Электрические явления в природе. Статическое электричество в природе и технике Электрические явления в технике примеры

Работа состоит из 3 частей.

Часть 1 содержит задания с выбором ответа. К каждому заданию приводится 4 варианта ответа, из которых только один верный.

Часть 2 включает задания на соответствие с кратким ответом (В1 –В2). Если в задании в качестве ответа требуется записать последовательность цифр, при переносе ответа следует указать только эту последовательность, без запятых, пробелов и прочих символов.

Часть 3 содержит задание - практическое решение задач, с выбором двух правильных вариантов ответов. При переносе ответа на бланк следует указать только эту последовательность, без запятых, пробелов и прочих символов.

При вычислениях разрешается использовать непрограммируемый калькулятор.

Советуем выполнять задания в том порядке, в котором они даны. С целью экономии времени пропускайте задание, которое не удается выполнить сразу, и переходите к следующему. Если после выполнения всей работы у вас останется время, то можно вернуться к пропущенным заданиям.

За каждый правильный ответ в зависимости от сложности задания дается один или более баллов. Баллы, полученные вами за все выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать как можно большее количество баллов.

Желаем успеха!

Часть 1

1) притяжение Луны к Земле

3) притяжение волос к воздушному шарику , потёртому о них

4) образование тумана

· Примером электрических явлений можно назвать

1) притяжение планет друг к другу

2) притяжение железных гвоздиков к магниту

4) образование росы

· Примером электрических явлений можно назвать

1) притяжение Луны к Земле

2) притяжение железных опилок к магниту

3) притяжение расчёсанных волос к расчёске

4) образование тумана

1) наличие в нём свободных заряженных частиц

2) создать в нём электрическое поле

4) наличие в нём электрического поля и свободных заряженных частиц

· Чтобы в проводнике существовал электрический ток, необходимо

1) создать в нём электрическое поле

2) наличие в нём свободных заряженных частиц

3) создать в нём электрические заряды

4) наличие в нём свободных заряженных частиц и электрического поля

· Почему в обычном состоянии металл электрически нейтрален?

1) это проводник и заряд на нём не накапливается

2) суммарный заряд отрицательных ионов в узлах кристаллической решётки равен суммарному заряду протоном, движущихся между ионами

3) отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду ионов кристаллической решётки

4) большинство тел в обычном состоянии нейтральны

· При электризации стекло

1) всегда заряжается положительно

2) всегда заряжается отрицательно

3) может получить любой заряд в зависимости от материала второго тела

4) не получает заряда

· Пылинка неподвижно висит над положительно заряженной пластиной. Это значит

· К положительно заряженному электроскопу стали подносить с достаточно большого расстояния отрицательно заряженную палочку. По мере приближения палочки листочки электроскопа

· Пылинка неподвижно висит над отрицательно заряженной пластиной. Это значит

· Каково количество теплоты выделится за 3 минуты в проводнике сопротивлением 4 кОм при силе тока 0,1 А?

1) 72 кДж 2) 7,2 кДж 3) 1,2 кДж 4) 12 кДж

· При напряжении на концах участка цепи 50 В, сила тока в проводнике равна 0,5 А. Каким должно быть напряжение, чтобы сила тока стала равна 0,1 А?

1) 10 В 2) 30 В 3) 40 В 4) 50 В

· Какой длины нужно взять никелиновую проволоку сечением 0,2 мм2 для изготовления реостата сопротивлением 20 Ом?

1) 5 м 2) 10 м 3) 15 м 4) 20 м

· Каково сопротивление проводника, если за 3 минуты при силе тока 0,1 А он выделит количество теплоты 7,2 кДж?

1) 2400 кОм 2) 400 Ом 3) 4 кОм 4) 129,6 кОм

· Каково сопротивление реостата, изготовленного из никелиновой проволоки сечением 0,2 мм2 и длинной 10 м?

1) 5 Ом 2) 10 Ом 3) 15 Ом 4) 20 Ом

· Результаты измерения силы тока в резисторе при разных напряжениях на его клеммах показаны в таблице

Сопротивление резистора

1) 0,5 Ом 2) 0,002 кОм 3) 2 Ом 4) 0,05 кОм

· Два лёгких одинаковых шарика подвешены на шёлковых нитях. На каком из рисунков изображены шарики, имеющие заряд противоположного знака

https://pandia.ru/text/80/197/images/image001_8.jpg" width="508" height="146 src=">

· Два лёгких одинаковых шарика подвешены на шёлковых нитях. На каком из рисунков изображены шарики, не имеющие заряда.

https://pandia.ru/text/80/197/images/image002_4.jpg" width="279" height="155">

· Амперметр, шкала которого изображена на рисунке, измеряет силу тока в лампе накаливания. Через какой промежуток времени по проводнику пройдёт заряд 6 кКл

1) 0,4 сек 2) 6 мин 3) 10 мин 4) 400 сек

· Амперметр, шкала которого изображена на рисунке, измеряет силу тока в лампе накаливания. Какой заряд пройдёт через лампу за 15 мин?

1) 225 Кл 2) 13,5 кКл 3) 1 Кл 4) 16,7 мКл

· Амперметр, шкала которого изображена на рисунке, измеряет силу тока в лампе накаливания. Через какой промежуток времени по проводнику пройдёт заряд 90 Кл

1) 10 сек 2) 6 сек 3) 10 мин 4) 60 сек

· Амперметр, шкала которого изображена на рисунке, измеряет силу тока в лампе накаливания. Через какой промежуток времени по проводнику пройдёт заряд 9 кКл

1) 10 сек 2) 60 мин 3) 10 мин 4) 60 сек

· Амперметр, шкала которого изображена на рисунке, измеряет силу тока в лампе накаливания. Какой заряд пройдёт через лампу за 10 мин?

1) 9000 Кл 2) 15000 Кл 3) 15 Кл 4) 1500 Кл

Часть 2

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

· Установите соответствие между физическими величинами и формулами.

Часть 3

Задание последней части требует навыков практического выполнения заданий, математических преобразований и вычислений, развитого логического мышления

Используя графические данные, выберите из предложенного перечня два верных утверждения. Укажите их номера.

· На рисунке представлена электрическая цепь, где R =1 Ом

После расчёта сопротивления цепи, выберите из предложенного перечня два верных утверждения. Укажите их номера.

2) Сила тока на участке АD равна силе тока на участке АК

3) Общее сопротивление цепи равно 1 Ом

5) Общее сопротивление цепи равно 10 Ом

· На рисунке представлена графическая связь силы тока и напряжения на двух резисторах.

Используя графические данные, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) Сопротивление первого резистора в два раза меньше чем второго

2) Сопротивление первого равно 16 Ом

3) Если резисторы соединить последовательно, то при напряжении 10 В ток через резисторы будет равен 1,5 А

4) Работа тока силой 2 А, текущего через второй резистор, за 2 с равна 64 Дж

5) Если резисторы соединить параллельно, то при напряжении 8 В ток через первый резистор будет равен 3А

Статическое электричество в природе. Интересные факты

1. Впервые электризация жидкости при дроблении была замечена у водопадов Швейцарии в 1 786 г. С 1913г. явление получило название баллоэлектрического эффекта. Эффект электризации наблюдается не только у водопадов на открытой местности, но и в пещерах.

Заряд воздуху у водопадов сообщают микроскопические капельки воды и молекулярные комплексы, которые при дроблении отрываются от водной поверхности и уносятся в окружающую среду.

Наиболее значительный эффект электризации воздуха наблюдается у самых больших водопадов мира - Игуассу на границе Бразилии и Аргентины (высота падения воды - 190 м, ширина потока - 1 500 м) и Виктория на реке Замбези в Африке (высота падения воды - 133 м, ширина потока -1600 м). У водопада Виктория за счет дробления воды возникает электрическое поле напряженностью 25 кВ/м.

При дроблении пресной воды в воздух переходит отрицательный заряд. Поэтому в воздухе у водопадов количество отрицательных ионов превышает количество положительных.

У небольшого водопада Учан-Су в Крыму отношение отрицательных ионов к количеству положительных равно 6,2.

2. У берегов морей воздух приобретает положительный заряд, вследствие разбрызгивания соленой воды. На поверхности морей и океанов разбрызгивание воды начинается при скорости ветра более 10м/с, когда на волнах появляются гребешки пены. Отношение положительных зарядов к отрицательным зарядам в воздухе над Черным и Азовским морями достигает при бурном море 2,04, при зыби- 1,48.

3. Покоритель Джомолунгмы Н. Тенсинг в 1953 г. в районе южного седла этой горной вершины на высоте 7,9 км над уровнем моря при -30 °С и сухом ветре до 25 м/с наблюдал сильную электризацию обледеневших брезентовых палаток, вставленных одна в другую. Пространство между палатками было наполнено многочисленными электрическими искрами.

4. Движение лавин в горах в безлунные ночи иногда сопровождается зеленовато-желтым свечением, благодаря чему лавины становятся видимыми. Обычно световые явления наблюдаются у лавин, движущихся по снежной поверхности, и не наблюдаются у лавин, проносящихся по скалам. На озерах Антарктики во время полярной ночи иногда возникает свечение при разламывании крупных масс озерного льда.

5. Молния выбирает самый короткий путь к земле, поэтому попадает в здания или в деревья. Высокие здания оборудуют металлическими полосами (прутьями), по которым электрический разряд уходит в землю. Это громоотвод. Грозовой разряд идет на землю и обратно по одному и тому же пути.

Это происходит с такой скоростью, что наш глаз видит только одну вспышку. На своем пути молния раскаляет воздух, который, быстро расширяясь, создает звуковую волну. Это вызывает громовые раскаты. Мы слышим их после того, как увидим молнию, так как звук распространяется значительно медленнее, чем свет.

Статическое электричество в технике. Когда электризация тел полезна

Статическое электричество может быть верным помощником человека, если изучить его закономерности и правильно их использовать. В технике применяют метод, сущность которого заключается в следующем.

Мельчайшие твердые или жидкие частицы материала поступают в электрическое поле, где на их поверхность «оседают» электроны и ионы, т. е. частицы приобретают заряд и далее движутся под действием электрического поля.

В зависимости от назначения аппаратуры можно с помощью электрических полей по-разному управлять движением частиц в соответствии с необходимым технологическим процессом. Эта технология уже пробила себе дорогу в различные отрасли народного хозяйства.

Маляр без кисточки

Движущиеся на конвейере окрашиваемые детали, например корпус автомобиля, заряжают положительно, а частицам краски придают отрицательный заряд, и они устремляются к положительно заряженной детали. Слой краски на ней получается тонкий, равномерный и плотный.

Действительно одноименно заряженные частицы красителя отталкиваются друг от друга — отсюда равномерность окрашивающего слоя. Частицы, разогнанные электрическим полем, с силой ударяются об изделие — отсюда плотность окраски.

Расход краски снижается, так как она осаждается только на детали. Метод окраски изделий в электрическом поле сейчас широко применяют в нашей стране.

Электрические копчености

Копчение — это пропитывание продукта древесным дымом. Частицы дыма не только придают продуктам вкус, но и предохраняют их от порчи.

При электрокопчении частицы коптильного дыма заряжают положительно, а отрицательным электродом служит, например, тушка рыбы. Заряженные частички дыма оседают на поверхности тушки и частично поглощаются ею. Все электрокопчение продолжается несколько минут. Прежде копчение считалось длительным процессом.

Электрический ворс

Чтобы получить в электрическом поле слой ворса на каком-либо материале, надо материал заземлить, поверхность покрыть клеящим веществом, а затем через заряженную металлическую сетку, расположенную над этой поверхностью, пропустить порцию ворса. Ворсинки быстро ориентируются в поле и, распределяясь равномерно, оседают на клей строго перпендикулярно поверхности.

Так получают покрытия, похожие на замшу или бархат. Легко получить разноцветный узор, заготовив порции разного по цвету ворса и несколько шаблонов, которыми в процессе электроворсования прикрывают поочередно отдельные участки изделия. Так можно сделать многоцветные ковры.


Как ловят пыль

Чистый воздух нужен не только людям и особо точным производствам. Все машины из-за пыли преждевременно изнашиваются, а каналы их воздушного охлаждения засоряются. Кроме того, часто пыль, улетающая с отходящими газами, представляет собой ценное сырье. Очистка промышленных газов стала необходимостью. Практика показала, что с этим хорошо справляется электрическое поле.

По центру металлической трубы устанавливают проволоку Б, которая служит одним из электродов, вторым являются стенки трубы В. В электрическом поле газ в трубе ионизируется. Отрицательные ионы «прилипают» к частицам дыма, поступающим вместе с газом через вход А, и заряжают их.

Под воздействием поля эти частицы движутся к трубе и осаждаются на ней, а очищенный газ направляется к выходу Д. Трубу время от времени встряхивают, и уловленные частицы поступают в бункер Г. Электрические фильтры на крупных тепловых электростанциях улавливают 99% золы, содержащейся в выходных газах.

Смешение веществ

Если мелкие частицы одного вещества зарядить положительно, а другого — отрицательно, то легко получить их смесь, где частицы распределены равномерно. Например, на хлебозаводе теперь не приходится совершать большую механическую работу, чтобы замесить тесто.

Заряженные положительно крупинки муки воздушным потоком подаются в камеру, где они встречаются с отрицательно заряженными капельками воды, содержащей дрожжи. Крупинки муки и капельки воды, притягиваясь друг к другу, образуют однородное тесто.

Можно привести много других примеров полезного применения статической электризации. Основанная на этом явлении технология удобна: потоком заряженных частиц можно управлять, изменяя электрическое поле, а весь процесс легко автоматизировать.

Электричество, которым человечество научилось управлять сравнительно недавно, можно наблюдать в природе, причём в самых разнообразных и удивительных формах.

1. Вистлеры (свистовые волны)

Вистлеры ещё называют свистящими атмосфериками или электромагнитным хором рассвета за то, что звуки, которые они производят, напоминают пение птиц ранним утром. Это почти неземные звуки, образующиеся в верхних слоях атмосферы при разрядах молний, причём их можно записать даже на простейшем радиооборудовании. Существует даже такое понятие как «охотники за вистлерами», обозначающее радиолюбителей, путешествующих на дальние расстояния в районы с минимальным наличием линий электропередач и других электромагнитных помех для того, чтобы сделать чистые звуковые записи.

2. Молнии Кататумбо

Молнии Кататумбо являются самым длительным грозовым явлением на Земле. Они зафиксированы в устье реки Кататумбо (Венесуэла), а их многочасовое свечение породило немало легенд и мифов среди коренного населения. Пары метана из местных болот в сочетании с ветром со стороны Анд поднимаются в атмосферу и фактически провоцируют непрерывные удары молний. Интенсивный гром с молниями начинается сразу после наступления сумерек и продолжается около 10 часов. Сами молнии красно-оранжевого цвета можно увидеть в ясные ночи из многих стран Карибского бассейна. Это явление настолько уникально, что его собираются включить в список Всемирного наследия ЮНЕСКО.

3. Грязные грозы

«Грязная гроза» – это мощное электрическое грозовое явление, формирующееся в шлейфе вулканического извержения. Что именно порождает эти массивные электрические разряды пока неизвестно, учёные предполагают, что частицы льда и пыли трутся друг о друга и вырабатывают статическое электричество, что и вызывает эти удивительные молнии необычного цвета. В течение 2011 года массовые грязные грозы наблюдались в Чили. Температура и плотность фонтанов пепла без присутствия воды, которая могла бы объяснить формирование молнии, по-прежнему делает это явление неразгаданной природной тайной.

4. Визуальный феномен космических лучей

Космические лучи зарождаются в глубоком космосе, они путешествуют в течение миллионов лет и, в конце концов, попадают на нашу планету. Эти лучи поглощаются нашей атмосферой, потому для нас они невидимы. Зато космонавты видят их даже с закрытыми глазами. Лучи воздействует иначе, чем земной свет. Космонавты миссии «Аполлон 11» описывали их как пятна и полосы, возникающие каждые три минуты. Хотя этот визуальный феномен полностью не изучен учёными, уже известно, что космические лучи движутся на высоких скоростях и проходят через космические корабли и через сетчатку глаз космонавтов.

5. Триболюминесценция

Триболюминесценции – световое явление, излучаемое из кристаллического вещества при его разрушении. На сегодняшний день считается, что через это вещество проходит электрический ток и заставляет молекулы газа, находящиеся внутри кристалла, светиться. Практическое современное использование триболюминесценции включает в себя обнаружение трещин внутри зданий, а также внутри космических аппаратов, плотин и мостов. Когда наши предки обнаружили этот источник, они приписали ему божественное происхождение. Индейские шаманы наполняли церемониальные трещотки кварцевыми кристаллами, которые светились при тряске, что придавало особую атмосферу проводимым ритуалам. Кстати, вы можете пронаблюдать этот свет в домашних условиях. Положите кусочки сахара на ровную поверхность в темном помещении и раздавите их стеклянным стаканом, чтобы увидеть синеватые вспышки света.

6. Сонолюминесценция

Сонолюминесценция, то есть выработка света звуковыми волнами, была обнаружена в 1930-е годы. Ученые впервые столкнулись с загадочными огнями, исследуя морские гидролокаторы. Когда звуковые волны проходили через воду, появлялось синее мерцание и вспышки света. Мелкие пузырьки в воде расширялись и быстро сжимались, возникало высокое давление и температура, хлопок, выработка энергии, а затем излучение света. Иными словами, звук превращался в свет. Кстати, механизм этого явления по сей день не является полностью изученным.

7. Спрайты

Спрайты – это мощные, яркие вспышки обычно красного цвета, возникающие высоко в атмосфере, выше грозовых туч, на высоте от 80 км. В диаметре они могут быть от 50 км и более. Ранее считалось, что спрайты – это разновидность молнии, но впоследствии было установлено, что это скорее определённый тип плазмы. Спрайты напоминают большую красную медузу с длинными синими щупальцами. Их сложно сфотографировать с земли, но есть много снимков, сделанных с самолетов.

8. Шаровая молния

Оказывается, что шаровые молнии как явление стали восприниматься всерьез только в 60-х годах, хотя их появление фиксировалось постоянно в течение многих столетий. Эти странные шары могут различаться по размерам: от горошины до небольшого автобуса. Трещащие, шипящие, яркие шары возникают во время грозы, в некоторых случаях они могут спонтанно и громко взрываться. Одна из самых странных тайн шаровой молнии – это её «разумное» поведение. Она влетает в здания через дверные проемы или окна и путешествует по комнатам, огибая столы, стулья и прочие предметы. Происхождение шаровых молний до сих пор тщательно изучается, но к единому мнению учёные так ещё и не пришли.

9. Огни святого Эльма

Еще во времена Колумба Огни святого Эльма считались сверхъестественным явлением. Моряки часто рассказывали о ярко-синем или фиолетовом свечении вокруг корабля. Свечение напоминало мерцающие на ветру языки пламени вокруг мачт. Внезапное появление Огней святого Эльма считалось добрым предзнаменованием, поскольку странный пучкообразный свет возникал перед окончанием мощных штормов. Наука имеет своё объяснение этому странному свечению. Разница в напряжении между воздушной атмосферой и морем вызывает ионизацию газов, которые начинают светиться. Кстати, Огни святого Эльма были также замечены на церковных шпилях, крыльях самолетов и даже рогах крупного скота.

10. Северное сияние

Полярные (северные) сияния – это изумительные световые явления, возникающие в ночном небе. Аврора Бореалис в северном полушарии и Аврора Австралис в южном полушарии получили свои имена от римской богини рассвета. Они выглядят как волнистая, светящаяся завеса зелёного цвета, хотя были также зафиксированы сияния красного, розового, желтого и изредка синего цветов. Причина земных Аврор заключается в том, что заряжённые частицы, высвобождаемые из атмосферы Солнца, сталкиваются с частицами газа в атмосфере Земли, и в результате мы становимся свидетелями впечатляющего природного светового шоу.

Текст: