Сети с коммутацией пакетов Х.25 и frame relay

Назначение и структура сетей Х.25

Сети Х.25 являются на сегодняшний день самыми распространенными сетями с коммутацией пакетов, используемыми для построения корпоративных сетей. Основная причина такой ситуации состоит в том, что долгое время сети Х.25 были единственными доступными сетями с коммутацией пакетов коммерческого типа, в которых давались гарантии коэффициента готовности сети. Сеть Internet также имеет долгую историю существования, но как коммерческая сеть она начала эксплуатироваться совсем недавно, поэтому для корпоративных пользователей выбора не было. Кроме того, сети Х.25 хорошо работают на ненадежных линиях благодаря протоколам с установлением соединения и коррекцией ошибок на двух уровнях - канальном и сетевом.

Стандарт Х.25 «Интерфейс между оконечным оборудованием данных и аппаратурой передачи данных для терминалов, работающих в пакетном режиме в сетях передачи данных общего пользования» был разработан комитетом CCITT в 1974 году и пересматривался несколько раз. Стандарт наилучшим образом подходит для передачи трафика низкой интенсивности, характерного для терминалов, и в меньшей степени соответствует более высоким требованиям трафика локальных сетей. Как видно из названия, стандарт не описывает внутреннее устройство сети Х.25, а только определяет пользовательский интерфейс с сетью. Взаимодействие двух сетей Х.25 определяет стандарт Х.75.

Технология сетей Х.25 имеет несколько существенных признаков, отличающих ее от других технологий.

    Наличие в структуре сети специального устройства - PAD (Packet Assembler Disassembler) , предназначенного для выполнения операции сборки нескольких низкоскоростных потоков байт от алфавитно-цифровых терминалов в пакеты, передаваемые по сети и направляемые компьютерам для обработки. Эти устройства имеют также русскоязычное название «Сборщик-разборщик пакетов», СРП .

    Наличие трехуровневого стека протоколов с использованием на канальном и сетевом уровнях протоколов с установлением соединения, управляющих потоками данных и исправляющих ошибки.

    Ориентация на однородные стеки транспортных протоколов во всех узлах сети - сетевой уровень рассчитан на работу только с одним протоколом канального уровня и не может подобно протоколу IP объединять разнородные сети. Сеть Х.25 состоит из коммутаторов (Switches, S), называемых также центрами коммутации пакетов (ЦКП) , расположенных в различных географических точках и соединенных высокоскоростными выделенными каналами. Выделенные каналы могут быть как цифровыми, так и аналоговыми.

Асинхронные старт-стопные терминалы подключаются к сети через устройства PAD. Они могут быть встроенными или удаленными. Встроенный PAD обычно расположен в стойке коммутатора. Терминалы получают доступ ко встроенному устройству PAD по телефонной сети с помощью модемов с асинхронным интерфейсом. Встроенный PAD также подключается к телефонной сети с помощью нескольких модемов с асинхронным интерфейсом. Удаленный PAD представляет собой небольшое автономное устройство, подключенное к коммутатору через выделенный канал связи Х.25. К удаленному устройству PAD терминалы подключаются по асинхронному интерфейсу, обычно для этой цели используется интерфейс RS-232C. Один PAD обычно обеспечивает доступ для 8, 16 или 24 асинхронных терминалов.

К основным функциям PAD, определенных стандартом Х.З, относятся:

    сборка символов, полученных от асинхронных терминалов, в пакеты;

    разборка полей данных в пакетах и вывод данных на асинхронные терминалы;

    управление процедурами установления соединения и разъединения по сети Х.25 с нужным компьютером;

    передача символов, включающих старт-стопные сигналы и биты проверки на четность, по требованию асинхронного терминала;

    продвижение пакетов при наличии соответствующих условий, таких как заполнение пакета, истечение времени ожидания и др.

Терминалы не имеют конечных адресов сети Х.25. Адрес присваивается порту PAD, который подключен к коммутатору пакетов Х.25 с помощью выделенного канала.

Несмотря на то что задача подключения «неинтеллектуальных» терминалов к удаленным компьютерам возникает сейчас достаточно редко, функции PAD все еще остаются востребованными. Устройства PAD часто используются для подключения к сетям Х.25 кассовых терминалов и банкоматов, имеющих асинхронный интерфейс RS-232.

Стандарт Х.28 определяет параметры терминала, а также протокол взаимодействия терминала с устройством PAD. При работе на терминале пользователь сначала проводит некоторый текстовый диалог с устройством PAD, используя стандартный набор символьных команд. PAD может работать с терминалом в двух режимах: управляющем и передачи данных. В управляющем режиме пользователь с помощью команд может указать адрес компьютера, с которым нужно установить соединение по сети Х.25, а также установить некоторые параметры работы PAD, например выбрать специальный символ для обозначения команды немедленной отправки пакета, установить режим эхо - ответов символов, набираемых на клавиатуре, от устройства PAD (при этом дисплей не будет отображать символы, набираемые на клавиатуре до тех пор, пока они не вернутся от PAD - это обычный локальный режим работы терминала с компьютером). При наборе комбинации клавиш Ctrl+P PAD переходит в режим передачи данных и воспринимает все последующие символы как данные, которые нужно передать в пакете Х.25 узлу назначения.

В сущности, протоколы Х.З и Х.28 определяют протокол эмуляции терминала, подобный протоколу telnet стека TCP/IP. Пользователь с помощью устройства PAD устанавливает соединение с нужным компьютером, а затем может вести уже диалог с операционный системой этого компьютера (в режиме передачи данных устройством PAD), запуская нужные программы и просматривая результаты их работы на своем экране, как и при локальном подключении терминала к компьютеру.

Компьютеры и локальные сети обычно подключаются к сети Х.25 непосредственно через адаптер Х.25 или маршрутизатор, поддерживающий на своих интерфейсах протоколы Х.25. Для управления устройствами PAD в сети существует протокол Х.29, с помощью которого узел сети может управлять и конфигурировать PAD удаленно, по сети. При необходимости передачи данных компьютеры, подключенные к сети Х.25 непосредственно, услугами PAD не пользуются, а самостоятельно устанавливают виртуальные каналы в сети и передают по ним данные в пакетах Х.25.

Адресация в сетях Х.25

Если сеть Х.25 не связана с внешним миром, то она может использовать адрес любой длины (в пределах формата поля адреса) и давать адресам произвольные значения. Максимальная длина поля адреса в пакете Х.25 составляет 16 байт.

Рекомендация Х.121 CCITT определяет международную систему нумерации адресов для сетей передачи данных общего пользования. Если сеть Х.25 хочет обмениваться данными с другими сетями Х.25, то в ней нужно придерживаться адресации стандарта Х.121.

Адреса Х.121 (называемые также International Data Numbers, IDN) имеют разную длину, которая может доходить до 14 десятичных знаков. Первые четыре цифры IDN называют кодом идентификации сети (Data Network Identification Code, DNIC) . DNIC поделен на две части; первая часть (3 цифры) определяет страну, в которой находится сеть, а вторая - номер сети Х.25 в данной стране. Таким образом, внутри каждой страны можно организовать только 10 сетей Х.25. Если же требуется перенумеровать больше, чем 10 сетей для одной страны, проблема решается тем, что одной стране дается несколько кодов. Например, Россия имела до 1995 года один код - 250, а в 1995 году ей был выделен еще один код - 251. Остальные цифры называются номером национального терминала (National Terminal Numbe, NTN) . Эти цифры позволяют идентифицировать определенный DTE в сети Х.25.

Международные сети Х.25 могут также использовать международный стандарт нумерации абонентов ISO 7498, описанный выше.

По стандарту ISO 7498 для нумерации сетей Х.25 к адресу в формате Х.121 добавляется только один байт префикса, несущий код 36 (использование в адресе только кодов десятичных цифр) или 37 (использование произвольных двоичных комбинаций). Этот код позволяет универсальным коммутаторам, например коммутаторам сети ISDN, поддерживающим также и коммутацию пакетов Х.25, автоматически распознавать тип адреса и правильно выполнять маршрутизацию запроса на установление соединения.

Стек протоколов сети Х.25

Стандарты сетей Х.25 описывают 3 уровня протоколов.

    На физическом уровне определены синхронные интерфейсы Х.21 и Х.21 bis к оборудованию передачи данных - либо DSU/CSU, если выделенный канал является цифровым, либо к синхронному модему, если канал выделенный.

    На канальном уровне используется подмножество протокола HDLC, обеспечивающее возможность автоматической передачи в случае возникновения ошибок в линии. Предусмотрен выбор из двух процедур доступа к каналу: LAP или LAP-B.

    На сетевом уровне определен протокол Х.25/3 обмена пакетами между оконечным оборудованием и сетью передачи данных.

Транспортный уровень может быть реализован в конечных узлах, но он стандартом не определяется.

Протокол физического уровня канала связи не оговорен, и это дает возможность использовать каналы разных стандартов.

На канальном уровне обычно используется протокол LAP-B. Этот протокол обеспечивает сбалансированный режим работы, то есть оба узла, участвующих в соединении, равноправны. По протоколу LAP-B устанавливается соединение между пользовательским оборудованием DTE (компьютером, IP- или IPX-маршрутизатором) и коммутатором сети. Хотя стандарт это и не оговаривает, но по протоколу LAP-B возможно также установление соединения на канальном уровне внутри сети между непосредственно связанными коммутаторами. Протокол LAP-B почти во всех отношениях идентичен протоколу LLC2, описанному в главе 3, кроме адресации. Кадр LAP-B содержит одно однобайтовое адресное поле (а не два - DSAP и SSAP), в котором указывается не адрес службы верхнего уровня, а направление передачи кадра - 0х01 для направления команд от DTE к DCE (в сеть) или ответов от DCE к DTE (из сети) и 0х03 для направления ответов от DTE к DCE или команд от DCE к DTE. Поддерживается как нормальный режим (с максимальным окном в 8 кадров и однобайтовым полем управления), так и расширенный режим (с максимальным окном в 128 кадров и двухбайтовым полем управления).

Сетевой уровень Х.25/3 (в стандарте он назван не сетевым, а пакетным уровнем) реализуется с использованием 14 различных типов пакетов, по назначению аналогичных типам кадров протокола LAP-B. Так как надежную передачу данных обеспечивает протокол LAP-B, протокол Х.25/3 выполняет функции маршрутизации пакетов, установления и разрыва виртуального канала между конечными абонентами сети и управления потоком пакетов.

После установления соединения на канальном уровне конечный узел должен установить виртуальное соединение с другим конечным узлом сети. Для этого он в кадрах LAP-B посылает пакет Call Request протокола X.25.

Поля, расположенные в первых трех байтах заголовка пакета, используются во всех типах кадров протокола Х.25. Признаки Q и D и Modulo расположены в старшей части первого байта заголовка. Признак Q предназначен для распознавания на сетевом уровне типа информации в поле данных пакета. При получении пакета информация, расположенная в поле данных, а также значение бита Q передается верхним уровням пользовательского стека протоколов (непосредственно транспортному уровню этого стека). Значение Q=1 означает управляющую пользовательскую информацию, а Q=0 - данные. Признак D означает подтверждение приема пакета узлом назначения. Обычный механизм подтверждения принятия пакетов с помощью квитанций имеет для протокола Х.25 только локальный смысл - прием пакета подтверждает ближайший коммутатор сети, через который конечный узел запросил и установил виртуальное соединение. Если же узел-источник запросил подтверждение приема конечным узлом, то это подтверждение индицируется установкой бита D (delivery confirmation) в пакетах, идущих от узла назначения.

Признак Modulo говорит о том, по какому модулю - 8 или 128 - ведется нумерация пакетов. Значение 10 означает модуль 128, а 01 - модуль 8.

Поле Номер логической группы (Lodical Group Number, LGN) содержит значение номера логической группы виртуального канала. Каналы образуют логические группы по функциональному признаку, например:

    постоянный виртуальный канал;

    коммутируемый виртуальный канал только для входящих сообщений (симплексный);

    коммутируемый виртуальный канал только для исходящих сообщений (симплексный);

    коммутируемый дуплексный виртуальный канал.

Максимальное количество логических групп - 12, хотя в конкретной сети допустимо и меньшее количество.

Поле Номер логического канала (Logical Channel Number, LCN) содержит номер виртуального канала, назначаемый узлом-источником (для коммутируемых виртуальных каналов) или администратором сети (для постоянных виртуальных каналов). Максимальное количество виртуальных каналов, проходящих через один порт, равно 256.

Поле Тип (Type) указывает тип пакета. Например, для пакета Call Request отведено значение типа, равное 0х0В. Младший бит этого поля определяет, является ли пакет управляющим (бит равен 1) или пакетом данных (бит равен 0). Значение 0х0В содержит 1 в младшем бите, поэтому это управляющий пакет, а остальные биты в этом случае определяют подтип пакета. В пакете данных остальные биты поля Type используются для переноса номеров квитанций N(S) и N(R).

Следующие два поля определяют длину адресов назначения и источника (DA и SA) в пакете. Запрос на установление виртуального канала указывает оба адреса. Первый адрес нужен для маршрутизации пакета Call Request, а второй - для принятия решения узлом назначения о возможности установления виртуального соединения с данным узлом-источником. Если узел назначения решает принять запрос, то он должен отправить пакет Call Accepted - «Запрос принят», в котором также указать оба адреса, поменяв их, естественно, местами. Адреса могут иметь произвольный формат или же соответствовать требованиям стандарта Х.121 или ISO 7498.

Сами адреса назначения и источника занимают отведенное им количество байт в следующих двух полях.

Поля Длина поля услуг (Facilities length) и Услуги (Facilities) нужны для согласования дополнительных услуг, которые оказывает сеть абоненту. Например, услуга «Идентификатор пользователя сети» позволяет задать идентификатор пользователя (отличный от его сетевого адреса), на основании которого могут оплачиваться счета за пользование сетью. Пользователь с помощью услуги «Согласование параметров управления потоком» может попросить сеть использовать нестандартные значения параметров протокола - размера окна, максимального размера поля данных пакета и т. п. Протокол Х.25 допускает следующие максимальные значения длины поля данных: 16,32, 64,128, 256,512 и 1024 байт. Предпочтительной является длина 128 байт.

Пакет Call Request принимается коммутатором сети и маршрутизируется на основании таблицы маршрутизации, прокладывая при этом виртуальный канал. Начальное значение номера виртуального канала задает пользователь в этом пакете в поле LCN (аналог поля VCI, упоминавшегося при объяснении принципа установления виртуальных каналов). Протокол маршрутизации для сетей Х.25 не определен.

Для сокращения размера адресных таблиц в коммутаторах в сетях Х.25 реализуется принцип агрегирования адресов. Все терминалы, имеющие общий префикс в адресе, подключаются при этом к общему входному коммутатору подсети, соответствующей значению префикса. Например, если путь ко всем терминалам, имеющим адреса с префиксом 250 720, пролегает через общий коммутатор К1, то в таблице маршрутизации коммутаторов, через которые проходит путь к коммутатору К1, помещается единственная запись - 250 720, которая соответствует как конечному узлу 250 720 11, так и конечному узлу 250 720 26. Маски в коммутаторах не используются, а младшие разряды адреса, которые не нужны при маршрутизации, просто опускаются.

После установления виртуального канала конечные узлы обмениваются пакетами другого формата - формата пакетов данных (пакет Data). Этот формат похож на описанный формат пакета Call Request - первые три байта в нем имеют те же поля, а адресные поля и поля услуг отсутствуют. Пакет данных не имеет поля, которое бы определяло тип переносимых в пакете данных, то есть поля, аналогичного полю Protocol в IP-пакете. Для устранения этого недостатка первый байт в поле данных всегда интерпретируется как признак типа данных.

Коммутаторы (ЦКП) сетей Х.25 представляют собой гораздо более простые и дешевые устройства по сравнению с маршрутизаторами сетей TCP/IP. Это объясняется тем, что они не поддерживают процедур обмена маршрутной информацией и нахождения оптимальных маршрутов, а также не выполняют преобразований форматов кадров канальных протоколов. По принципу работы они ближе к коммутаторам локальных сетей, чем к маршрутизаторам. Однако работа, которую выполняют коммутаторы Х.25 над пришедшими кадрами, включает больше этапов, чем при продвижении кадров коммутаторами локальных сетей. Коммутатор Х.25 должен принять кадр LAP-B и ответить на него другим кадром LAP-B, в котором подтвердить получение кадра с конкретным номером. При утере или искажении кадра коммутатор должен организовать повторную передачу кадра. Если же с кадром LAP-B все в порядке, то коммутатор должен извлечь пакет Х.25, на основании номера виртуального канала определить выходной порт, а затем сформировать новый кадр LAP-B для дальнейшего продвижения пакета. Коммутаторы локальных сетей такой работой не занимаются и просто передают кадр в том виде, в котором он пришел, на выходной порт.

В результате производительность коммутаторов Х.25 оказывается обычно невысокой - несколько тысяч пакетов в секунду. Для низкоскоростных каналов доступа, которыми много лет пользовались абоненты этой сети (1200-9600 бит/с), такой производительности коммутаторов хватало для работы сети.

Гарантий пропускной способности сеть Х.25 не дает. Максимум, что может сделать сеть, - это приоритезировать трафик отдельных виртуальных каналов. Приоритет канала указывается в запросе на установление соединения в поле услуг.

Протоколы сетей Х.25 были специально разработаны для низкоскоростных линий с высоким уровнем помех. Именно такие линии составляют пока большую часть телекоммуникационной структуры нашей страны, поэтому сети Х.25 будут по-прежнему еще долго являться наиболее рациональным выбором для многих регионов.

NUMBEREDHEADINGS__

Многоуровневый принцип построения сети

Организация взаимодействия между устройствами в сети является сложной задачей. Как известно, для решения сложных задач используется универсальный прием – декомпозиция , то есть разбиение одной сложной задачи на несколько более простых задач-модулей. Процедура декомпозиции включает в себя четкое определение функций каждого модуля, решающего отдельную задачу, а также определение функций интерфейсов, связывающих каждый модуль. В результате достигается логическое упрощение задачи, а, кроме того, появляется возможность безошибочной модификации отдельных модулей без изменения остальной части системы, замена модулей.

При декомпозиции в сетях связи используют многоуровневый подход. Он заключается в следующем:

  • все множество функциональных модулей разбивают на уровни;
  • уровни организуют в виде вертикального стека, то есть они взаимодействуют на основе строгой иерархии;
  • множество модулей, составляющих каждый уровень, формируется таким образом, что для выполнения своих задач они обращаются с запросами только к модулям, непосредственно примыкающего уровня, лежащего ниже в иерархии;
  • с другой стороны, результаты работы всех модулей, принадлежащих некоторому уровню, могут быть переданы только модулям соседнего уровня, лежащего выше в данной иерархии.

Такая иерархическая декомпозиция задачи предполагает четкое определение функций каждого уровня и интерфейсов между ними. Интерфейс определяет набор функций, которые уровень, лежащий ниже в иерархии, предоставляет уровню, лежащему выше. В результате иерархической декомпозиции достигается относительная независимость уровней, а значит, и возможность их легкой замены.

Количество уровней, их названия, содержание и назначение функциональных модулей разнятся от сети к сети. Однако во всех сетях целью каждого уровня является предоставление неких служб для верхних уровней, скрывая от них детали реализации предоставляемого сервиса.

Уровень n узла сети (одной машины), поддерживает связь с уровнем n другого узла сети. Правила и соглашения, используемые в данном общении, называются протоколом уровня n . По сути, протокол является договоренностью общающихся сторон о том, как должно происходить общение.

Протокол – это набор формализованных правил, процедур, спецификаций, определенный формат и способ передачи данных.

Обычно протокол обеспечивает взаимодействие между процессами, находящимися на одном иерархическом уровне, но в разных оконечных и транзитных пунктах сети. Элементы данных, пересылаемых на одном иерархическом уровне, называются элементами данных протокола блока данных PDU (Protocol Data Unit).

На рис. 1. показана пятиуровневая сеть. Объекты различных узлов сети включают соответствующие уровни. Они виртуально (логически) общаются при помощи протоколов. В действительности, данные не пересылаются с уровня n одной машины на уровень n другой машины. Вместо этого, каждый уровень машины-отправителя, начиная с верхнего, передает данные и управление уровню, лежащему ниже, пока не будет достигнут самый нижний уровень. Такие сообщения называются служебными элементами данных SDU (Service Data Unit). Ниже первого уровня находится физический носитель, по которому и производится обмен информацией. На приемной стороне пересылаемый блок данных последовательно проходит уровни машины-получателя снизу вверх. Каждый уровень выполняет свою группу функций, необходимых для приема данных.

Между каждой парой смежных уровней интерфейс . Это аппаратно-программные средства, а также совокупность правил, которые обеспечивают взаимодействие смежных уровней.

Когда разработчики сетей решают, сколько уровней следует включить в архитектуру сети и какие функции должен выполнять каждый уровень, очень важно определение ясных интерфейсов между уровнями. Необходимо, чтобы каждый уровень выполнял особый набор хорошо понятных функций. Минимизация количества служебной информации, передаваемой между уровнями, ясно разграниченные интерфейсы значительно упрощают изменение реализации уровня (например, замену телефонных линий спутниковыми каналами). При многоуровневом подходе всего лишь требуется, чтобы новая реализация определенного уровня предоставляла такой же набор услуг вышестоящему уровню, что и предыдущая.

Набор уровней и протоколов называется архитектурой сети . Спецификация архитектуры должна содержать достаточно информации для написания программного обеспечения или создания аппаратуры для каждого уровня так, чтобы они корректно выполняли требования протокола. Ни детали реализации, ни спецификации интерфейсов не являются частями архитектуры, так как они спрятаны внутри машины и не видны снаружи. Чтобы проще понять суть многоуровневого общения, можно воспользоваться следующей аналогией (рис. 2).

Представим, что существуют два абонента Боб и Алиса (уровень 3), один из них говорит на английском языке, а другой – на французском. Поскольку нет общего языка, на котором они могут общаться непосредственно, каждый из них использует переводчика (одноранговые процессы уровня 2). Каждый из переводчиков, в свою очередь, нанимает секретаря (одноранговые процессы уровня 1). Боб желает сказать своему собеседнику «Я люблю Вас». Для этого он передает сообщение на английском языке по интерфейсу 2/3 (интерфейс, находящийся между вторым и третьим уровнем) своему переводчику. Переводчики договорились общаться на нейтральном языке – русском. Таким образом, сообщение преобразуется к виду «Я люблю Вас». Выбор языка является протоколом второго уровня и осуществляется одноранговыми процессами уровня 2. Затем переводчик отдает сообщение секретарю для передачи, например, по факсу (протокол первого уровня). Когда сообщение получено другим секретарем, оно переводится на французский язык и через интерфейс 2/3 передается абоненту Алисе. Заметим, что каждый протокол полностью независим, поскольку интерфейсы одинаковы с каждой стороны. Переводчики могут переключиться с русского языка, скажем, на финский, при условии, что оба будут согласны. При этом в интерфейсах второго уровня с первым или с третьим уровнем ничего не изменится. Подобным образом секретари могут сменить факс на электронную почту или телефон, не затрагивая (и даже не информируя) другие уровни. Каждое изменение касается только обмена информацией на своем уровне. Эта информация не будет передаваться на более высокий уровень.

Рассмотрим технический пример: как обеспечить общение для верхнего уровня пятиуровневой сети (рис. 3). Сообщение M создается приложением, работающим на уровне 5, и передается уровню 4 для передачи. Уровень 4 добавляет к сообщению заголовок (З4), например, для идентификации номера сообщения, и передает результат уровню 3. Во многих сетях сообщения (данные), передаваемые на уровне 4, не ограничиваются по размеру, однако почти всегда подобные ограничения накладываются на протокол третьего уровня. Соответственно, уровень 3 должен разбить входящее сообщение на более мелкие единицы – пакеты, предваряя каждый пакет заголовков уровня 3 – З31(для М1) и З32 (для М2). В данном примере сообщение М разбивается на две части М1 и М2. Заголовок З31 и З32 включают управляющую информацию, например, последовательные номера, позволяющие уровню 4 принимающей машины доставить сообщения своему приложению в правильном порядке, если на нижних уровнях произойдет нарушение этой последовательности. На некоторых уровнях заголовки также включают в себя размеры пересылаемых блоков данных, время пребывания в сети и другие управляющие поля.

Уровень 3 решает, какую из выходных линий использовать, то есть определяет направление дальнейшей передачи, и передает пакеты уровню 2.

Рис. 3. Пример пятиуровневой сети

Здесь рассматривается разделение нагрузки, когда часть соединения М передается по одному каналу, а другая часть по другому каналу. Уровень 2 добавляет не только заголовки З21 и З22 к каждому пакету, но также и концевики К21 и К22 – завершители пакета. Заголовки и концевики уровни 2 служат для обнаружения искаженных в канале пакетов и повтора их с буфера. Пакеты уровня 2 передаются уровню 1 для физической передачи. На приемной машине сообщение передается по уровням вверх, при этом заголовки убираются на каждом уровне по мере продвижения сообщения. Заголовки нижних уровней более высоким уровням не передаются.

Необходимо понять соотношение между виртуальным и реальным общением и разницу между протоколом и интерфейсом. Одноранговые процессы уровня 4, например, воспринимают свое общение горизонтальным, использующим протокол 4-го уровня. У каждого из них имеется процедура с названием вроде «Передать на противоположную сторону» или «Принять от противоположной стороны». На самом деле эти процедуры общаются не друг с другом, а с нижними уровнями при помощи интерфейсов 3/4.

Абстракция одноранговых процессов является ключевой для проектирования сетей. С её помощью чрезвычайно трудно выполнимая задача разработки целой сети может быть разбита на несколько меньших, и вполне разрешимых проблем, а именно, разработки индивидуальных уровней.

Приведенный выше пример относится к надежной службе на основе установления соединения между пользователями. В следующем разделе рассмотрим примеры предоставления услуг с установлением и без установления соединения, надежные и ненадежные.

Службы с установлением и без установления соединений, надежные и ненадежные соединения

Уровни могут предлагать вышестоящим уровням услуги двух типов: с наличием или отсутствием установления соединения. В технике связи процедура обмена сообщениями в процессе установления или разъединения соединений называется сигнализацией (signaling).

Типичный пример сервиса с установлением соединения является телефонная связь: абонент сначала устанавливает соединение, разговаривает, а затем разрывает соединение. Подобное может быть и при передаче данных. В некоторых случаях отправляющая запрос сторона согласовывает параметры качества обслуживания, а другая отвергает или принимает.

Примером отсутствия установления соединения является рассылка рекламы по электронной почте. Как в случае с установлением соединения, так и в случае отсутствия соединения, служба может быть надежной и ненадежной. Надежная служба обеспечивает отправку данных без потерь.

Надежная служба реализуется с помощью подтверждений, посылаемых получателем в ответ на каждое принятое сообщение. Пример надежной службы – передача файлов, что обеспечивает доставку без искажений. Не для всех приложений годится надежная служба (например, для передачи речевой или видеоинформации – для них недопустима большая задержка из-за повторной передачи принятых с искажениями данных). Режим без подтверждений и без установления соединений называется дейтаграммным. По аналогии с телеграфом отправителю не предоставляется подтверждение о получении телеграммы. Дейтаграммный режим используется кроме передачи речи и видео также тогда, когда надежная доставка данных обеспечивается протоколами более высоких уровней.

Пакетная коммутация

В соответствии с законом «О связи» от 18 июня 2003 года для сетей связи общего пользования стратегическим направлением является коммутация пакетов.

При коммутации пакетов сообщение пользователя разбивается в оконечном узле связи на пакеты - элементы сообщения, снабженные заголовком. Например, в сети Х.25 максимальная длина поля данных пакета

Рис. 4. Передача данных в сети КП

устанавливается по согласованию (по умолчанию - 128 байт). В заголовке пакета устанавливается адресная информация, необходимая для доставки пакета в оконечное устройство получателя. В сети Х.25 используется формат адресации, определенный в рекомендации ITU-T Х.121, содержащий код зоны (всего в мире 7 зон), код определенной сети в зоне и номер сетевого терминала из десяти цифр. На рис. 4 показана передача сообщения абонента абоненту . Абонент a i {\displaystyle a_{i}} подключён к центру коммутации А, а абонент a j {\displaystyle a_{j}} к центру коммутации D. Перед передачей сообщение разбивается на три пакета, которые поступают получателю через транзитные центры коммутации B и C.

К сетям с коммутацией пакетов относится не только сеть Х.25, но и более современные технологии (сети Frame Relay , ATM), а также Интернет.Пропускная способность канала в сети КП при неравномерном трафике существенно выше, чем в сетях КК. Один и тот же физический канал используется для обслуживания многих абонентов, поочередно предоставляя свою пропускную способность разным соединениям абонентов. Наибольший эффект от КП достигается при высоком коэффициенте пульсации трафика пользователей сети.

Коэффициент пульсации трафика отдельного пользователя сети определяется как отношение пиковой скорости на каком-либо коротком интервале времени к средней скорости обмена данными на длинном интервале времени и может достигать значений 100:1. Если использовать коммутацию каналов, то большую часть времени канал будет простаивать. В то же время часть ресурсов сети остается закрепленной за данной парой абонентов и недоступна другим пользователям сети.

На рис. 5 приведен пример мультиплексирования пакетов разных информационных потоков в одном физическом канале.

Рис. 5. Пример мультиплексирования пакетов в одном физическом канале

На первых трех осях изображены потоки пакетов, генерируемых абонентами a 1 {\displaystyle a_{1}} , a 2 {\displaystyle a_{2}} , a 3 {\displaystyle a_{3}} . Двойная нумерация пакетов на рис. 5 обозначает номер абонента и номер пакета в потоке. Канал используется для обслуживания трех абонентов – путем разделения по времени, т.е. поочередного предоставления канала абонентам. Один канал может обеспечить работу многих взаимодействующих абонентов.

Таким образом, пакет поэтапно, с переприемом, передается через ряд узлов в пункт назначения. Пакеты могут иметь переменную длину, но в достаточно узких пределах: от 50 до 1500 Байт. Пакеты транспортируются в сети, как независимые информационные блоки и собираются в сообщение в узле назначения. Коммутаторы пакетной сети имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора занят передачей другого пакета.

Стек протокола сети пакетной коммутации стандарта X.25

Рассмотрев многоуровневый принцип построения сети, перейдем к стеку протоколов (или уровней) конкретной сети пакетной коммутации стандарта X.25 .


Изучение стека протоколов именно этой сети объясняется следующими причинами:

  1. рекомендации МСЭ-Т X.25 и родственные с ней (X.3, X.28, X.75, X.121 и др.) наиболее полно соответствуют стандартизированной МСЭ-Т эталонной модели взаимодействия открытых систем OSI , (Open System Telecommunication), включающей 7 уровней. Следует отметить, что модель OSI не полностью отражают архитектуру построения современных технологий сетей связи. Несмотря на это модель OSI является прекрасным механизмом для анализа основ архитектуры этих сетей .
  2. многие из современных технологий имеют корни в стандарте Х.25. Сети Х.25 продолжают находится в эксплуатации (в том числе и в России – сеть общего пользования «РОСПАК», система защиты банкоматов Сбербанка России и др.).
  3. изложение принципов программного обеспечения в сети X.25 позволяет изучить процедуры функционирования технологий более современных сетей (Frame Relay , ATM , IP-сети , ОКС№7 , MPLS).
  4. для классификации сетей связи используются различные признаки. Чаще всего сети делятся по величине территории, которую покрывает сеть. Причиной является отличие технологий локальных и глобальных сетей. Глобальные сети, к которым относятся сети Х.25 предназначены для обслуживания большого количества абонентов, разбросанных на большой территории – в пределах региона, страны, континента или всего земного шара. Услугами глобальной сети могут пользоваться локальные сети предприятий или отдельные компьютеры. Исторически глобальные сети появились первыми, хотя технология их значительно сложнее. Именно при их построении были впервые отражены основные концепции сетей, такие как многоуровневое построение коммуникационных протоколов, технология коммутации пакетов, требования к качеству обслуживания QoS (Quality of Service) и соглашение о гарантии обслуживания SLA (Service Level Agreements).

На рис. 6 представлен стек протоколов сети ПК Х.25.

Здесь приведена транспортная сеть, состоящая из трех центров коммутации пакетов ЦКП (ЦКП1 , ЦКП2 , ЦКП3 ) и двух оконечных станций - А и В. ЦКП включает три нижних уровня, соответствующих модели OSI:

  • физический уровень (уровень 1), осуществляющий передачу бит;
  • канальный уровень или уровень звена данных Х.25/2 (уровень 2), осуществляющий свободную от ошибок передачу по отдельному каналу связи;
  • сетевой уровень Х.25/3 (уровень 3), обеспечивающий маршрутизацию (коммутацию) сообщений по каналам, связывающим ЦКП.

На этих уровнях действуют протоколы транспортной сети между ЦКП и протоколы доступа к сети. Как правило, протоколы верхних уровней модели OSI (с 4 по 7) реализуются только на оконечных устройствах сети и являются сквозными протоколами.

Четвертый уровень в модели OSI является транспортным уровнем. Транспортный уровень располагается на оконечных станциях и обеспечивает интерфейс между транспортной сетью (ЦКП1, ЦКП2, ЦКП3) и верхними тремя уровнями обработки данных, размещенными у пользователя. Транспортный уровень, в частности, выполняет сегментирование данных, передаваемых в сеть, в случае необходимости.

К уровням обработки данных, которые иногда называют уровнями приложения, относятся прикладной, представительный и сеансовый уровни. Прикладной уровень обеспечивает поддержку прикладного процесса пользователя и отвечает за семантику, то есть смысловое содержание сообщений, которыми обмениваются машины отправителя и получателя. На прикладном уровне находятся сетевые приложения: электронная почта, передача файлов по сети и пр.

Представительный уровень или уровень представления определяет синтаксис передаваемых сообщений, то есть, набор символов алфавита и способы их представления в виде двоичных чисел (первичный код). Уровень обеспечивает процесс согласования различных кодировок, а также может выполнять шифрование, дешифрование и сжатие данных. Уровень представления обеспечивает прикладному процессу независимость от различий в синтаксисе.

Сеансовый уровень управляет сеансами взаимодействия прикладных процессов пользователей. Сеанс создается по запросу процесса пользователя, переданному через прикладной и представительный уровни. На этом уровне определяется, какая из сторон является активной в данный момент, и обеспечивается синхронизация диалога. Средства синхронизации позволяют организовывать контрольные точки в длинных передачах, чтобы в случае отказа можно было вернуться к последней контрольной точке, не начиная всю передачу данных сначала.

На рис. 7 показан перенос данных в сетях ПК X.25 через все уровни оконечных устройств абонентов А и Б, а также нижние три уровня узлов транспортной сети. Здесь приняты обозначения D3, D4, D5, D6, D7 - блоки данных уровней соответственно уровней 3, 4, 5, 6, 7. Обозначения З2, З3, З4, З5, З6 – заголовки блоков данных соответственно уровней 2, 3, 4, 5, 6. Передача данных физически производится по вертикали: на передачу с верхнего уровня на нижний и на приёме наоборот. Для передачи сообщения четвертого уровня оконечного устройства (состоящего из заголовка З4 и данных Д5) оно вкладывается (инкапсулируется ) в пакет третьего уровня (сетевого). При этом к пакету добавляется заголовок З3 (включающий адрес). На основе адресов заголовка производится коммутация в центре коммутации пакетов. Далее производится инкапсуляция этого пакета в кадр второго уровня. Как видно из рисунка, кроме заголовка З2 в кадр добавляется концевик К2, который служит для обнаружения на приёме искаженного в канале кадра.

Шифрование сообщений в сети пакетной коммутации

Одним из способов обеспечения противодействия угрозам информационной безопасности некоторых сетей ограниченного пользования является шифрование. При использовании шифрования необходимо решать, что именно следует шифровать и на каком уровне эталонной модели OSI следует осуществлять защиту информации. Для таких сетей коммутация информационных пакетов производится на основании таблицы маршрутизации, включающих физические адреса. В этом отношении они отличаются от сети пакетной коммутации стандарта Х.25 (подробно об этом будет изложено в главе 7) и в них предусмотрено два основных варианта шифрования: канальное и сквозное шифрование . Их использование показано на рис. 8.

Рис. 8. Шифрование в сети коммутации пакетов

При канальном шифровании каждый уязвимый канал на третьем уровне Х.25 оборудуется устройствами шифрования на обоих концах. Таким образом, весь поток данных в канале оказывается защищенным. Хотя для этого в большой сети потребуется значительное количество устройств шифрования (на каждый канал сети), преимущества такого подхода очевидны. Недостатком же является то, что сообщение должно расшифровываться каждый раз, проходя через коммутатор пакетов, поскольку коммутатор должен прочитать адрес в заголовке пакета, чтобы направить пакет по нужному направлению. Поэтому сообщение оказывается уязвимым в каждом коммутаторе.

При сквозном шифровании процесс шифрования выполняется на уровне выше третьего только в двух конечных станциях. Исходные данные шифруются в оконечном устройстве источника сообщений. Затем данные в шифрованном виде передаются без изменений через всю сеть получателю. Адресат использует тот же ключ, что и отправитель, и поэтому может дешифровать полученные данные. Эта схема кажется безопасной с точки зрения защиты от воздействий в канале связи или узлах коммутации пакетов. Однако и у такого подхода есть слабое место.

Какую часть каждого пакета при сквозном шифровании должен шифровать источник? Предположим, что шифрует весь пакет, включая заголовок. Но этого делать нельзя, так как выполнить расшифровку сможет только получатель. ЦКП, получивший такой пакет, не сможет прочитать заголовок и поэтому не сумеет переслать пакет в соответствии с адресом. Отсюда следует, что отправитель должен шифровать только ту часть пакета, которая содержит данные пользователя, и оставить заголовок нетронутым.

Итак, при сквозном шифровании данные пользователя оказываются защищенными, чего нельзя сказать о самом потоке данных, поскольку заголовки пакетов передаются в открытом виде. Возможность изучения структуры потока по адресам проходящих пакетов называется анализом трафика . Чтобы достичь более высокого уровня защищенности, необходима комбинация канального и сквозного шифрования, например, как показано на рис. 8, на котором приведена сеть коммутации пакетов с четырьмя центрами коммутации ЦКП. К трем из этих ЦКП подключены оконечные устройства a 1 {\displaystyle ~a_{1}} , a 2 {\displaystyle ~a_{2}} , a 3 {\displaystyle ~a_{3}} . Рассмотрим следующую ситуацию. Два оконечных устройства устанавливают соединение для передачи данных с использованием шифрования. Сообщения передаются пакетами, состоящими из заголовка и поля данных. Какую часть пакета должен шифровать оконечный пункт-источник сообщения?

При использовании обеих форм шифрования узел-источник шифрует на уровне выше третьего пакет данных пользователя, используя ключ сквозного шифрования. Затем весь пакет шифруется с помощью ключа канального шифрования. При движении пакета по сети каждый коммутатор сначала дешифрует пакет с применением ключа шифрования соответствующего канала, чтобы прочитать заголовок, а затем снова шифрует весь пакет для передачи его по следующему каналу. Теперь весь пакет защищен почти все время – за исключением времени, когда он находится в памяти коммутатора пакетов, где заголовок пакета оказывается открытым.

Фраза, вынесенная в заголовок данной статьи, в двух словах отображает сегодняшнюю ситуацию с технологией X.25. В западной прессе теперь очень трудно встретить рассмотрение проблем, связанных с использованием протокола X.25; более горячими темами сегодня в области территориальных сетей являются, например, технологии frame relay и ATM. Несмотря на это, даже в странах Запада самые передовые компании, выпускавшие ранее только высокоскоростное оборудование, дополняют свой спектр устройств оборудованием X.25. Пример тому - появление в нынешнем году в ассортименте оборудования фирмы StrataCom узлов X.25.

Особенно актуально рассмотрение решений технологий X.25 для России и сопредельных стран с аналогичной инфраструктурой каналов.

В этой статье мы обсудим протокол X.25 и связанный с ним стек протоколов, а также сети, базирующиеся на данной технологии. Наша задача показать, что представляют собой сети X.25 и почему широкому кругу пользователей выгодно использовать уже функционирующие магистральные сети X.25, а некоторым из них, представляющим крупные организации, даже строить свои собственные сети.

Мы будем называть сетями X.25, или сетями пакетной коммутации сети, доступ к которым производится в соответствии с рекомендациями МККТТ X.25 (в соответствии с X.3/X.28 в случае асинхронного доступа).

Итак, почему именно сети X.25? Дело в том, что на сегодняшний день, несмотря на появление новых, интегральных технологий сетей передачи данных/сетей связи, рассчитанных на высокоскоростные каналы связи, сети X.25 по-прежнему наиболее распространены.

Если рассматривать все имеющиеся сегодня сети передачи данных общего пользования, то окажется, что именно сети X.25 с наибольшим основанием могут быть уподоблены телефонным сетям. Точно так же, как подняв трубку телефонного аппарата, подключенного к ближайшей АТС, вы можете связаться с абонентом практически в любой точке мира, так и установив соединение вашего компьютера с ближайшим узлом сети X.25, вы сможете осуществить связь с любым из миллиона пользователей сетей X.25 по всему миру. Для этого вам надо лишь знать его сетевой адрес.

Что же такое сети X.25? Для чего они нужны? На базе какого оборудования и какой теории они строятся?

ПРОТОКОЛЫ СЕТЕЙ X.25

Сети X.25 получили свое название по имени рекомендации - "X.25", выпущенной МККТТ (Международный консультативный комитет по телефонии и телеграфии). Данная рекомендация описывает интерфейс доступа пользователя в сеть передачи данных и интерфейс взаимодействия с удаленным пользователем через сеть передачи данных.

Внутри же самой сети передача данных может происходить в соответствии с другими правилами. Ядро сети может быть построено и на более скоростных протоколах frame relay. Мы, однако, рассматривая вопросы построения сетей X.25 в рамках этой статьи, будем иметь в виду сети, передача данных внутри которых производится также по протоколам, описанным в рекомендации X.25. Именно таким образом и строится в настоящее время большинство корпоративных сетей X.25 в России.

Сегодня достигнут достаточно высокий уровень совместимости оборудования, выпускаемого различными фирмами, как в рамках одной сети, так и разнообразных сетей X.25. Наибольшие проблемы в области совместимости возникают в тех случаях, когда надо управлять из одного центра узлами сети, построенными на базе оборудования разных фирм. Однако, благодаря установке на оборудовании X.25 агентов SNMP, и эта проблема в ближайшем будущем будет, видимо, решена. Одновременно ведется работа по расширению возможностей протокола SNMP в части его соответствия задачам управления большими территориально-распределенными сетями.

Первый описывает уровни сигналов и логику взаимодействия в терминах физического интерфейса. (Те из читателей, которым приходилось, например, подключать модем к последовательному порту персонального компьютера через интерфейс RS-232/V.24, имеют представление об этом уровне.)

Второй (протокол доступа к каналу/процедура сбалансированного доступа к каналу, LAP/LAPB), с теми или иными модификациями, достаточно широко представлен сейчас в оборудовании массового спроса - например в модемах - протоколами типа сетевого протокола MNP компании Microcom, отвечающими за коррекцию ошибок при передаче информации по каналу связи, а также в локальных сетях на уровне управления логическим каналом LLC.

Этот уровень протоколов отвечает за эффективную и надежную передачу данных по соединению "точка-точка", т.е. между соседними узлами сети X.25. Данным протоколом обеспечивается коррекция ошибок при передаче между соседними узлами и управление потоком данных (если принимающая сторона не готова к получению данных, она извещает об этом передающую сторону, и та приостанавливает передачу). Кроме того, он определяет параметры, меняя значения которых, режим передачи можно оптимизировать по скорости в зависимости от протяженности канала между двумя точками (времени задержки в канале) и его качества (вероятности искажения информации при передаче).

Для реализации всех указанных выше функций в протоколах второго уровня вводится понятие "кадра" (frame). Кадром называется порция информации (битов), организованная определенным образом. Начинает кадр флаг, т.е. последовательность битов строго определенного вида, являющаяся разделителем между кадрами. Затем идет поле адреса, которое в случае двухточечного соединения представляет собой адрес А или адрес B. Далее следует поле типа кадра, указывающее на то, несет ли кадр в себе информацию или является чисто служебным (например тормозит поток информации или извещает передающую сторону о приеме/неприеме предыдущего кадра). В кадре имеется также поле номера кадра. Кадры нумеруются циклически. Это означает, что при достижении заданного порогового значения нумерация опять начинается с нуля. И наконец, заканчивается кадр контрольной последовательностью, подсчитываемой при передаче кадра по определенным правилам. По этой последовательности на приеме происходит проверка на предмет искажения информации при передаче кадра.

Длину кадра можно менять при настройке параметров протокола к физическим характеристикам линии. Чем короче кадр, тем меньше вероятность того, что он будет искажен при передаче. Однако если линия хорошего качества, то лучше работать с более длинными информационными кадрами, т.к. уменьшается процент избыточной информации, передаваемой по каналу (флаг, служебные поля кадра). Кроме того, число кадров, посылаемое передающей стороне без подтверждения от принимающей стороны, тоже можно менять. Данный параметр связан с так называемым "модулем нумерации", т.е. со значением порога, достигнув которого нумерация снова начинается с нуля. Это поле может быть задано равным в пределах от 8 (для тех каналов, задержка передачи информации в которых не слишком велика) до 128 (для спутниковых каналов, например, когда задержка при передаче информации по каналу велика).

И, наконец, третий уровень протоколов - сетевой. Он наиболее интересен в контексте обсуждения сетей X.25, так как их специфику, в первую очередь, определяет именно он.

Функционально данный протокол отвечает прежде всего за маршрутизацию в сети передачи данных X.25, т. е. за доведение информации от "точки входа" в сеть до "точки выхода" из нее. Со своей стороны протокол третьего уровня также структурирует информацию, иными словами, разбивает ее на "порции". На третьем уровне порция информации называется "пакетом" (packet). Структура пакета во многом аналогична структуре кадра. В пакете имеется свой модуль нумерации, собственные поля адреса, тип пакета, контрольная последовательность. При передаче пакет помещается в поле данных информационных кадров (кадров второго уровня). Функционально поля пакета отличаются от соответствующих полей кадра. Главным образом это касается поля адреса, которое в пакете состоит из 15 цифр; поле пакета должно обеспечивать идентификацию абонентов в рамках всех сетей пакетной коммутации по всему миру. Структуру сетевого адреса определяет рекомендация X.121.

Введя термин "пакет", мы можем перейти к следующему вопросу, а именно: как же происходит доставка информации от одного абонента до другого через сеть X.25? Для этого используется так называемый метод "коммутации пакетов" (packet switching), в связи с чем сети X.25 еще именуют сетями пакетной коммутации. Данный метод реализуется посредством установления между абонентами виртуальных, т.е. логических (в отличие от физических) соединений (virtual circuits). Для того чтобы передать информацию от абонента A к абоненту B, между ними прежде устанавливается виртуальное соединение, иначе - происходит обмен пакетами "запрос вызова" ("call request") - "вызов принят" ("call accept"). Только после этого между двумя абонентами может производиться обмен информацией.

Виртуальные соединения могут быть как постоянными (permanent), так и коммутируемыми (switched). Коммутируемое соединение, в отличие от постоянного виртуального соединения, устанавливается в каждом сеансе обмена информацией. Тут можно привести прямые аналогии из области телефонии. Действительно, если вы имеете выделенный ("постоянный") телефонный канал между двумя абонентами, то не надо каждый раз набирать номер вашего абонента, - достаточно лишь снять трубку телефона. Количество виртуальных соединений, одновременно поддерживаемых на базе одного физического канала, зависит от конкретного типа оборудования, используемого для обеспечения таких соединений. Что вполне понятно, т.к. для поддержки каждого соединения на этом оборудовании должен резервироваться определенный ресурс (например оперативная память).

ПРЕИМУЩЕСТВА СЕТЕЙ X.25

Метод коммутации пакетов, лежащий в основе сетей X.25, определяет основные преимущества таких сетей или, другими словами, их область применения. В чем же это преимущество? Рассматриваемые сети позволяют в режиме реального времени разделять один и тот же физический канал нескольким абонентам, в отличие, например, от случая использования пары модемов, соединенных через канал того или иного типа. На самом деле, если у вас и вашего абонента на компьютерах установлены модемы, вы можете обмениваться с ним информацией. Однако используемой телефонной линией одновременно с вами не сможет воспользоваться уже никто другой.

Благодаря реализованному в сетях X.25 механизму разделения канала сразу между несколькими пользователями, во многих случаях оказывается экономически выгодней производить оплату за каждый байт переданной или полученной информации, а не оплачивать время применения телефонной линии при передаче данных по сети X.25. Особенно ощутимо такое преимущество в случае международных соединений.

Метод разделения физического канала между абонентами в сетях X.25 называют еще мультиплексированием канала, точнее, "логическим" или "статистическим" мультиплексированием (Рис. 1). Термин "логическое мультиплексирование" вводится, чтобы отличить этот метод, например, от временного разделения канала. При временном разделении канала каждому из разделяющих его абонентов выделяется в каждую секунду строго определенное количество миллисекунд для передачи информации. При статистическом разделении канала нет строго регламентированной степени загрузки каждым из абонентов канала в данный момент времени.

Рисунок 1.
Мультиплексирование канала в сетях X.25.

Эффективность использования статистического мультиплексирования зависит от статистических или вероятностных характеристик мультиплексируемого потока информации. Означает ли это, что вам, прежде чем подключаться к уже действующей сети X.25 или начинать создавать свою сеть, необходимо проводить детальный анализ вероятностных характеристик потоков информации, циркулирующих в вашей системе? Конечно, нет. Такие расчеты уже проведены. Накоплен большой опыт использования сетей X.25. Известно, что использование сети X.25 эффективно для широкого спектра задач передачи данных. Среди них и обмен сообщениями между пользователями, и обращение большого количества пользователей к удаленной базе данных, а также к удаленному хосту электронной почты, связь локальных сетей (при скоростях обмена не более 512 Кбит/с), объединение удаленных кассовых аппаратов и банкоматов. Иными словами, все приложения, в которых трафик в сети не является равномерным во времени.

Какие еще преимущества дает сеть X.25? Может быть, одно из самых важных достоинств сетей, построенных на протоколах, описанных в рекомендации X.25, состоит в том, что они позволяют передавать данные по каналам телефонной сети общего пользования (выделенным и коммутируемым) оптимальным образом. Под "оптимальностью" имеется в виду достижение максимально возможных на указанных каналах скорости и достоверности передачи данных.

Эффективный механизм оптимизации процесса передачи информации через сети X.25 - это механизм альтернативной маршрутизации. Возможность задания помимо основного маршрута альтернативных, т.е. резервных, имеется в оборудовании X.25, производимом практически всеми фирмами. Различные образцы оборудования отличаются алгоритмами перехода к альтернативному маршруту, а также допустимым количеством таких маршрутов. В некоторых типах оборудования, например, переход к альтернативному маршруту происходит только в случае полного отказа одного из звеньев основного маршрута. В других же переход от одного маршрута к другому происходит динамически в зависимости от загруженности маршрутов, и решение принимается на основании многопараметрической формулы (оборудование фирмы Motorola ISG, например). За счет альтернативной маршрутизации может быть значительно увеличена надежность работы сети, а это значит, что между любыми двумя точками подключения пользователя к сети должно быть, по крайней мере, два различных маршрута. В связи с этим построение сети по звездообразной схеме можно считать вырожденным случаем. Правда, там, где есть только один узел сети X.25, установленный в рамках той или иной сети общего пользования, такая топология сети все еще используется довольно часто.

ДОСТУП ПОЛЬЗОВАТЕЛЕЙ К СЕТЯМ X.25. СБОРЩИКИ-РАЗБОРЩИКИ ПАКЕТОВ

Рассмотрим теперь, каким образом на практике реализуется доступ разных типов пользователей к сети X.25. Прежде всего, возможна организация доступа в пакетном режиме (рекомендации X.25). Для осуществления доступа с компьютера в сеть в пакетном режиме можно, например, установить в компьютер специальную плату, обеспечивающую обмен данными в соответствии со стандартом X.25.

Для подключения локальной сети через сеть X.25 используются также платы компаний Microdyne, Newport Systems Solutions и др. Кроме того, доступ из локальной сети в сеть X.25 может быть организован еще и при помощи мостов/маршрутизаторов удаленного доступа, поддерживающих протокол X.25 и выполненных в виде автономных устройств. Преимущества таких устройств над встраиваемыми в компьютер платами, помимо большей производительности, заключается в том, что они не требуют установки специального программного обеспечения, а сопрягаются с локальной сетью по стандартному интерфейсу, что позволяет реализовать более гибкие и универсальные решения.

Вообще, подключение пользовательского оборудования к сети в пакетном режиме очень удобно, когда требуется многопользовательский доступ к этому оборудованию через сеть.

Если же вам надо подключить компьютер к сети в монопольном режиме, то тогда подключение производится по другим стандартам. Это стандарты X.3, X.28, X.29, определяющие функционирование специальных устройств доступа в сеть - сборщиков/разборщиков пакетов - СРП (packet assembler/dissasembler-PAD). На практике термин "СРП" малоупотребим, поэтому и мы в качестве русскоязычного воспользуемся термином "ПАД".

ПАДы используются для доступа в сеть абонентов при асинхронном режиме обмена информацией, т.е. через, например, последовательный порт компьютера (непосредственно или c применением модемов). ПАД обычно имеет несколько асинхронных портов и один синхронный (порт X.25). ПАД накапливает поступающие через асинхронные порты данные, упаковывает их в пакеты и передает через порт X.25 (Рис. 2).

(1x1)

Рисунок 2.
Пример сложной сети X.25 с подключением устройств различного типа: от компьютеров до банковского терминального оборудования.

Конфигурируемые параметры ПАДа определяются выполняемыми задачами. Эти параметры описываются стандартом X.3. Совокупность параметров носит название "профайла" (profile); стандартный набор состоит из 22 параметров. Функциональное назначение данных параметров одинаково для всех ПАДов. В профайл входят параметры, задающие скорость обмена по асинхронному порту, параметры, характерные для текстовых редакторов (символ удаления знака и строки, символ вывода на экран предыдущей строки и т.п.), параметры, включающие режим автоматической добивки строки незначащими символами (для синхронизации с медленными терминалами), а также параметр, определяющий условие, при выполнении которого формирование пакета заканчивается.

УЗЛЫ СЕТИ X.25. ЦЕНТРЫ КОММУТАЦИИ ПАКЕТОВ

Параметры, описывающие канал X.25, являются немаловажными и для узловых элементов собственно сети X.25, называемых Центрами Коммутации Пакетов - ЦКП (или коммутатор пакетов, packet switch), однако ими список параметров ЦКП, конечно, не исчерпывается. В процессе конфигурации ЦКП обязательно требуется заполнить таблицу маршрутизации (routing table), позволяющую определить, на какой из портов ЦКП направляются поступившие в них пакеты в зависимости от адресов, содержащихся в этих пакетах. В таблице задаются как основные, так и альтернативные маршруты. Кроме того, важная функция некоторых ЦКП - это функция стыковки сетей (шлюза между сетями).

Действительно, в мире существует великое множество сетей X.25 и общего пользования, и частных, или иначе - корпоративных, ведомственных. Естественно, в различных сетях могут быть установлены разные значения параметров передачи по каналам X.25 (длина кадра и пакета, величины пакетов, система адресования и т.д.). Для того чтобы все эти сети могли стыковаться друг с другом, была разработана рекомендация X.75, определяющая правила согласования параметров при переходе из сети в сеть. Сопряжение вашей и соседних сетей рекомендуется производить через ЦКП, в котором с достаточной полнотой реализована поддержка шлюзовых функций, - такой ЦКП, например, должен уметь "транслировать" адреса при переходе из одной сети в другую. Эта функция обычно реализуется с помощью конфигурации специальной таблицы трансляции адресов в шлюзовом ЦКП. Для ЦКП, несопрягающихся с узлами другой сети пакетной коммутации, наличие шлюзовых функций не является обязательным.

Уважаемые хабровчане, я хочу рассказать вам о сетях пакетной коммутации, построенных на основе протокола передачи данных ITU-T X.25. Мне посчастливилось заниматься сопровождением и развитием одной корпоративной сети X.25 на протяжении нескольких лет.

Протокол X.25

Протокол X.25 был разработан на смену протоколу ISDN, который для передачи данных обладает существенными недостатками (отсутсвие статистического мультиплексирования). Первая редакция стандарта была утверждена в 1976 году. В основу протокла легли следующие основные идеи:
- Контроль передачи между двумя узлами сети
- Контроль передачи между конечными абонентами
- Маршрутизация в момент установления соединения
- Коммутация пакетов по установленному маршруту

Во многих источниках говорится, что X.25 - протокол канального уровня. Это не так. X.25 создавался до разработки семиуровневой модели OSI. В канальный уровень его «записывают» только из-за широко применяемой инкапсуляции протокола IP в X.25. На самом деле протокол имеет все признаки сетевого уровня (маршрутизация между сетями) и обеспечивает контроль передачи между конечными абонентами, т.е. выходит транспортный уровень.

Основным преимуществом протокола является высокая эффективность в сетях, построенных на каналах связи с высоким уровнем ошибок. Основными недостатками - ограниченная производительность, не приспособленность к передаче real time данных.

Сеть X.25

Все абоненты сети X.25 делятся на синхронных и асинхронных. Синхронные имеют встроенные интерфейсы X.25, а асинхронные для передачи данных используют устройства под названием PAD (Packet Assembler-Disassembler). PAD принимает асинхронные потоки со своих портов и передает их в коммутируемом соединении через интерфейс X.25.

Основу сети составляют пакетные коммутаторы. Они соединяются между собой синхронными каналами связи (преимущественно X.21 через синхронные модемы по каналам ТЧ или радиоканалам). Синхронные абоненты сети подключаются непосредственно к пакетным коммутаторам. Также к коммутаторам подключаются PADы.

В сети используется адресация по стандарту X.121. Она чем-то напоминает IP адресацию, но без точек и с десятичной маской. Маска в явном виде никогда не указывается, просто длина адреса может варьироваться от 10 до 15 десятичных символов.

Адрес X.121 имеет вид:
DDDDNNNPPPP
где
DDDD - DNIC (Номер сети, аналог автономной системы в IP)
NNN - Node (Номер узла)
PPPP - Port (Номер порта)
SSSSS - Subadress (Субадрес)

Каждый пакетный коммутатор имеет свою таблицу маршрутизации. Таблица указывает в какой порт маршрутизировать соединение, осуществляемое на указанный адрес. Адрес отправителя обычно не анализируется.

Важный момент - маршрутизация происходит в момент установления логического соединения (SVC), после установления соединения происходит только коммутация. Для этого на каждом порту создаются логические каналы (LCI). Количество доступных LCI на интерфейсе ограничивает доступное количество логических соединений через него.

Если на маршруте установленного соединения произойдет сбой, то после таймаута и переповторов абоненты переустановят соединение.

Сеть, с которой мне пришлось иметь дело, вначале использовалась для работы асинхронных терминалов, которые по zmodem осуществляли передачу файлов на файловый коммутатор («вертушка»). Позже появились синхронные терминалы, обменивающиеся информацией с сервером и маршрутизаторы IP. Все работало очень медленно и очень надежно. Скорость на магистральных каналах ТЧ была не выше 19200, а в глубинке было и по 2400 «за счастье», что не мешало передавать данные.

Позже стали появляться каналы FR, которые использовались для X.25 over FR. Когда появились качественные каналы IP, постепенно начали внедрять XOT (X.25 over IP).

Важный момент - обе технологии предполагают туннелирование X.25 через неродные для него протоколы. Иногда удобно «затерминировать» протокол X.25 на интерфейсе, на который он приходит через туннель. Протокл этого не предусматривает, терминирование протокола возможно только на интерфейсах с чистым X.25 (over LAP-B), а туннелирование можно применять только внутри сети для коммутации между узлами.

Case Communications

Сеть, с которой я работал, была построена на оборудовании английской компании Case Communications . Эта компания часто меняла собственников и названия, в одно время называлась Cray Communications. Начинали они с пакетных коммутаторов, также у них были и Ethernet продкуты, маршрутизаторы. Подразделение, которое производило маршрутизаторы было выкуплено Intel, в результате чего появились достаточно известные модели Intel Express Router 9100 и иже с ним. В настоящее время компания занимается разработкой и производством linux маршрутизатров.

Линейка пакетных коммутаторов Case состояла из узлов (Packet Switch Exchange - PSE), коммутаторов X.25/Frame-Relay Assembler-Disassembler - XFRAD) и PAD. Особенность PSE была в том, что между ними можно было делать транковые соединения, которые не адресовались как обычные порты, но использовались для связи между узлами сети. С сетью поставлялась система управления на платформе Sun с графическим интерфейсом под Х11.

Самой продвинутой моделью был модульный PSE8525. Это 13 юнитовое шасси для стойки 19" на 16 модулей интерфейсов и модуль управления, в шасси устанавливалось до 5 блоков питания. Архитектура этой штуковины заслуживает особого внимания.

Основой являлась вертикальная плата backplane. Активных элементов на ней обнаружено не было (!) - просто набор шин. Backplane делила шасси на две части - спереди платы с контроллерами и процессорами, сзади - платы с интерфейсами, всего 17 слотов. В первые 16 слотов можно было установить платы портов X.25 или платы PAD. В последнем слоте - плата manager.

Все остальные платы состояли из двух частей - платы контроллеров и платы процессора. Процессорные платы (UPM) были для всех плат одинаковые, контроллер портов X.25 (SP-XIM) и менеджер были разными.

Система загружалась поэтапно. После включения питания с дискеты А загружался менеджер. После загрузки он считывал конфигурацию с дискеты В и по одной загружал платы интерфейсов. PADы загружались сами по себе, как только появлялось питание. После загрузки всех плат, они могли работать независимо, каждую из них можно было перезагружать отдельно. Менеджер в системе был нужен только при изменении конфигурации или перезагрузке.

Все платы можно было вынимать и переустанавливать «на ходу». Известны случаи, когда шасси работало без менеджера более месяца. Сравните это с вытаскиванием супервизора из Cisco7600! ;)

Заключение

Протокол X.25 отлично сыграл свою роль в телекоммуникациях и связи. В то время, когда он был создан, он решил проблему эффективного использования низкоскоростных каналов связи с высоким уровнем ошибок при передаче. Разработчики оборудования X.25 делали ставку не на скорость, а на надежность и живучесть решения, поэтому в банковской сфере этот протокол жив и сейчас.

Развитие систем связи привело к тому, что протокол X.25 перестал удовлетворять требованиям современных приложений к скорости передачи данных, а наличие высокоскоростных каналов связи с низким уровнем ошибок позволяет решать современные задачи с помощью протоколов семейства TCP/IP.

Основы, заложенные в архитектуру протокола и сетей X.25 иллюстрируют рациональный подход к решению поставленной задачи, и являются отличным учебным материалом. Возможно, некоторые из идей, заложенных в X.25, еще вернутся но на более высоких уровнях. В частности, технология MPLS TE (Traffic Engineering) в чем-то сходна с X.25 в отношении построения логических каналов.

Я рекомендую всем, кто собирается стать специалистом в области сетей и коммуникаций, изучить основы работы протокола X.25, не смотря на то, что его знание не является обязательным для работы во многих предприятиях связи. При его изучении, рекомендую делать акцент не на том, как реализована та или иная функция, а на том, с какой целью, она была включена в протокол.

NUMBEREDHEADINGS__

Принцип установления виртуальных каналов в сети Х.25

Третий (сетевой ) уровень выполняет функцию коммутации пакетов сети передачи данных стандарта МСЭ-Т Х.25 . Описание принципа коммутации пакетов приведено в статье «Стек протоколов сети пакетной коммутации X.25 ».

Сетевой уровень Х.25 соответствует функции третьего уровня эталонной модели OSI – коммутация (маршрутизация) блока данных (в случае Х.25 – пакета данных “Д”). На сетевом уровне протокол Х.25/3 обеспечивает для уровней, расположенных выше в иерархии сервис с установлением соединений. Поэтому на этом уровне определены процедуры установления виртуальных соединений, передачи данных по виртуальным соединениям и разрыва виртуальных соединений. При использовании сервиса, ориентированного на соединение, каждый пакет данных вместо физического адреса включает в свой заголовок виртуального канала уникальный на узле коммутации номер, соответствующий логическому каналу. Протокол виртуального соединения стандарта Х.25 является мультиплексируемым протоколом, т.е. через один канал связи второго уровня может быть установлено много виртуальных соединений. Виртуальные соединения отличаются друг от друга уникальными логическими канальными номерами (LCN Logical Channel Number ). В качестве примера покажем передачу по одному и тому же каналу второго уровня пакетов двух разных виртуальных соединений (рис. 1).

Рис. 1. Пример виртуальных соединений по одному каналу второго уровня

На рис. 1 показана маршрутизация двух виртуальных соединений (каналов): одного между оконечными станциями Н1- Н2, другого между оконечными станциями Н3 – Н4. Центр коммутации пакетов Х.25 ЦКП (А) может отличить пакеты, поступающие от Н1 и Н3 (номера LCN у них одинаковые и равны 1), так как эти пакеты поступают в ЦКП(А) по разным физическим линиям. Следующий за ним ЦКП(С) различить эти пакеты не может. Поэтому, для того, чтобы различить виртуальные соединения Н3 - Н4 и Н1 - Н2 в заголовке пакета первого соединения устанавливается уникальное для этого центра LCN, а в заголовке пакета второго соединения другое уникальное LCN, На рис 1 эти значения равны соответственно 19 и 144. Эти пакеты поступают на основании физических адресов оконечных станций в соответствии с таблицей маршрутизации в ЦКП(С). В ЦКП(С) на выходе в заголовке пакета первого соединения устанавливается уникальное для этого центра LCN(73), а в заголовке пакета второго виртуального соединения другое уникальное LCN(75). Аналогичная процедура выполняется в последнем ЦКП(Е). Таким образом на одних и тех же участках сети ЦКП(А)-ЦКП(С)-ЦКП(Е) передаются пакеты двух разных виртуальных каналов (ВК).

Сеть Х.25 обеспечивает два вида сервиса установления соединения: постоянный виртуальный канал ПВК (PVC Permanent Virtual Circuit ) и коммутируемый виртуальный канал КВК (SVC Switched Virtual Circuit ).

Логические канальные номера LCN в таблицах маршрутизации ПВК устанавливаются оператором сети, т.е. отсутствует обмен служебными пакетами по установлению виртуального канала. Необходимость в таких каналах возникает у пользователей, которые нуждаются в постоянном соединении между ними. При большой интенсивности потоков предпочтительно использовать ПВК, который является более дешевой альтернативой арендованному каналу.

Основным недостатком ПВК является его низкая надежность, так как сеть не позволяет быстро и безошибочно восстановить соединение между пользователями при неисправности звена данных (канала связи) между ЦКП. КВК устанавливается автоматически с помощью служебных пакетов. Описание установления КВК приводится позже.

Режим коммутируемого виртуального канала КВК используется в тех случаях, когда информация передается между многими пользователями, а сеансы связи не частые или кратковременные. Применение в этих случаях ПВК означало бы установление соединений между всеми пользователями и необходимость производить оплату бездействующих соединений. Мультиплексирование в режиме КВК позволяет экономично использовать пропускную способность каналов связи и выгодно для пользователей сети.

На рис. 2 приведена иллюстрация мультиплексирования нескольких виртуальных каналов в один канал связи между ЦКП. Здесь через ВК1 обозначен виртуальный канал, соединяющий абонентов 1 и 1*, через ВК2 обозначен виртуальный канал, соединяющий абонентов 2 и 2*, через ВК3 обозначен виртуальный канал, соединяющий абонентов 3 и 3*, через ВК4 обозначен виртуальный канал, соединяющий абонентов 4 и 4*. На участке между ЦКП4 и ЦКП5 проходят все эти виртуальные каналы.

Рис. 2. Мультиплексирование виртуальных каналов

На рис. 3 приведены два виртуальных канала (КВК или ПВК), проходящие через три ЦКП. В первом виртуальном канале (КВК1 или ПВК1), изображенном сплошными линиями:

  • логический канальный номер LCN в заголовке входящего пакета в ЦКП1 –равен 5, в заголовке исходящего пакета – 3503;
  • в ЦКП2 соответственно 3503 и 1510;
  • в ЦКП3 соответственно 1510 и 2301.

Во втором виртуальном канале (изображенном пунктирными линиями) в ЦКП1 - 2020 и 1500; в ЦКП2 - 1500 и 835; в ЦКП3 - 835 и 4001.

Рис. 3. Прохождение пакетов двух виртуальных каналов через несколько ЦКП

Для того чтобы обеспечить индивидуальность виртуального канала, номер LCN в заголовке исходящего из ЦКП пакета должен быть уникальным. Это обеспечивается программным способом при установлении ВК с использованием свободного номера, не задействованного в этом ЦКП никаким другим соединением.

Рассмотрим информационные процессы в коммутируемом виртуальном канале . На рис. 4 приведен пример сети Х.25 с вычислительными средствами ЦКП1 и ЦКП2. Каждый из этих ЦКП состоит из центрального процессора (Ц пр), выполняющего функции сетевого уровня и канальных процессоров, выполняющих функции канального уровня (K пр).

Как видно из рисунка, канальные процессоры K пр 1, K пр 2, K пр 3 ЦКП1 и ЦКП2 взаимодействуют с центральным процессором Ц пр своего ЦКП и процессорами оконечных станций (Пр). Канальные процессоры K пр 4, K пр 5, K пр 6 взаимодействуют с центральным процессором Ц пр своего ЦКП и канальными процессорами смежных ЦКП.

Рис. 4. Вычислительные средства двух ЦКП сети X.25

Процессоры оконечных пунктов выполняют функции всех уровней модели OSI.

Диаграмма установления коммутируемого виртуального канала

На рис. 5 приведена упрощенная диаграмма установления КВК между оконечными пунктами А и Б и передача пакета данных «Д» по этому КВК от А в Б. Обработка пакетов «Запрос вызова» и «Вызов принят» выполняет одновременно функции составления таблицы маршрутизации по логическим канальным номерам LCN и установление коммутируемого виртуального канала.

Приведем краткое описание этих информационных процессов:

  1. с транспортного уровня оконечной станции А на сетевой уровень поступает примитив «Запрос» на установление КВК между А и Б;
  2. с сетевого уровня на канальный уровень станции А поступает пакет «Запрос вызова» («ЗВ»), в заголовке которого размещены физические адреса оконечных станций А и Б (адресация по рекомендации Х.121) и логический канальный номер LCN=1. Адреса Х.121 имеют максимальную длину, равную 14 цифрам, из которых одна цифра - код зоны. МСЭ-Т разделил мир на 7 зон, три цифры - идентификатор сети в зоне, десять цифр - номер сетевого терминала;
  3. с канального уровня станции А в ЦКП1 поступает кадр «I» с вложенным (инкапсулированным) в него пакетом «ЗВ». Кадр передается в канал связи;
  4. кадр «I» с входящим в него пакетом «3В» поступает на канальный процессор K пр 1 ЦКП1; На выходе K пр 1 этот кадр освобождается от заголовка и вложенный в него пакет «3В» поступает на центральный процессор Ц пр.
  5. центральный процессор Ц пр выполняет функции сетевого уровня и производит коммутацию этого пакета на K пр 4, установив при этом в заголовке новое значение LCN=123. Коммутация производится с помощью таблицы маршрутизации на основании физических адресов А и Б в заголовке пакета;
  6. кадр «I» с пакетом «3В» (c заголовком LCN=123) поступает на K пр 4 ЦКП2. На выходе K пр 4 кадр освобождается от заголовка;
  7. пакет с LCN=123 в заголовке поступает на Ц пр ЦКП2, где производится его коммутация на K пр 2 и установка нового значения LCN=4001;
  8. на выходе K пр 2 ЦКП2 формируется кадр «I» с вложенным в него пакетом «3В» (LCN=4001);
  9. этот кадр передается в канал и затем поступает на процессор оконечной станции Б;
  10. на оконечной станции Б кадр освобождается от заголовка после его обработки, и входящий в него пакет под измененным названием («Входящий вызов» – «ВВ») с LCN = 4001 поступает на сетевой уровень;
  11. после обработки заголовка поступившего пакета «ВВ» Ц Пр оконечной станции Б направляет примитив «индикация соединения» на транспортный уровень с указанием адресов А и Б;
  12. с транспортного уровня поступает примитив «ответ»;
  13. при положительном решении сетевой уровень оконечной станции Б формирует пакет «Вызов принят» («ВП») с LCN = 4001;
  14. процессор Пр отправляет «I» кадр с вложенным в него пакетом «ВП».

Рис. 5. Установление КВК и передача по нему пакета данных

Далее в обратном направлении по тому же пути до оконечной станции А пересылается информационный кадр, и на сетевой уровень А поступает пакет под названием «Соединение установлено» с LCN = 1. С сетевого уровня на транспортный уровень поступает примитив «подтверждение соединения». На этом завершается фаза установления КВК между оконечными пунктами А и Б. Следующая строка на диаграмме иллюстрирует прохождение от А в Б пакета «Данные» («Д») по установленному КВК.

Примитив с транспортного уровня сообщает сетевому уровню о необходимости передачи пакета «Д» по КВК между А и Б. Сетевой уровень пункта А формирует пакет «Д» c LCN = 1. Физические адреса А и Б в пакетах с данными «Д» отсутствуют, так как все пакеты с данными, принадлежащие информационному потоку А ↔ {\displaystyle \leftrightarrow } Б, будут пересылаться через сеть по одному и тому же маршруту, установленному КВК. Как видно из диаграммы, пакет «Д» проходит через ЦКП1 и ЦКП2 в оконечный пункт Б по тому же маршруту (через те же канальные процессоры) и с теми же логическими канальными номерами LCN, которые были во входящем и исходящем пакетах «Запрос вызова» и «Вызов принят».

В обратном направлении пакет «Д» (из Б в А) будет проходить по тому же маршруту и логические канальные номера LCN будут устанавливаться, как в выше приведенных пакетах «Вызов принят» и «Соединение установлено».

Установление КВК и передача пакетов «Д» между другими оконечными пунктами, подключенными к ЦКП1 и ЦКП2 (например, С-Д, Г-Е) производится через соответствующие канальные процессоры абонентского доступа (С - через K пр 2 ЦКП1, Г - через K пр 3 ЦКП1), но через одни и те же канальные процессоры K пр 4, подключенные к каналу связи между ЦКП1 и ЦКП2.

Логические канальные номера LCN в пакетах, передаваемых между ЦКП1 и ЦКП2, должны быть индивидуальными для каждого КВК. На этом участке могут проходить пакеты «Д» по всем КВК, максимальное число которых определяется в Х.25 полем в 12 бит. Максимальное число виртуальных каналов, обслуживаемых центральным процессором одного ЦКП, составляет 4094.

Перечислим некоторые из основных полей заголовка пакета сетевого уровня Х.25:

  • логический канальный номер LCN;
  • тип пакета (пакеты установления и сброса виртуального соединения, пакеты данных «Д» верхних уровней, пакеты управления потоком, пакеты прерываний, пакеты подтверждения прерываний). Длина поля данных пользователя в пакете дана по умолчанию равной 128 байт, но доступны также и другие значения: 16, 32, 64, 256, 512, 1024, 2048 и 4096 байт;
  • биты специальных операций (D – бит, М – бит, Q – бит).

Пакеты прерываний обеспечивают механизм, при помощи которого могут быть отправлены срочные данные. Большинство производителей оборудования поддерживают две очереди пакетов «Д» для каждого выходного порта – одна для обычных данных, а другая для данных прерываний (т.е с приоритетом). Прежде чем обслуживать обычную очередь производится проверка того, что очередь пакетов прерываний пуста.

Управление потоком данных является важным аспектом сервиса Х25/3 по причине природы операций виртуального соединения, требующих гарантированной доставки данных. Для гарантии того, что пакеты не потеряются, важно ограничить количество неподтвержденных пакетов, т.е. размер окна виртуального канала сетевого протокола.

На сетевом уровне Х25/3 предусмотрена возможность остановить отправку пакетов «Д» при получении пакета RNR - receive not ready (неготовность к приему ) по определенному виртуальному каналу. Этот механизм используется для снятия перегрузки.

Особенности протокола сетевого уровня Х.25

При сравнении с сетевым уровнем модели OSI других технологий сетей протокол сетевого уровня Х25/3 имеет несколько отличий. Этот стандарт не содержит протокола маршрутизации . Под протоколом маршрутизации понимается автоматическая коррекция таблиц маршрутизации при отказах каналов связи, перегрузке и других изменениях в сети. Эти функции в сети Х.25 (относительно таблицы маршрутизации по физическим адресам) отнесены к специфике реализации. Следует отметить, что протоколы маршрутизации разработаны в стандартах других сетей связи, (например, в системе сигнализации ОКС№7 , в IP-сети). Эти протоколы учитывают коррекцию таблицы маршрутизации при отказах каналов связи и узлов коммутации, при перегрузках.

Х.25 является протоколом интерфейса абонентского доступа .

На абонентском доступе сети Х.25 располагается два вида оборудования:

  • оконечное оборудование данных OOД (DTE , Data Terminal Equipment ), машина конечного пользователя, в качестве которой может быть терминал или компьютер;
  • оборудование окончания канала данных АКД (DCE , Data Circuit-terminating Equipment ). Функция канала данных состоит в подключении ООД к каналу передачи данных. АКД преобразует цифровой сигнал ООД в сигналы, согласованные с характеристиками существующих каналов связи (аналоговых или цифровых). Примером АКД является модем.

Протокол сетевого уровня Х25/3 выполняет несколько функций, которые обычно относятся к функциям транспортного уровня. Операции включают использование нескольких специальных битов в заголовках пакетов. Пакеты данных Х.25 содержит D – бит, Q – бит и М – бит.

Сквозное подтверждение (D – бит)

Когда бит D установлен в 1, то предусмотрено сквозное подтверждение приема пакета, т.е. от одного оконечного оборудования данных (ООД ) до другого ООД. Если пакет с D=1 достигает ООД получателя, то это оборудование отвечает за обеспечение подтверждения. Это подтверждение направляется обратно к ООД отправителя, таким образом, реализуя сквозное подтверждение. В этом случае с транспортного уровня снимается функция гарантии правильной последовательности принятых пакетов, которая обычно имеет место в сетях других технологий.

В сети Х.25 в большинстве случаев используется локальное подтверждение правильного приема пакетов, т.е. на участке между ООД и аппаратурой канала данных АКД. В этом случае за проверку правильной последовательности пакетов во входящем потоке отвечает транспортный уровень (четвертый уровень OSI).

Формирование и сборка пакетов данных (М – бит)

В соответствии с моделью OSI, транспортный уровень отвечает за сегментацию сообщений таким образом, чтобы размер сегмента не превышал максимального размера пакета, требуемого сетевым уровнем. Транспортный уровень получателя выполняет процесс обратный сегментации, чтобы восстановить сообщение. Посредством М – бита в заголовке пакета «Д» протокол сетевого уровня Х25/3 забирает у транспортного уровня функцию сегментации сообщений и их сборки. Результатом является последовательность связанных пакетов, которые после сборки образуют исходное сообщение. Для этого отправитель устанавливает М – бит всех пакетов за исключением последнего в последовательности пакетов в 1. В последнем пакете последовательности М – бит устанавливается в 0. На основании значений М – бита, получатель может собрать пакеты в исходное сообщение, прежде чем оно будет передано на транспортный уровень.

Отправка данных специального назначения (Q – бит)

Q – бит, находящийся в заголовке пакета данных, используется для указания альтернативного места назначения для содержимого поля пользовательских данных определенного пакета. В обычных условиях Q – бит в пакете «Д» установлен в 0. Это значит, что содержащиеся в пакете данные предназначены для конечного пользователя. Если Q – бит установлен в 1, это значит, что получатель содержимого поля является не «типичным» конечным пользователем, а некоторым другим объектом в местоположении получателя. Например, можно управлять конфигурацией удаленного конечного пользовательского устройства во время установленного виртуального соединения. Допустим, мы хотим изменить значение параметра канального уровня (такого как размер окна) во время обмена пакетами «Д». Для этого, используя Q - бит, можно отправить команду с новыми параметрами настройки в поле данных пакета Х.25. Когда этот пакет достигнет получателя, его содержимое будет направлено не на сетевой уровень, а на канальный уровень. Таким образом, Q – бит позволяет выбрать одно их двух мест назначения для содержимого каждого пакета «Д». Так как Q – бит занимает поле в 1 бит, то поддерживается один «нетипичный» конечный пользователь, который определяется во время установления соединения.

Услуга информационной безопасности «Замкнутая группа абонентов»

В рекомендации Х.25 предусмотрены дополнительные услуги. Замкнутая группа пользователей CUG (Closed User Group ) является одной из таких услуг и служит средством обеспечения безопасности в отношении защиты от несанкционированного доступа. Членом CUG назначается с помощью идентификатора, который включается в заголовок пакетов установления соединения коммутируемого виртуального канала. Без идентификатора CUG виртуальные соединения не будут устанавливаться с другими членами CUG. Это средство обеспечения безопасности имеет несколько режимов. В одном из них только члены CUG могут устанавливать виртуальные соединения друг с другом. Доступ за пределы группы CUG запрещен. Более того, доступ кого-либо извне также воспрещен. В другом режиме члены CUG могут устанавливать соединение с любым другим пользователем сети вне зависимости от того, является он или нет членом CUG. Однако установка соединений с членами группы CUG извне её запрещена. Хотя концепция группы CUG менее сложная и отличается от современных виртуальных частных сетей VPN (Virtual Private Network ), между ними можно провести тесную параллель. Для классической VPN характерно обеспечение не только защиты от несанкционированного доступа, но и выполнение требований по качеству обслуживания.