывной ленты с рибосомного «конвейера» и нарезается на индивидуальные белки нужного размера. Нарезание вирусных белков - многоступенчатый процесс, осуществляемый как вирусспецифическими, так и клеточными протеазами.

Второй способ формирования белков характерен для ДНК-содержащих вирусов и большинства РНК-содержащих вирусов. При этом способе синтезируются короткие моноцистронные иРНК в результате избирательной транскрипции одного участка генома (гена). Однако эти вирусы широко используют механизм посттрансляционного нарезания белка.

В эукариотической клетке многие белки, в том числе вирусные, подвергаются посттрансляционным модификациям, зрелые функционально активные белки часто неидентичны их вновь синтезированным предшественникам. Широко распространены такие посттрансляционные ковалентные модификации, как гликозилирование, ацилирование, метилирование, сульфирование (образование дисульфидных связей), протеолитическое нарезание и, наконец, фосфорилирование. В результате вместо 20 генетически закодированных аминокислот из различных клеток разных органов эукариотов выделено около 140 дериватов аминокислот.

Гликозилирование . В составе сложно устроенных PHК — и ДНК-содержащих вирусов имеются белки, содержащие ковалентно присоединенные боковые цепочки углеводов, - гликопротеиды. Гликопротеиды расположены в составе вирусных оболочек и находятся на поверхности вирусных частиц.

Гликозилирование полипептидов - сложный многоступенчатый процесс, первые этапы которого начинаются уже в процессе синтеза полипептидов, и первый углеводный остаток присоединяется к полипептидной цепи, еще не сошедшей с рибосомы. Последующие этапы гликозилирования происходят путем последовательного присоединения углеводных остатков к углеводной цепочке в процессе транспорта полипептида к плазматической мембране. Углеводные остатки присоединяются по одному, и только при инициации синтеза олигосахаридной цепи переносится «блок». Окончательное формирование углеводной цепочки может завершаться на плазматической мембране перед сборкой вирусной частицы.

Гликозилирование влияет на транспорт, более того, транспорт неразрывно связан для гликопротеидов со стадийным гликозилированием. Убедительным доказательством этого служит влияние на вирусную репродукцию ингибиторов гликозилирования; они полностью подавляют транспорт полипептидов, не нарушая и не ингибируя их синтеза.

При подавлении гликозилирования соответствующими ингибиторами (аналоги сахаров типа 2-дезоксиглкжозы, антибиотик туникамицин) блокируется сборка вирионов миксо-, рабдо-, α-вирусов или образуются неинфекционные вирионы вирусов герпеса и онковирусов.

Сульфирование . Некоторые белки сложно устроенных РНК — и ДНК-содержащих вирусов сульфируются после трансляции. Чаще всего сульфированию подвергаются гликопротеиды, при этом сульфатная группа связывается с углеводными остатками гликопротеида.

Ацилирование . Ряд гликопротеидов сложно устроенных РНК-содержащих вирусов (НА2 вируса гриппа, белок G вируса везикулярного стоматита, белок HN вируса ньюкаслской болезни и др.) содержат ковалентно связанные 1-2 молекулы жирных кислот.

Нарезание . Многие вирусные белки, и в первую очередь гликопротеиды, приобретают функциональную активность лишь после того, как произойдет их нарезание в специфических точках протеолитическими ферментами. Нарезание происходит либо с образованием двух функциональных белковых субъединиц (например, большая и малая субъединицы гемагглютинина вируса гриппа, два гликопротеида (Е2 и ЕЗ) вируса леса Семлики), либо с образованием одного функционально активного белка и неактивного фермента, например белки F и HN парамиксовирусов. Нарезание обычно осуществляется клеточными ферментами. У многих сложно устроенных вирусов животных, имеющих гликопротеиды, нарезание необходимо для формирования активных прикрепительных белков и белков слияния и, следовательно, для приобретения вирусами способности инфицировать клетку. Лишь после нарезания этих белков вирусная частица приобретает инфекционную активность. Таким образом, можно говорить о протеолитической активации ряда вирусов, осуществляемой с помощью клеточных ферментов.

Фосфорилирование . Фосфопротеиды содержатся практически в составе всех вирусов животных - РНК — и ДНК-содержащих, просто и сложно устроенных. В составе большинства вирусов обнаружены протеинкиназы, однако фосфорилирование может осуществляться как вирусными, так и клеточными ферментами. Обычно фосфорилируются белки, связанные с вирусным геномом и осуществляющие регулирующую роль в его экспрессии. С процессом фосфорилирирования связан механизм активного действия интерферона.

Фосфорилирование белков играет регулирующую роль в транскрипции и трансляции вирусных и PHК, специфическом узнавании вирусных иРНК рибосомой, белок-нуклеиновом и белок-белковом узнавании на стадии сборки вирусных частиц.

III. Репликация . Это - синтез молекул нуклеиновой кислоты, гомологичных геному.

Различные вирусы имеют разные типы вирусного генома. Так, у ДНК-содержащих вирусов различают: двуспиральную линейную ДНК (адено-, герпес-, поксвирусы;), двуспиральную кольцевую ДНК (паповавирусы); односпиральная линейная ДНК (парвовирусы). У РНК-содержащих вирусов различают: двуспиральную сегментированную РНК (реовирусы); односпиральную плюсРНК (пикорна-, кальци-, тога-, флави-, коронавирусы); односпиральную минусРНК (ортомиксо-, парамиксо-, рабдо-, фило-, бунья — вирусы); односпиральную плюсРНК-матрицу для синтеза ДНК-провируса (ретровирусы). Особенности механизма репликации вирусов зависят от типа вирусного генома.

Репликация вирусов в двуспиральной ДНК сходна с репликацией клеточной ДНК. Репликация происходит на расплетенных участках ДНК и идет одновременно на обеих нитях от 5′-конца к 3′-концу. Репликацию осуществляют ДНК-полимеразы. Каждая вновь синтезированная молекула ДНК состоит из одной родительской и одной вновь синтезированной нити.

При репликации вирусов с односпиральной ДНК происходит образование двуспиральных форм, которые представляют собой промежуточные репликативные формы, на минус-нитях которых синтезируются дочерние плюс-нити ДНК.

У вирусов, геном которых представлен односпиральной РНК, ее репликация происходит по следующей схеме: на вирионной РНК синтезируется комплементарная ей РНК (образуется репликативная форма РНК), затем на комплементарной РНК синтезируется комплементарная ей, но идентичная исходной вирусная РНК.

В клетках нет ферментов, способных осуществлять репликацию РНК, поэтому ферменты, участвующие в репликации, всегда вирусспецифические.

Репликация двуспиральных вирусных РНК происходит следующим образом: на минус-нити геномной двуспиральной РНК синтезируются односпиральные плюс-нити, которые являются и PH К и матрицей для синтеза минус-нитей, в результате образуются двуспиральные вирусные РНК.

Репликация односпиральной РНК ретровирусов происходит с участием фермента обратной транскриптазы. Вначале на вирусной РНК синтезируется комплементарная ей минус-нить ДНК, а затем (после разрушения РНК) на ней синтезируется плюс-нить ДНК. Двуспиральная ДНК интегрирует в хромосому клетки. Вирусспецифическая ДНК, встроенная в клеточный геном, транскрибируется с образованием вирусной РНК, которая вначале выполняет функции иРНК, направляя синтез вирусспецифических белков, а затем соединяется с ними, формируя новое поколение вирионов.

Синтез РНК может осуществляться по одному из двух механизмов: 1) консервативному, при котором полинуклеотидные цепи, входящие в состав репликативной формы РНК, сохраняются (консервируются) и не переходят в односпиральную форму; 2) образование плюс-нитей может происходить асимметрическим полуконсервативным путем, когда вновь строящаяся плюс-нить вытесняет ранее синтезированную плюс-нить из репликативной формы РНК.

IV. Сборка вирусных частиц . Синтез компонентов (нуклеиновых кислот и белков) вирусных частиц в клетке разобщен и может протекать в разных структурах ядра и цитоплазмы. Как только их концентрация достигнет определенного уровня, начинается сборка вирионов. При таком дисъюнктивном способе репродукции образование вирусных частиц возможно лишь при специфическом узнавании вирусных нуклеиновых кислот и белков и самопроизвольного их соединения друг с другом, т. е. вирусные компоненты способны к самосборке в результате гидрофобных, ионных, водородных связей и стерического соответствия.

Разнообразие структуры вирусов отражается на способе их формирования и выходе из клетки. У просто устроенных вирусов формируются провирионы, которые затем в результате модификаций белков превращаются в вирионы. У сложно устроенных вирусов сборка осуществляется многоступенчато - сначала формируются нуклеокапсиды, или сердцевины, с которыми взаимодействуют белки наружных оболочек. Сборка нуклеотидов, сердцевин, провирионов и вирионов происходит в специальных структурах клетки («фабриках»).

Различают две стратегии, используемые вирусами при сборке, созревании и выходе из зараженной клетки. Первая заключается в сборке и созревании вирионов внутри клетки (пикорна-, адено-, реовирусы и др.). Вторая состоит в сочетании завершающей стадии сборки вириона с выходом его из зараженной клетки. Она используется обычно вирусами, имеющими оболочку (тога-, ретро-, герпесвирусы и др.). Образование зрелых вирионов у оболочечных вирусов осуществляется при почковании их нуклеопротеидов через модифицированные участки цитоплазматических или ядерных (герпесвирусы) мембран, в которых клеточные белки заменены вирусспецифическими. Во время этого процесса вновь образовавшийся вирион отпочковывается от клетки.

Дозревание ретровирусов происходит после отпочковывания от плазматической мембраны клетки.

Число инфицированных вирусных частиц, образуемых в одной клетке, зависит от типа вируса, вида клеток, и количество их варьирует очень широко. Считают, что на долю вирусспецифических продуктов приходится от 0,1 до 5 % массы клетки животного, а на бактериофаги - до 40 % массы клетки хозяина. В инфицированных клетках вирусные нуклеиновые кислоты и вирусспецифические белки синтезируются в значительно большем количестве, чем включаются в вирионы.

V. Выход вирусных частиц из клетки . Существует два способа выхода вирусного потомства из клетки: путем взрыва и путем почкования. Выход из клетки путем взрыва связан с деструкцией клетки, нарушением ее целостности, в результате чего находящиеся внутри клетки зрелые вирусные частицы оказываются в окружающей среде. Такой способ выхода из клетки присущ вирусам, не содержащим липопротеидной оболочки (пикорна-, рео-, парво-, папова-, аденовирусы). Однако некоторые из этих вирусов могут транспортироваться на клеточную поверхность до гибели клетки.

Выход из клетки путем почкования присущ вирусам, содержащим липопротеидную мембрану, которая является дериватом клеточных мембран. При этом способе клетка может длительное время сохранять жизнеспособность и продуцировать вирусное потомство, пока не произойдет полное истощение ее ресурсов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Для вирусов характерен дизъюнктивный (от disjuncus - разобщенный) способ репродукции-размножения. Потомство вируса возникает в результате сборки нуклеиновых кислот и белковых субъединиц, которые синтезируются раздельно клеткой хозяина.

Проникновение вируса в клетку и воспроизведение себе подобных проходит в несколько фаз:

1.проникновение в клетку хозяина,

2.синтез ферментов, необходимых для репликации вирусных нуклеиновых кислот,

3.синтез вирусных частей,

4.сборка и композиция зрелых вирионов,

5.выход зрелых вирионов из клетки.

Стадии репродукции вирусов.

1 - адсорбция вириона на клетке; 2 - проникновение вириона в клетку путем виропексиса;

3 - вирус внутри вакуоли клетки; 4 - `раздевание вириона вируса; 5 - репликация вирусной нуклеиновой кислоты; 6 - синтез вирусных белков на рибосомах клетки; 7 - формирование вириона; 8 - выход вириона из клетки путем почкования.

Фаза I - адсорбция вириона на поверхности клетки .

Протекает в две стадии: первая - неспецифическая , когда вирус удерживается на поверхности клетки при помощи электростатических сил, т. е. благодаря возникновению противоположных зарядов между отдельными участками мембраны клеток и вируса. Эта фаза взаимодействия вируса с клеткой обратима, на нее оказывают влияние такие факторы, как рН и солевой состав среды.

Вторая стадия - специфическая , когда взаимодействуют специфические рецепторы вируса и рецепторы клетки, комплементарные друг другу. По химической природе рецепторы клетки могут быть мукопротеидами (или мукополисахаридами) и липопротеидами. Разные вирусы фиксируются на разных рецепторах: вирусы гриппа, парагриппа, аденовирусы - на мукопротеидах, а вирусы клещевого энцефалита, полиомиелита - на липопротеидах.

Фаза II - проникновение вируса в клетку. Электроноскопические наблюдения за процессом проникновения вирусов в чувствительные к ним клетки показали, что оно осуществляется посредством механизма, напоминающего пиноцитоз, или, как чаще называют, виропексис. В месте адсорбции вируса клеточная стенка втягивается внутрь клетки, образуется вакуоль, в которой оказывается вирион. Параллельно клеточные ферменты (липазы и протеазы) вызывают депротеинизацию вириона - растворение белковой оболочки и освобождение нуклеиновой кислоты.

Фаза III - скрытый период (период эклипса - исчезновения). В этот период в клетке невозможно определить наличие инфекционного вируса ни химическими, ни электронно-микроскопическими, ни серологическими методами. О сущности этого явления и его механизмов пока известно мало. Предполагается, что в скрытой фазе нуклеиновая кислота вируса проникает в хромосомы клетки и вступает с ними в сложные генетические взаимоотношения.


Фаза IV - синтез компонентов вириона . В этой фазе вирус и клетка представляют единое целое, вирусная нуклеиновая кислота выполняет генетическую функцию, индуцирует образование ранних белков и изменяет функцию рибосом. Ранние белки подразделяются на:

а) белки-ингибиторы (репрессоры), подавляющие метаболизм клеток

б) белки-ферменты (полимеразы), обеспечивающие синтез вирусных нуклеиновых кислот.

Синтез нуклеиновых кислот и белков протекает неодновременно и в разных структурных частях клетки. У вирусов, содержащих ДНК или РНК, эти процессы имеют некоторые различия и особенности.

Фаза V - формирование зрелых вирионов . Процесс «сборки» вируса осуществляется в результате соединения компонентов вирусной частицы. У сложных вирусов в этом процессе принимают участие клеточные структуры и происходит включение в вирусную частицу липидпых, углеводных, белковых компонентов клетки хозяина.

Процесс формирования вирионов начинается спустя определенное время после того, как начал осуществляться синтез составляющих их компонентов. Продолжительность этого периода довольно вариабельна и предопределяется природой вируса - для РНК-содержащих обычно короче, чем для ДНК-вирусов. Например, продукция полных вирусных частиц осповакцины начинается приблизительно спустя 5-6 ч после инфицирования клеток и продолжается в течение последующих 7-8 ч, т. е. после того как синтез вирусной ДНК уже завершен.

Между нуклеиновой кислотой и соответствующим белковыми субъединицами образуются очень прочные связи, о чем свидетельствуют трудности отделения белка от вирусной нуклеиновой кислоты. Большую прочность вирусной частице придают входящие в ее состав углеводы и особенно липиды.

Формирование вирионов, так же как и синтез компонентов вируса, происходит в разных местах клетки, при участии различных клеточных структур. После завершения процесса формирования образуется зрелая дочерняя вирусная частица, обладающая всеми свойствами родительского вириона. Но иногда наблюдается образование так называемых неполных вирусов , которые состоят или только из нуклеиновой кислоты, или из белка, или из вирусных частиц, формирование которых остановилось в какой-то промежуточной стадии.

Фаза VI - выход зрелых вирионов из клетки . Существуют два основных механизма выхода зрелых вирионов из клетки:

1) выход вириона с помощью почкования. В этом случае наружная оболочка вириона происходит из клеточной мембраны, она содержит как материал клетки хозяина, так и вирусный материал;

2) выход зрелых вирионов из клетки через бреши в мембране. Эти вирусы не имеют наружной оболочки. При таком механизме выхода вирусов клетка, как правило, погибает и в среде появляется большое количество вирусных частиц.

Причиной гибели зараженной клетки могут быть три механизма:

1.работа вируса, «истощающая» клетку;

2.защитная реакция клетки, запускающая генетическую программу ее гибели (апоптоз);

3. иммунная система организма, уничтожающая зараженную клетку.

Кроме продуктивного типа взаимодействия вируса и клетки возможно интегративное сосуществование или вирогения. Вирогения характеризуется интеграцией (встраиванием) нуклеиновой кислоты вируса в геном клетки, а также репликацией и функционированием вирусного генома как составной части генома клетки. Для интеграции с клеточным геномом необходимо возникновение кольцевой формы двунитевой ДНК вируса. Встроенная в состав хромосомы клетки вирусная ДНК называется провирусом. Провирус реплицируется в составе хромосомы и переходит в геном дочерних клеток, т.е. состояние вирогении наследуется. Под влиянием некоторых физических или химических факторов провирус может переходить в автономное состояние с развитием продуктивного типа взаимодействия с клеткой. Дополнительная генетическая информация провируса при вирогении сообщает клетке новые свойства, что может быть причиной развития опухолей, аутоиммунных и хронических заболеваний. На способности вирусов к интеграции с геномом клетки основаны персистенция (от лат. persisto - постоянно пребывать, оставаться) вирусов в организме и развитие персистентных вирусных инфекций. Например, вирус гепатита В способен вызывать персистирующие поражения с развитием хронического гепатита и часто опухолей печени.

1. Общее представление о репродукции вирусов.

2. Типы взаимодействия вирусов с клеткой.

3. Взаимодействие по типу острой инфекции.

4. Цитоцидная инфекция и гибель клетки.

5. Реакция клетки на вирусную инфекцию.

В жизненном цикле вирусов происходит копирование нуклеиновой кислоты с последующим синтезом вирусных белков и самоорганизацией компонентов в зрелую вирусную частицу и выходом из зараженной клетки. Этот процесс называется репродукция.

После проникновения вируса в клетку-хозяина и высвобождения нуклеиновой кислоты от вирионных оболочек (инфицирования клетки) геном вируса реализует свой патогенный потенциал, в результате чего на молекуле вирусной нуклеиновой кислоты синтезируется и-РНК, которая регулирует синтез вирусоспецифического белка. В последующем происходит репликация вирусной нуклеиновой кислоты (синтез большого числа копий нуклеиновой кислоты), которая одевается в капсид из синтезированных ранее вирусоспецифических белков с формированием зрелых вирионов.

Синтез и-РНК (трансляция) и копий нуклеиновой кислоты (репликация) осуществляется с помощью ферментов, так называемых полимераз (репликаз), которые могут быть либо вирусоспецифическим (кодируемыми вирусным геномом и синтезируемыми в процессе репродукции), либо клеточными (входящим в состав клетки и используемыми вирусами для собственной репродукции).

При репродукции вирусов сохраняются следующие закономерности:

1. Источником мономеров для нуклеиновых кислот служат нуклеотиды клеток (дезоксирибонуклеотидфосфаты и рибонуклеотидфосфаты).

2. Источником мономеров для белков служат аминокислоты

3. Синтез белков вирусов происходит на рибосомах клетки-хозяина и не зависит от синтеза нуклеиновой кислоты вируса.

4. Источником энергии для синтеза служат АТФ клетки.

Репродукция вирусов происходит в несколько этапов:

I. События, ведущие к адсорбции, проникновению вируса в клетку, освобождению вирусного генома и модификации его таким образом, что он становиться способным вызывать развитие инфекции. Этот этап называется фазой инфицирования . Он включает в себя:

1. Адсорбция вируса на клетке.

2. Проникновение вирус внутрь клетки.

3. Депротенизация (раздевание вируса).

II. Этап репродукции, в котором происходит экспрессия вирусного генома . Он включает в себя:

1. Транскрипция.

2. Трансляция.

3. Репликация генома.

4. Сборка компонентов вириона.

5. Выход вируса из клетки.

При взаимодействии вируса с клеткой развивается инфекция и формы этого взаимодействия могут быть различными.



Различают две формы взаимодействия вируса с клеткой (в зависимости от длительности пребывания в клетке и стратегии генома):

I. Автономный тип взаимодействия.

При этом вирусный геном функционирует автономно от генома клетки. Вирусы, автономно размножающиеся относят к вирулентным .

На уровне клетки этот тип взаимодействия может протекать в виде:

1. продуктивной инфекции – при этом происходит образование нового поколения вирусов.

2. абортивной инфекции – при этом вирусной генерации не образуются по причине наличия:

Дефектного вируса;

Резистентной клетки;

Вирулентного вируса в низкой дозе.

В зависимости от судьбы зараженной клетки также выделяют также:

3. литическую инфекцию – при этом происходит гибель клетки и образовавшаяся в процессе репродукции генерация вирусов покидает клетку.

4. нелитическую инфекцию. В этом случае гибели клетки не происходит, и образования новой генерации вирусов также не наблюдается (абортивная инфекция) или образуется ограниченное число вирионов, покидающих клетку и не вызывающих ее гибели (ограниченная инфекция).

На уровне организма автономный тип взаимодействия проявляется в форме следующих инфекций:

1. Острая инфекция, характеризующаяся коротким инкубационным периодом, непродолжительным течением, полным развитием клинических признаков и формированием иммунитета. Острая инфекция соответствует автономному продуктивному литическому типу взаимодействия.

2. Иннапарантная инфекция (агнл. Inapparent – невидимый), характеризующаяся отсутствием внешних клинических признаков и сопровождающаяся незначительной репродукцией вируса. Иннапарантная инфекция соответствует автономному продуктивному нелитическому типу взаимодействия

II. Интеграционный тип взаимодействия.

При этом типе взаимодействия нуклеиновая кислота вируса встраивается в клеточный геном и она функционирует в составе клеточного генома. Существует несколько механизмов интеграции вирусной нуклеиновой кислоты в клеточный геном. Обязательным условием интеграции геномов является циркуляризация вирусной нуклеиновой кислоты (замыкание молекулы НК в круг). Такое явление становится возможным за счет присутствия комплементарных друг другу участков на обоих концах цепи нуклеиновой кислоты.



Нуклеиновая кислота ДНК-геномных вирусов встраивается непосредственно в молекулярную нуклеиновую кислоту (гепаднавирусы, паповавирусы и др.). Нуклеиновая кислота РНК-геномных вирусов не может встраиваться непосредственно в ДНК клетки из-за различия в их химическом построении. В этой связи РНК-содержащие вирусы (ретровирусы) сначала синтезируют на цепи РНК нить ДНК. Такой обратный синтез нуклеиновых кислот является возможным только благодаря присутствию в составе вирионов ретровирусов специального фермента.

Интегрированная в клеточный геном вирусная нуклеиновая кислота может сохраняться в течение очень длительного времени (до нескольких лет). Такое состояние длительного присутствия вирусного генома в клетке называется персистенцией. В этом случае наследуемые свойства клетки меняются.

Участок комплексной нуклеиновой кислоты, который содержит вирусоспецифическую последовательность нуклеотидов, называется провирусом. При определенных условиях происходит активизация провируса, то есть формируется новое поколение вирионов, которые покидают зараженную клетку.

На уровне клетки интеграционный тип взаимодействия также может протекать в виде:

1. продуктивной инфекции

2. абортивной инфекции

3. литической инфекции

4. нелитической инфекции.

На уровне организма интеграционный тип взаимодействия протекает в форме следующих инфекций:

1. Хроническая инфекция, характеризующаяся длительным течением, развитием клинических признаков незначительной интенсивности, формированием нестерильного иммунитета.

2. Латентная инфекция, характеризующаяся длительным бессимптомным периодом (персистенцией) с периодическим обострением инфекционного процесса под действием факторов различной природы.

3. Медленная инфекция, вызываемая довирусными частицами – прионами и характеризующаяся очень длительным (до нескольких лет) инкубационным периодом с последующим переходом инфекционного процесса в острую фазу, поражением нервной системы невоспалительного характера, неизменной гибелью организма.

Острой инфекцией называют инфекцию, которая характеризуется коротким инкубационным периодом, полным развитием клинических признаков и заканчивающейся выздоровлением или смертью. При острых вирусных инфекциях наблюдают полный цикл репродукции вируса с выходом зрелых вирионов из пораженной клетки и последующей ее гибелью. Острая инфекция соответствует автономному продуктивному литическому взаимодействию вируса с клеткой.

Для возникновения острой инфекции необходим вирулентный вирус и чувствительная клетка. Этапы репродукции вируса при этом виде инфекции включают:

АДСОРБЦИЯ – прикрепление вирусной частицы к клеточной поверхности.

Для адсорбции вирусы используют необходимые для жизнедеятельности клетки рецепторы физиологической регуляции.

Обычно взаимодействие и адсорбция вируса происходит путем случайного контакта вириона с протеином рецепторного участка цитоплазматической мембраны клетки, чаще гликопротеином. Наличие этих рецепторов обусловливает специфичность (тропизм) вируса. Эти протеины чаще являются рецепторами для связывания физиологических гормонов и других биологически активных веществ (например, вирус бешенства прикрепляется к рецепторам нейронов, ответственных за связывание ацетилхолина, вирус оспы – рецепторов эпителиоцитов для связывания фактора роста эпидермальных клеток).

На вирионе также присутствуют специфические белки для облегчения прикрепления. Это могут быть специальные углубления на капсиде (энтеровирусы) или протеиновые выступы по углам икосаэдра (аденовирусы) или шипы на суперкапсиде (вирус гриппа)

Если вирус прикрепляется к несвойственным рецепторам, то инфицирования клетки не происходит.

ПЕНЕТРАЦИЯ И ДЕПРОТЕНИЗАЦИЯ ВИРИОНА – попадание вируса в клеточную цитоплазму.

Пенетрация вируса происходит сразу после адсорбции. Для разных вирусов механизм пенетрации различный. Так, для некоторых вирусов достаточно проникновения одной нуклеиновой кислоты, а для других необходим механизм, обеспечивающий проникновение вместе с нуклеиновой кислотой вирионных ферментов, необходимых для дальнейшей репродукции вирусов (РНК-зависимых ДНК- полимераз). В целом этот процесс может длиться от нескольких минут до нескольких часов.

На данный момент известно три механизма пенетрации (проникновения внутрь цитоплазмы) вирусов:

1. Механизм проникновения, характерный для мелких простоорганизованных вирусов. При этом после адсорбции капсида на цитоплазматической мембране клетки внутрь ее проникает только вирусная нуклеиновая кислота.

2. Механизм проникновения, характерный для отдельных сложноорганизованных вирусов (парамиксовирусы, ортомиксовирусы). При этом суперкапсид интегрируется с цитоплазматической мембраной клетки из-за их сильного подобия, и внутрь клетки проникает оголенный капсид с РНК вируса и вирусоспецифической полимеразой.

3. Механизм проникновения, характерный для большинства сложноорганизованных вирусов. При этом внутрь клетки путем эндоцитоза проникает полная вирусная частица с последующим образованием везикулы (рецептосомы) . Это явление называют виропексис. В этом случае вирион прикрепляется к специальному поверхностному белку клетки – клатрину. Образовавшиеся везикулы отделяются от цитоплазматической мембраны и входят внутрь цитоплазмы. Затем везикулы сливаются с лизосомами, ферменты которых раздевают вирус; реже суперкапсид интегрируется с мембраной лизосомы с последующим выходом капсида внутрь цитоплазмы клетки.

ТРАНСКРИПЦИЯ, ТРАНСЛЯЦИЯ – переписывание информации с ДНК на РНК, синтез белка на молекуле РНК.

Механизм транскрипции различен у РНК- и ДНК-геномных вирусов.

У ДНК-геномных вирусов сама матричная ДНК формирует и-РНК. Большинство ДНК-содержащих вирусов использует клеточный фермент, и поэтому транскрипция и репликация у таких вирусов происходит внутри ядра клетки. У вирусов семейства Poxviridae транскрипция происходит при участии вирусного фермента (ДНК-зависимой РНК-полимеразы), входящей в состав вириона и проникающего внутрь клетки вместе с вирусной нуклеиновой кислотой. В этом случае вирус не нуждается в наличии клеточных ферментов и размножается в цитоплазме клетки.

Жизненный цикл всех ДНК-геномных вирусов идет по схеме

ДНК ® и-РНК ® белок.

Транскрипция РНК-геномных вирусов может идти по разным механизмам в связи с наличием у отдельных вирусов различного типа РНК (однонитчатая РНК с позитивным геномом, однонитчатая РНК с негативным геномом, двунитчатой РНК).

У отдельных вирусов (пикорнавирусы и др.) сама РНК вируса выполняет функцию и-РНК. Такой тип нуклеиновой кислоты назван позитивным. При этом РНК вируса прикрепляется к рибосомам клетки и начинается процесс трансляции. На рибосомах синтезируется одна гигантская молекула полипептида, которая затем расщепляется на отдельные фрагменты. Эти фрагменты под действием клеточных и вирионных ферментов модифицируются, и такие модифицированные молекулы полипептидов являются целыми вирусными белками. Жизненный цикл таких вирусов идет по схеме РНК ® белок.

РНК-геномные вирусы с негативным геномом (парамиксовирусы) для транскрипции используют РНК-зависимую полимеразу, входящую в состав вириона. Этот фермент на –нити РНК строит комплементарную +нить РНК, которая затем поступает на рибосомы, и начинается процесс трансляции вирусного белка. Жизненный цикл таких вирусов идет по схеме

РНК ® и-РНК ® белок.

У РНК-геномных вирусов с двунитчатой молекулой РНК (реовирусы) вирионная транскриптаза раздваивает молекулу и на минус–нити синтезирует и-РНК. Жизненный цикл таких вирусов также идет по схеме

РНК ® и-РНК ® белок.

К группе РНК-геномных вирусов относят семейство Retroviridae, которое имеет особый жизненный цикл. У таких вирусов процесс транскрипции начинается с синтеза на плюс-нити РНК минус–нити ДНК. Этот процесс происходит при участии фермента РНК-зависимая ДНК-полимераза. Данный синтез осуществляется в две фазы: сначала формируется гибрид РНК-ДНК, затем происходит разрушение РНК-нити гибрида с высвобождением нити ДНК. В последующем на этой нити достраивается вторая нить ДНК (провирусная ДНК), на которой затем синтезируется и-РНК. Жизненный цикл таких вирусов идет по схеме РНК ® ДНК ® и-РНК ® белок

Трансляция – процесс перевода генетической информации в специфическую последовательность аминокислот белка. Он происходит в несколько этапов:

Инициация. Процесс распознавания рибосомой и-РНК и их связывание. Трансляция начинается, когда рибосома связывается с инициаторным кодоном, сюда же прикрепляются инициаторные белки, регулирующие процесс трансляции. Вирус также вводит свои белки-ингибиторы, угнетающие трансляцию клеточной и-РНК;

Элонгация – наращивание полипептидной цепи;

Терминация – прекращение трансляции, когда рибосома достигает терминирующего кодона.

РЕПЛИКАЦИЯ – синтез новых молекул нуклеиновой кислоты вируса.

Репликация ДНК-геномных вирусов происходит либо при участии клеточных ферментов, либо собственных вирусоспецифических ферментов. У мелких ДНК-геномных вирусов (парвовирусы) молекула нуклеиновой кислоты содержит ограниченное количество генов (3), кодирующих структурные белки, поэтому для репликации вирусной ДНК используется клеточный фермент. У более крупных вирусов размер нуклеиновой кислоты достаточен для кодирования как структурных, так и функциональных белков. Например, в нуклеиновой кислоте герпес вирусов имеется около 100 генов, часть из которых кодирует ферменты, необходимые для репликации ДНК вируса. Поэтому в процессе транскрипции и трансляции первыми синтезируемыми белками являются вирусоспецифические полимеразы.

Механизм репликации РНК-геномных вирусов различен. У вирусов, содержащих однонитчатую молекулу РНК при участии вирусных ферментов синтезируется временная двунитчатая РНК (репликативная форма): у вирусов с негативным геномом достраивается +нить, у вирусов с позитивным геномом достраивается –нить. Затем происходит разъединение репликативной РНК на две нити, на каждой из которых синтезируются новые двунитчатые репликативные молекулы РНК, и процесс повторяется до образования достаточного числа копий молекул РНК. Данный процесс происходит параллельно с синтезом белков вируса до момента выхода из пораженной клетки новой генерации вирусов.

У РНК-геномных вирусов, содержащих двунитчатую РНК молекула нуклеиновой кислоты представлена отдельными фрагментами, каждый из которых кодирует отдельную молекулу и-РНК. В конце цикла трансляции все молекулы и-РНК временно объединяются и при участии репликазы синтезируется двунитчатая РНК.

СБОРКА ВИРИОНА . Поздние гены всех вирусов кодируют структурные белки капсида. Сначала формируются прокапсиды, то есть незрелые капсиды без нуклеиновой кислоты. Затем внутрь прокапсидов встраивается нуклеиновая кислота вируса, и таким образом формируется зрелый вирион. У мелких РНК- геномных вирусов синтез РНК, белка и их объединение идут одновременно. У поксвирусов процесс сборки вириона более сложный. У них в состав вируса включаются клеточные компоненты – отдельные участки цитоплазматической мембраны.

У вирусов имеется раздельный (дизъюнктивный) синтез белка и нуклеиновой кислоты.

ВЫХОД ВИРУСА ИЗ КЛЕТКИ . Простоорганизованные вирусы выходят из клетки путем простого лизиса клетки-хозяина. У сложноорганизованных вирусов образование суперкапсида происходит в момент выхода из клетки. В этом случае нуклеокапсид встраивается в цитоплазматическую мембрану. Затем путем почкования формируется суперкапсид вируса, который покрывает капсид в момент отрыва от поверхности клетки.

Инфицирование клетки вирусом может привести к развитию патологических изменений клетки. Репродуцируясь в клетке, вирус обусловливают появление ЦПД и ЦПЭ. Это специфическая морфологическая деструкция (ЦПД) или функциональная патология без разрушения (ЦПЭ).

Вирусы, которые вызывают появление ЦПД, называются цитопатическими.

Литическая (цитоцидная) инфекция – это такой тип инфекции, при которой наблюдают морфологические изменения в зараженной клетке с последующей ее деструкцией и гибелью. Для вируса при цитоцидной инфекции характерна высокая продукция.

Известно несколько механизмов повреждения клеток вирусами:

1. Многие вирусы ингибируют синтез клеточных ДНК, РНК и белка. Отдельные цитоцидные вирусы (пикорнавирусы, герпесвирусы, аденовирусы) исключительно активны в этом отношении. Однако. Механизм ингибиции клеточного метаболизма до сих пор не выяснен.

2. В процессе внутриклеточной репродукции может происходить разрушение лизосом на этапе выхода вируса из них в цитоплазму клетки. Это приводит к высвобождению гидролитических ферментов с последующей деструкцией клеток.

3. Инфицирование клетки вирусами может привести к значительному нарушению структуры цитоплазматической мембраны вследствие встраивания в нее вирусоспецифических белков. Это приводит к атаке инфицированной клетки со стороны иммунной системы организма. При многих инфекция, вызванных герпесвирусами происходит слияние 50-100 клеток в одну гигантскую, атакуемую иммунной системой организма.

4. Высокие концентрации вирусных белков, что наблюдается при гриппе и других инфекциях, имеют ярко выраженный токсический эффект на клетку.

5. При многих вирусных инфекциях образуются внутриклеточные включения, что является следствием сосредоточения вирусных частиц или их белков внутри ядра или цитоплазмы. Часто внутриклеточные включения непосредственно вызывают гибель клетки.

6. Герпесвирусы, а также некоторые другие вызывают нарушения в геноме клетки, в результате чего наступает ее гибель.

Чаще всего в механизме развития ЦПД участвуют несколько из вышеперечисленных факторов.

Реакция вирусов на инфекцию может быть четырех типов:

1. Повреждение клетки и ее гибель (образование ЦПД). Клетки набухают, приобретают неправильную форму, появляется зернистость. Впоследствии, она укрупняется, образуются внутриклеточные включения. Может происходить повреждение оболочки или слияние клеток с образованием симпластов.

2. Синтез белков-интерферонов, препятствующих инфицированию здоровых клеток вирусом.

3. Размножение вируса без видимых патологических изменений в клетке, что наблюдают при латентных инфекциях. Для ее возникновения необходим вирулентный вирус и нечувствительная клетка.

4. При попадании вируса в клетку наблюдается пролиферация клетки. Для ее возникновения необходим онкогенный вирус, при этом геном вируса встраивается (интегрирует) в клеточный геном.