Модели каналов передачи информации. Способ моделирования канала связи

Математическое моделирование непрерывных каналов связи требует знания физических процессов, протекающих в них. В большинстве случаев для их определения и перевода в аналитическую форму требуется проведение сложных экспериментов, испытаний и последующей аналитической обработки данных.

В подобных ситуациях очень полезной является модель двоичного симметричного канала связи (ДСК). Подобная модель является простейшим примеров взаимодействия двух источников без памяти. Подобная модель является дискретной двоичной моделью передачи информации по каналу с АБГШ. ДСК описывается с помощью диаграммы переходов (рис. 2.10).

Рис. 2.10. Модель двоичного симметричного канала

На диаграмме представлены возможные переходы двоичных символов от передатчика (источника ) в двоичные символы приемника (источника ). Каждому переходу приписана переходная вероятность. Ошибочным переходам соответствует вероятность . Эквивалентом диаграммы переходов является матрица канала. Она содержит переходные вероятности и является стохастической матрицей, у которой сумма всех элементов каждой строки равна единице. В общем случае матрица канала в входным алфавитом их символов и выходным алфавитом из символов , содержит все переходные вероятности и имеет вид

(2.51)

В случае ДСК матрица принимает вид

. (2.52)

Единственным параметром, характеризующим ДСК, является вероятность ошибки и из-за равновероятного появления входных символов и симметрии переходов следует равномерное распределение выходных символов, т.е.

Среднее значение информации, которыми обмениваются два дискретных источника без памяти и равно

Поскольку пропускная способность дискретного канал связи определяется как , то

После подстановки числовых значений выражение принимает вид

Важным частным случаем ДСК является двоичный симметричный канал со стираниями (ДСКС). Как и ДСК подобный канал является упрощенной моделью передачи информации по каналу с АБГШ. Схема переходных вероятностей стирающего канала представлена на рис. 2.11.

Рис. 2.11. Граф переходных состояний в стирающем канале связи

Матрица переходных вероятностей оказывается зависимой от двух параметров и имеет вид

. (2.56)

Входные символы равновероятны, поэтому . Тогда вероятности выходных символов равны

и .

Следовательно,

После преобразований получаем

Положив в полученном уравнении , получим . Введение стирающего канала связи обеспечивает выигрыш пропускной способности стирающего канала связи, при условии, что вероятность ошибки . Отклонение значений и от их минимальных значений приводит к образованию криволинейной поверхности, представляющей общий вид которой представлен на рис. 2.12.

Рис. 2.12. Пропускная способность стирающего канала связи

Рассматривая модель стирающего канала связи, в которойстирания разделяются на ложные и правильные, можно представить граф переходных вероятностей в виде рис. 2.13. Матрица переходных вероятностей оказывается зависимой от четырех параметров принимает вид

Рис. 2.13. Граф переходных состояний с разделением стираний на ложные и правильные стирания

Предположение о точном совпадении стертых позиций с ошибками является условием, которое никогда не выполняется в реальных канала связи. Для гауссовского канала связи соотношения между ложными и правильным стираниями в зависимости от ширины интервала стирания приведены в табл. 2.1.

Табл. 2.1 Соотношение вероятностей между ложными и правильными стираниями в канале без памяти

Значение интервала стирания

Ложные стирания

Относительный прирост

Правильные стирания

Прирост показателей для и в табл. 2.1 определялся относительно интервала стирания при этом показатель для ложных стираний в указанных пределах вырос практически на порядок. Это говорит о невозможности прямого применения стирающего канала связи в системах обмена информацией с целью снижения вероятности ошибочного приема данных.

Дискретный канал предназначен для передачи дискретных сигналов (символов). При передаче по такому каналу сообщение представляется некоторой последовательностью элементарных дискретных сообщений , принадлежащих конечному множеству. В результате помехоустойчивого кодирования последовательность заменяется другой последовательностью , которая ставится в соответствие сообщению . Последовательность , состоящая из кодовых символов , подается на вход дискретного канала. Кодовые символы обычно (но не всегда) являются цифрами двоичной системы счисления. Таким образом, сообщение на входе дискретного канала может быть представлено последовательностью , где - номер позиции, а - дискретная случайная величина, принимающая значение 0 и 1. Сообщение на выходе дискретного канала также представляется в виде , где , а - аналогичная случайная величина. В идеальном случае, при отсутствии помех и искажений, для всех .

Ограничения на входные символы дискретного канала обычно задаются указанием алфавита символов и скорости их следования. Основной характеристикой дискретного канала является вероятность того или иного изменения символа на данной позиции. Эта характеристика определяется теми преобразованиями, которые претерпевает символ при передаче по каналу:

Смещение во времени (задержка символов);

Отличие на некоторых позициях выходных символов от входных (аддитивные ошибки);

Смещение номеров позиций выходной последовательности относительно номеров входной (ошибки синхронизации);

Появление на некоторых позициях символов стирания (невозможность принять надежное решение по какому-либо символу).

Первый фактор (задержка) является детерминированным или содержит детерминированную и случайную составляющие. Все остальные факторы случайны.

При действии рассмотренных факторов основная характеристика дискретного канала – вероятность искажения символа на определенной позиции – зависит от номера позиции, от значения передаваемого и всех ранее переданных символов.

Так определяются характеристики для нестационарного несимметричного канала с неограниченной памятью. Полное описание таких каналов задается совокупностью условных (переходных) вероятностей вида , т.е. вероятностей того, что выходные символы примут значения , если входные символы имеют значения , где и - номера позиций последовательностей и , - длина конечной последовательности (сообщение).

Естественно, что эти вероятности должны быть известны при любых и . Если рассматриваются стационарные каналы с идеальной синхронизацией, то полное описание канала задается системой переходных вероятностей . Располагая этой системой вероятностей, можно, например, найти такую важную характеристику, как пропускную способность дискретного канала.

В ряде случаев, особенно при анализе методов повышения достоверности, дискретный канал удобно описывать методами случайных процессов, а не заданием системы условных вероятностей рассмотренного вида.

Для канала с идеальной синхронизацией используется понятие потока ошибок. Поток представляет собой дискретный случайный процесс Е (иногда используется термин «последовательность ошибок»). Каждая позиция потока Е складывается по определенному правилу с соответствующей позицией процесса Y.

В общем случае реализации потока ошибок зависят от реализации помех в непрерывном канале, вида модели и реализации процесса Y. Так, например, при стационарном канале и стационарной передаваемой последовательности Y поток ошибок также будет стационарным.

Существует тип дискретного канала, для которого характеристики потока ошибок не зависят от вида информации, передаваемой по каналу. Такой тип канала принято называть симметричным. В этом случае переходные вероятности имеют вид , где - реализация потока ошибок.

Из изложенного следует, что модель двоичного канала это, но сути дела, статистическое описание двоичной последовательности Е. Полное описание таких последовательностей достигается на основе многомерных распределений, например, интервалов между элементами последовательности или через многомерные переходные вероятности. Располагая математической моделью, дающей полное описание ошибок двоичного симметричного канала, можно определить любую характеристику методов повышения достоверности при передаче информации по такому каналу. Наиболее удобный вариант модели для проектирования задается теорией случайных процессов в виде потока ошибок.

Представляется логичным и достаточно удобным рассматривать поток ошибок дискретного канала связи как ступенчатый случайный процесс. Такой подход позволяет при исследовании каналов связи использовать многочисленные важные результаты, полученные для случайных процессов.

Выделим среди различных способов задания потоков следующие два.

Первый способ описания потоков. Для задания потоков ошибок этим способом необходимо для любого натурального числа и произвольного набора чисел , указать r -мерную функцию распределения случайного вектора , где - количество ошибок, появившихся в промежутке времени , или найти

Где - начало отсчета времени.

Таким образом, есть вероятность того, что на последовательно расположенных промежутках времени (откладываемого от момента времени ), появится соответственно ошибок. Это распределение полностью определяет поток ошибок. На практике (1) наиболее часто используется для , что соответствует одномерному распределению числа ошибок в промежутке времени :

Для стационарного потока зависимость от отсутствует.

Второй способ описания потоков. Пусть - моменты наступления событий потока ошибок. Можно определить поток, задав распределение - мерного вектора:

Однако часто удобнее получать распределение моментов наступления событий потока не на основе , а несколько иначе. Положим , тогда поток считается заданным, если определено - мерное распределение вектора , т.е.

Если , то имеем одномерную функцию распределения интервалов, которая в общем случае может зависеть от номера интервала, что отражается следующим образом:

.

В общем случае под каналом передачи информации понимается совокупность технических средств, обеспечивающих передачу сигналов от источника информации к потребителю.

Наиболее общую классификацию каналов связи можно осуществить по характеру сигналов на их входе и выходе. Различают поэтому два типа каналов:

1. Непрерывные каналы . В таких каналах сигналы на входе и вы­ходе непрерывны (по уровням).

2. Дискретные каналы . Навходе и выходе таких каналов наблюдаются дискретные сигналы или символы из конечномерного алфавита. Наибольшее распространение получили дискретные модели каналов.

Дискретным каналом является канал, рассматриваемый от входа кодера до выхода декодера.


Рис. 3. Дискретный канал передачи информации.

На вход канала поступают символы Xi , а с выхода – символыYi .

Дискретный канал математически описан, если задан входной алфавит сигналов {X }={ X k , K = 1… M } вместе с их априорными вероятностями {Р(X k)} и выходной алфавит сигналов {Y * }={ Y * k , K = 1. . . M +1 } , который в общем случае может содержать символ стирания Q и значения вероятностей переходов Р(Y * i / X k) , т. е. вероятностей того, что на выходе канала появится сигнал Y * i при условии, что на вход подан сигнал X k .

Удобно вероятностные характеристики канала задавать матрицами. Так априорные вероятности группируются в матрицу-строку априорных вероятностей

||P(X k) ||=|| P(X 1) P(X 2) . . . P(X m) ||

Характеристики, связанные с входным и выходным алфавитами, определяются свойствами источника сообщений и полосой пропускания канала.

Объем выходного алфавита {Y j } (J = 1, 2, …, M+1} определяется способом построения системы передачи информации.

Условная вероятность Р(Y * i / X k) определяется в основном характеристиками дискретного канала и его свойствами.

Если для любых сочетаний Y * i и X k эта вероятность не зависит от момента времени взятия отсчета, т.е.

(5)

то канал называется однородным.

Если данное условие не выполняется, то канал является – неоднородным.

Если справедливо условие

(6)

то такой канал называют каналом без памяти.

Если данное условие не выполняется, то такой канал называют каналом с памятью на n символов.

Реальные дискретные каналы являются неоднородными и с памятью. Это обусловлено следующими причинами:

Искажением и влиянием помех в непрерывном канале;

Задержкой во времени выходной последовательности сигналов по отношению к входной последовательности;

Нарушением тактовой синхронизации.

Однако, модель дискретного однородного канала без памяти, как модель первого приближения, нашла широкое применение. Она позволяет упростить методы анализа и получения исходных данных.



Рассмотрим математические модели дискретных каналов с помехами и без них.

Для того чтобы дать математическое описание канала, необходимо и достаточно указать множество сигналов, которые могут быть поданы на его вход, и для любого допустимого входного сигнала задать случайный процесс (сигнал) на его выходе. Задать процесс (см. § 2.1)-это значит задать в той или иной форме распределение вероятностей.

Точное математическое описание любого реального канала обычно весьма сложное. Вместо этого используют упрощенные математические модели, которые позволяют выявить все важнейшие закономерности реального канала, если при построении модели учтены наиболее существенные особенности канала и отброшены второстепенные детали, мало влияющие на ход связи.

Рассмотрим наиболее простые и широко используемые математические модели каналов, начав с непрерывных каналов, поскольку они во многом предопределяют и характер дискретных каналов.

Идеальный канал без помех представляет собой линейную цепь с постоянной передаточной функцией, обычно сосредоточенной в ограниченной полосе частот. Допустимы любые входные сигналы, спектр которых лежит в определенной полосе частот F, имеющие ограниченную среднюю мощность Р (либо пиковую мощность Р пик). Эти ограничения характерны для всех непрерывных каналов, и в дальнейшем о них не говорится. Заметим, что если мощность сигнала не ограничивать, то множество допустимых сигналов образует векторное пространство, конечномерное (при определенных ограничениях на длительность и ширину спектра) либо бесконечномерное (при более слабых ограничениях). В идеальном канале выходной сигнал при заданном входном детерминированный. Эту модель иногда используют для описания кабельных каналов. Однако, строго говоря, она непригодна для реальных каналов, в которых неизбежно присутствуют, хотя бы и очень слабые, аддитивные помехи.

Канал с аддитивным гауссовским шумом. Сигнал на выходе такого канала

Z(t) = ku(t-τ) + N(f), (3.38)

где u(t) - входной сигнал; k и t - постоянные; N (t) - гауссовский аддитивный шум с нулевым математическим ожиданием и заданной корреляционной функцией. Чаще всего рассматривается белый шум либо квазибелый (с равномерной спектральной плотностью в полосе спектра сигнала u(t)).

Обычно запаздывание τ не учитывают, что соответствует изменению начала отсчета времени на выходе канала.

Некоторое усложнение этой модели получается, если коэффициент передачи k и запаздывание т считать известными функциями времени:

Z(t) = k(t)u + N(t). (3.39)

Такая модель удовлетворительно описывает многие проводные каналы, радиоканалы при связи в пределах прямой видимости, а также радиоканалы с медленными общими замираниями, при которых можно надежно предсказать значения k, τ.

Канал с неопределенной фазой сигнала отличается от предыдущего тем, что в нем запаздывание является случайной величиной. Для узкополосных сигналов, с учетом (2.69) и (3.2), выражение (3.39) при постоянном k и случайных τ(t) можно представить в виде

Z(t) = k + N (t), (3.40)

где ũ(t) - преобразование Гильберта от u(t); θ K = ω 0 τ - случайная начальная фаза. Распределение вероятностей θ K предполагается заданным, чаще всего равномерным на интервале от 0 до 2π. Эта модель удовлетворительно описывает те же каналы, что и предыдущая, если фаза сигнала в них флуктуирует. Такая флуктуация вызывается небольшими изменениями протяженности канала, свойств среды, в которой проходит сигнал, а также фазовой нестабильностью опорных генераторов.

Однолучевой гауссовский канал с общими замираниями (флуктуациями амплитуд и фаз сигнала) также описывается формулой (3.40), но множитель K, как и фаза θ K , считаются случайными процессами. Иными словами, случайными будут квадратурные компоненты

X = K cos θ K ; Y = K sin θ K , (3.41)

При изменении квадратурных компонент X(t), Y(t) во времени принимаемое колебание

Z(t) = X(t)u(t) + Y(t)ũ(t) + N(t) = K (t) + N(t). (3.42)

Как отмечалось на с. 85, одномерное распределение коэффициента передачи K(t) может быть рэлеевским (3.35) или обобщенным рэлеевским (3.36). Такие каналы называют соответственно каналами с рэлеевскими или с обобщенными рэлеевскими замираниями. В рамках общей гауссовской модели канала K(t) имеет четырех параметрическое распределение. Модель однолучевого канала с замираниями достаточно хорошо описывает многие каналы радиосвязи в различных диапазонах волн, а также некоторые другие каналы.

Канал с межсимвольной интерференцией (МСИ) и аддитивным шумом. Эта модель является частным случаем (3.31), когда G(t, τ) от t не зависит (или меняется очень медленно), так что рассеяние по частоте практически не наблюдается.

Межсимвольная интерференция вызывается рассеянием сигнала во времени при его прохождении по каналу связи. Она проявляется в том, что на выходе канала сигнал, описываемый общим выражением (3.42), оказывается деформированным так, что одновременно присутствуют отклики канала на отрезки входного сигнала, относящиеся к довольно отдаленным моментам времени. При передаче дискретных сообщений это приводит к тому, что при приеме одного символа на вход приемного устройства воздействуют также отклики на более ранние (а иногда и более поздние) символы, которые в этих случаях действуют как помехи.

Межсимвольная интерференция непосредственно вызывается нелинейностью фазо-частотной характеристики канала и ограниченностью его полосы пропускания. В радиоканалах причиной МСИ чаще всего является многолучевое распространение радиоволн * .

* (Использование сигналов с большой базой позволяет в месте приема ликвидировать вредные последствия многолучевого распространения, однако такие системы характеризуются низкой эффективностью использования полосы частот канала. )

Пусть передатчик передает синхронно с тактовым интервалом Т последовательность элементарных сигналов, соответствующих цепочке символов

b -Q , b -(Q-1) ,....,b -2 , b -1 , b 0 , b 1 , b 2 ,....,b Q-1 , b Q , (3.43)

причем каждый из символов последовательности выбирают из возможного для данного кода набор 0, 1, ..., m - 1 (m - основание кода).

Обозначим отклик линейного канала на элементарный сигнал, соответствующий символу b r через s r (t) * , 0≤t≤(Q + 1)T, где

относительная память канала, определяемая целой частью от деления времени рассеяния канала Δτ (длительности переходного процесса в канале) на Т. Тогда принимаемое колебание z(t) в месте приемка на интервале анализа T a = (D+1T) ** при поиске решения о символе b 0 можно записать в виде

где s 0 (t) - сигнал, обусловленный анализируемым символом

сигнал межсимвольной интерференции, обусловленный символами, переданными до и после анализируемого символа; n(t)-аддитивный шум в канале;


сигнал, который определяет остаточный сигнал, МСИ, обусловленный символами, переданными до анализируемого;


Сигнал, который определяет сигнал МСИ, обусловленный символами, переданными после анализируемого. Чем больше скорость передали символов 1/Т в каждом частотном канале при заданной его полосе пропускания, тем большее число соседних с анализируемым символов определяет сигнал g M.u (t). В некоторых случаях в модели (3.44) можно считать, что элементарные сигналы на приеме s r (t) и передаче u r (t) связаны детерминированными (как правило, линейным) отношением. Тогда при незначительном уровне шумов n(t) в канале можно, в принципе, осуществить его коррекцию, т. е. перейти к модели не искажающего канала. Однако при значительных уровнях шумов в канале с МСИ предельное качество может обеспечить лишь оптимальный прием . При случайных изменениях параметров канала функции s r (t) (G(t, τ)) становятся случайными и модель (3.44) усложняется.

* (При использовании двоичных противоположных сигналов и постоянных параметрах канала s r (t) = a r s(t), где s(t)-отклик канала на элементарный сигнал, соответствующий символу 1, a r = ±1. )

** (При поэлементном приеме D определяет задержку (выраженную в числе символов) принятия решения о передаваемом символе. С ростом D возрастает качество связи при оптимальном приеме. Обычно выбирают D≤Q . )

*** (При Т a = Т (D = 0) это слагаемое сигнала МСИ обращается в нуль. )

Модели дискретного канала. Полезно напомнить, что в дискретном канале всегда содержится непрерывный канал, а также модем. Последний можно рассматривать как устройство, преобразующее непрерывный канал в дискретный. Поэтому, в принципе, можно вывести математическую модель дискретного канала из моделей непрерывного канала и модема. Такой подход часто является плодотворным, однако он приводит к сложным моделям.

Рассмотрим простые модели дискретного канала, при построении которых свойства непрерывного канала и модема не учитывались. Следует, однако, помнить, что при проектировании системы связи имеется возможность варьировать в довольно широких пределах модель дискретного канала при заданной модели непрерывного канала изменением модема.

Модель дискретного канала содержит задание множества возможных сигналов на его входе и распределение условных верояткостей выходного сигнала при заданном входном. Здесь входным и выходным сигналами являются последовательности кодовых символов. Поэтому для определения возможных входных сигналов достаточно указать число га различных символов (основание кода), а также длительность Т передачи каждого символа. Будем считать значение Т одинаковым для всех символов, что выполняется в большинстве современных каналов. Величина v = 1/T определяет количество символов, передаваемых в единицу времени. Как указывалось в § 1.5, она называется технической скоростью и измеряется в бодах. Каждый символ, поступивший на вход канала, вызывает появление одного символа на выходе, так что техническая скорость на входе и выходе канала одинакова * .

* (В реальных каналах это не всегда выполняется, так как при нарушении тактовой синхронизации модема число символов на выходе канала может оказаться больше или меньше, чем на входе. В данном курсе это обстоятельство не учитывается и синхронизация считается идеальной. Методы обеспечения синхронизации изучаются в специальных курсах. )

В общем случае для любого n должна быть указана вероятность того, что при подаче на вход канала любой заданной последовательности b [n] кодовых символов, на выходе появится некоторая реализация случайной последовательности B [n] . Кодовые символы обозначим числами от 0 до m-1, что позволит производить над ними арифметические операции. При этом все n-последовательности (векторы), число которых равно m n , образуют m n -мерное конечное векторное пространство, если "сложение" понимать как поразрядное суммирование по модулю m и аналогично определить умножение на скаляр (целое число). Для частного случая m = 2 такое пространство было рассмотрено в § 2.6.

Введем еще одно полезное определение. Будем называть вектором ошибки поразрядную разность (разумеется, по модулю m) между принятым и переданным векторами. Это значит, что прохождение дискретного сигнала через канал можно рассматривать как сложение входного вектора с вектором ошибки. Вектор ошибки играет в дискретном канале примерно ту же роль, что и помеха в непрерывном канале. Таким образом, для любой модели дискретного канала можно записать, пользуясь сложением в векторном пространстве (поразрядным, по модулю m):

B [n] = В [n] + Е [n] , (3.45)

где B [n] и В [n] - случайные последовательности из n символов на входе и выходе канала; Е [n] - случайный вектор ошибки, который в общем случае зависит от В [n] Различные модели отличаются распределением вероятностей вектора E [n] . Смысл вектора ошибки особенно прост в случае двоичных каналов (m = 2), когда его компоненты принимают значения 0 и 1. Всякая единица в векторе ошибок означает, что в соответствующем месте передаваемой последовательности символ принят ошибочно, а всякий нуль означает безошибочный прием символа. Число ненулевых символов в векторе ошибок называется его весом. Образно говоря, модем, осуществляющий переход от непрерывного канала к дискретному, преобразует помехи и искажения непрерывного канала в поток ошибок.

Перечислим наиболее важные и достаточно простые модели дискретных каналов.

Симметричный канал без памяти определяется как дискретный канал, в котором каждый переданный кодовый символ может быть принят ошибочно с фиксированной вероятностью р и правильно с вероятностью 1-р, причем в случае ошибки вместо переданного символа b может быть с равной вероятностью принят любой другой символ. Таким образом, вероятность того, что принят символ b̂ j , если был передан b i

Термин "без памяти" означает, что вероятность ошибочного приема символа не зависит от предыстории, т. е. от того, какие символы передавались до него и как они были приняты. В дальнейшем, для сокращения, вместо "вероятность ошибочного приема символа" будем говорить "вероятность ошибки".

Очевидно, что вероятность любого n-мерного вектора ошибки в таком канале

р (Е [n]) = означает наименьшее целое число, большее или равное х.

Так как передатчик повторяет лишь комбинации, по которым принят сигнал переспроса, то в результате повторения с запаздыванием на h комбинаций порядок следования комбинаций в информации, выдаваемой системой ПИ, будет отличаться от порядка поступления кодовых комбинаций в систему. Но получателю кодовые комбинации должны поступать в том же порядке, в котором они передавались. Поэтому для восстановления порядка следования комбинаций в приемнике должны быть специальное устройство и буферный накопитель значительной емкости (не менее ih, где i -- число повторений), поскольку возможны многократные повторения.

Во избежание усложнения и удорожания приемников системы с РОС-нп строят в основном таким образом, что после обнаружения ошибки приемник стирает комбинацию с ошибкой и блокируется на h комбинаций (т.е. не принимает h последующих комбинаций), а передатчик по сигналу переспроса повторяет h последних комбинаций (комбинацию с ошибкой и h--1, следующий за ней). Такие системы с РОС-нп получили название систем с блокировкой РОС-нпбл. Эти системы позволяют организовать непрерывную передачу кодовых комбинаций с сохранением порядка их следования.

Рисунок 1 - Структурная схема системы с РОС

3. Определение n, k, r, при наибольшей пропускной способности R.

Длина кодовой комбинации n должна быть выбрана таким образом, чтобы обеспечить наибольшую пропускную способность канала связи. При использовании корректирующего кода кодовая комбинация содержит n разрядов, из которых k разрядов являются информационными, а r разрядов - проверочными:

Рисунок 2 - Структурная схема алгоритма системы с РОС-нпбл

Если в системе связи используются двоичные сигналы (сигналы типа «1» и «0») и каждый единичный элемент несет не более одного бита информации, то между скоростью передачи информации и скоростью модуляции существует соотношение:

C = (k/n)*B, (1)

где С - скорость передачи информации, бит/с;

В - скорость модуляции, Бод.

Очевидно, что тем меньше r, тем больше отношение k/n приближается к 1, тем меньше отличается С и В, т.е. тем выше пропускная способность системы связи.

Известно также, что для циклических кодов с минимальным кодовым расстоянием d 0 =3 справедливо соотношение:

Приведенное утверждение справедливо для больших d 0 , хотя точных соотношений для связей между r и n нет. Существуют только верхние и нижние оценки, указанные.

Из изложенного можно сделать вывод, что с точки зрения внесения постоянной избыточности в кодовую комбинацию выгодно выбирать длинные кодовые комбинации, так как с увеличением n относительная пропускная способность увеличивается, стремясь к пределу, равному 1:

В реальных каналах связи действуют помехи, приводящие к появлению ошибок в кодовых комбинациях. При обнаружении ошибки декодирующим устройством в системах с РОС производится переспрос группы кодовых комбинаций. Во время переспроса полезная информации уменьшается.

Можно показать, что в этом случае:

где Р 00 - вероятность обнаружения ошибки декодером (вероятность переспроса);

Р ПП - вероятность правильного приема (безошибочного приема) кодовой комбинации;

М - емкость накопителя передатчика в числе кодовых комбинаций.

При малых вероятностях ошибки в канале связи (Р ош. < 10 -3) вероятность Р 00 также мала, поэтому знаменатель мало отличается от 1 и можно считать:

При независимых ошибках в канале связи, при:

Емкость накопителя:

Знак < > - означает, что при расчете М следует брать большее ближайшее целое значение.

где L - расстояние между оконечными станциями, км;

v - скорость распространения сигнала по каналу связи, км/с;

B - скорость модуляции, Бод.

После простейших подстановок окончательно имеем

Нетрудно заметить, что при Р ош = 0 формула (8) превращается в формулу (3).

При наличии ошибок в канале связи величина R является функцией P ош, n, k, B, L, v. Следовательно, существует оптимальное n (при заданных P ош, B, L, v), при котором относительная пропускная способность будет максимальной.

Формула (8) еще более усложняется в случае зависимых ошибок в канале связи (при пакетировании ошибок).

Выведем эту формулу для модели ошибок Пуртова.

Как показано в , число ошибок t об в комбинации, длинной в n разрядов, определяется формулой 7.38 . Для обнаружения такого числа ошибок находим циклический код с кодовым расстоянием d 0 не менее. Поэтому, согласно формуле 7.38 , необходимо определить вероятность:

Как показано , с некоторым приближением можно связать вероятность с вероятностью не обнаружения декодером ошибки Р НО и числом проверочных разрядов в кодовой комбинации:

Подставляя значение в (9) с заменой t об на d 0 -1, имеем:

При расчетах на микрокалькуляторах удобнее пользоваться десятичными логарифмами.

После преобразований:

Возвращаясь к формулам (6) и (8) и производя замену k на n-r с учетом значения r, из формулы (11) получим:

Второй член формулы (8) с учетом группирования ошибок по соотношению 7.37 примет вид:

Определим оптимальную длину кодовой комбинации n, обеспечивающую наибольшую относительную пропускную способность R и число проверочных разрядов r обеспечивающих заданную вероятность необнаруженной ошибки Рош.

Таблица 1 - заданная вероятность необнаруженной ошибки Рош

Из таблицы 1 видно, что наибольшую пропускную способность

R = 0.9127649 обеспечивает циклический код с параметрами n =511, r = 7, k = 504.

Образующий полином степени r находим по таблице неприводимых полиномов (приложение А к настоящему МУ).

Выберем, для r = 7 полином g(x)=x 7 +x 4 +x 3 +x 2 +1

4. Построение схем кодера и декодера для выбранного g(x) полинома

а) Построим кодирующее устройство циклического кода.

Работа кодера на его выходе характеризуется следующими режимами :

1.Формирование k элементов информационной группы и одновременно деление полинома, отображающего информационную часть х r m(х), на порождающий (образующий) полином g(х) с целью получения остатка от деления r(х).

2. Формирование проверочных r элементов путем считывания их с ячеек схемы деления х r m(х) на выход кодера.

Структурная схема кодера приведена на рисунке 2.

Цикл работы кодера для передачи n = 511 единичных элементов составляет n тактов. Тактовые сигналы формируются передающим распределителем, который на схеме не указан.

Первый режим работы кодера длится k = 504 тактов. От первого тактового импульса триггер Т занимает положение, при котором на его прямом выходе появляется сигнал "1", а на инверсном - сигнал "0". Сигналом "1" открываются ключи (логические схемы И) 1 и 3. Сигналом "0" ключ 2 закрыт. В таком состоянии триггер и ключи находятся k+1 тактов, т.е. 505 тактов. За это время на выход кодера через открытый ключ 1 поступят 504 единичных элементов информационной группы k =504.

Одновременно через открытый ключ 3 информационные элементы поступают на устройство деления многочлена х r m(х) на g(х).

Деление осуществляется многотактным фильтром с числом ячеек, равным числу проверочных разрядов (степени порождающего полинома). В моем случае число ячеек г=7. Число сумматоров в устройстве равно числу ненулевых членов g(х) минус единица (примечание на стр. 307 ). В нашем случае число сумматоров равно четырем. Сумматоры устанавливаются после ячеек, соответствующих ненулевым членам g(х). Поскольку все неприводимые полиномы имеют член х 0 =1, то соответствующий этому члену сумматор установлен перед ключом 3 (логической схемой И).

После k=504 тактов в ячейках устройства деления окажется записанным остаток от деления г(х).

При воздействии k+1= 505 тактового импульса триггер Т изменяет свое состояние: на инверсном выходе появляется сигнал "1", а на прямом - "0". Ключи 1 и 3 закрываются, а ключ 2 открывается. За оставшиеся r=7 тактов элементы остатка от деления (проверочная группа) через ключ 2 поступают на выход кодера, также начиная со старшего разряда.

Рисунок 3 - Структурная схема кодера

б) Построим декодирующее устройство циклического кода.

Функционирование схемы декодера (рисунок 3) сводится к следующему. Принятая кодовая комбинация, которая отображается полиномом Р(х) поступает в декодирующий регистр и одновременно в ячейки буферного регистра, который содержит k ячеек. Ячейки буферного регистра связаны через логические схемы "нет", пропускающие сигналы только при наличии "1" на первом входе и "О" - на втором (этот вход отмечен кружочком). На вход буферного регистра кодовая комбинация поступит через схему И 1 . Этот ключ открывается с выхода триггера Т первым тактовым импульсом и закрывается k+1 тактовым импульсом (полностью аналогично работе триггера Т в схеме кодера). Таким образом, после k=504 тактов информационная группа элементов будет записана в буферный регистр. Схемы НЕТ в режиме заполнения регистра открыты, ибо на вторые входы напряжение со стороны ключа И 2 не поступает.

Одновременно в декодирующем регистре происходит в продолжение всех n=511 тактов деление кодовой комбинации (полином Р(х) на порождающий полином g(х)). Схема декодирующего регистра полностью аналогична схеме деления кодера, которая подробно рассматривалась выше. Если в результате деления получится нулевой остаток - синдром S(х)=0, то последующие тактовые импульсы спишут информационные элементы на выход декодера.

При наличии ошибок в принятой комбинации синдром S(х) не равен 0. Это означает, что после n - го (511) такта хотя бы в одной ячейке декодирующего регистра будет записана “1”.Тогда на выходе схемы ИЛИ появится сигнал. Ключ 2 (схема И 2) сработает, схемы НЕТ буферного регистра закроются, а очередной тактовый импульс переведет все ячейки регистра в состояние "0". Неправильно принятая информация будет стерта. Одновременно сигнал стирания используется как команда на блокировку приемника и переспрос.

5. Определение объема передаваемой информации W

Пусть требуется передавать информации за временной интервал Т, который называется темпом передачи информации. Критерий отказа t отк - это суммарная длительность всех неисправностей, которая допустима за время Т. Если время неисправностей за промежуток времени Т превысит t отк, то система передачи данных будет находиться в состоянии отказа.

Следовательно, за время Т пер -t отк можно передать С бит полезной информации. Определим W для рассчитанного ранее R = 0,9281713, В=1200 бод, Т пер =460 с., t отк =60 с.

W=R*B*(Tпер-tотк)=445522 бит

6. Построение схем кодирующего и декодирующего устройства циклического кода в среде System View

Рисунок 4 - Кодер циклического кода

Рисунок 5 - Выходной и входной сигнал кодера

Рисунок 7 - Входной сигнал декодера, ошибочный бит и выходной синдром

7. Нахождение емкости и построение временной диаграммы

Найдем емкость накопителя:

М=<3+(2 t p /t k)> (13)

где t p - время распространения сигнала по каналу связи, с;

t k - длительность кодовой комбинации из n разрядов, с.

Эти параметры находятся из следующих формул:

t p =L/v=4700/80000=0,005875 c (14)

h=1+ (16)

где t ож = 3t к +2t p +t ак + t аз =0,6388+0,1175+0,2129+0,2129=1,1821 с,

где t ак, t аз - время анализа в приемнике, t 0 - длительность единичного импульса:

h=1+<1,1821/511 8,333 10 -4 >=3

8. Расчет надежностных показателей основного и обходного каналов

Вероятность появления ошибки известна (Р ош =0,5 10 -3), полная вероятность будет складываться из суммы следующих составляющих р пр - правильный прием, р но - необнаружения ошибки, р об - вероятность обнаружения ошибки декодером (вероятность переспроса).

Зависимость вероятности появления искаженной комбинации от ее длины характеризуется как отношение числа искажения кодовых комбинаций N ош (n) к общему числу переданных комбинаций N(n):

Вероятность Р(?1,n) является не убывающей функцией n. При n=1 Р(?1,n)=р ош, а при n>? вероятность Р(?1,n) >1:

Р(?1,n)=(n/d 0 -1) 1- б р ош, (17)

Р(?1,n)=(511/5) 1-0,5 0,5 10 -3 =5,05 10 -3 ,

При независимых ошибках в канале связи, при n р ош <<1:

р об? n р ош (18)

р об =511 0,5 10 -3 =255,5 10 -3

Сумма вероятностей должна быть равна 1, т.е. имеем:

р пр + р но + р об =1 (19)

р пр +5,05 10 -3 +255,5 10 -3 =1

Временная диаграмма (рисунок 9) иллюстрирует работу системы с РОС НПбл при обнаружении ошибки во второй комбинации в случае с h=3. Как видно из диаграммы, передача комбинации ИИ осуществляется непрерывно до момента получения передатчиком сигнала переспроса. После этого передача информации от ИИ прекращается на время t ож и 3 комбинаций начиная со второй. В это время в приемнике стираются h комбинаций: вторая комбинация, в которой обнаружена ошибка (отмечена звездочкой) и 3 последующих комбинаций (заштрихованы). Получив переданные из накопителя комбинации (от второй до 5-ой включительно) приемник выдает их ПИ, а передатчик продолжает передачу шестой и последующих комбинаций.

Рисунок 8 - Временные диаграммы работы системы с РОС-нпбл

9. Выбор магистрали по карте

Рисунок 9 - Магистраль Актюбинск - Алматы - Астана

Заключение

При выполнении курсовой работы была рассмотрена сущность модели частичного описания дискретного канала (модель Пуртова Л.П.), а также система с решающей обратной связью, непрерывной передачей и блокировкой приемника.

По заданным значениям были рассчитаны основные параметры циклического кода. В соответствии с ними был выбран тип порождающего полинома. Для этого полинома построены схемы кодера и декодера с пояснением принципов их работы. Эти же схемы были реализованы с применением пакета «System View». Все результаты проведенных экспериментов представлены в виде рисунков, подтверждающих правильность работы собранных схем кодера и декодера.

Для прямого и обратного дискретного канала передачи данных были рассчитаны основные характеристики: вероятность необнаруживаемой и обнаруживаемой циклическим кодом ошибки и др. Для системы РОС нпбл по рассчитанным параметрам были построены временные диаграммы, поясняющие принцип работы этой системы.

По географической карте Казахстана были выбраны два пункта (Актюбинск - Алматы - Астана). Выбранная между ними магистраль протяженностью 4700 км была разбита на участки длинной 200-700 км. Для наглядного представления в работе представлена карта.

Анализируя заданный показатель группирования ошибок, можно сказать, что в работе был произведен основной расчет для проектирования кабельных линий связи, так как, т.е. лежит в пределах 0,4-0,7.

Список литературы

1 Скляр Б. Цифровая связь. Теоретические основы и практическое применение: 2-е изд. /Пер. с англ. М.: Издательский дом «Вильямс», 2003. 1104 с.

2 Прокис Дж. Цифровая связь. Радио и связь, 2000.-797с.

3 А.Б. Сергиенко. Цифровая обработка сигналов: Учебник для вузов. - М.: 2002.

4 Фирменный стандарт. Работы учебные. Общие требования к построению, изложению, оформлению и содержанию. ФС РК 10352-1910-У-е-001-2002. - Алматы: АИЭС, 2002.

5 1 Шварцман В.О., Емельянов Г.А. Теория передачи дискретной информации. - М.: Связь, 1979. -424 с.

6 Передача дискретных сообщений / Под ред. В.П. Шувалова. - М.: Радио и связь, 1990. - 464 с.

7 Емельянов Г.А., Шварцман В.О. Передача дискретной информации. - М.: Радио и связь, 1982. - 240 с.

8 Пуртов Л.П. и др. Элементы теории передачи дискретной информации. - М.: Связь, 1972. - 232 с.

9 Колесник В.Д., Мирончиков Е.Т. Декодирование циклических кодов. - М.: Связь, 1968.

Подобные документы

    Модель частичного описания дискретного канала (модель Л. Пуртова). Определение параметров циклического кода и порождающего полинома. Построение кодирующего и декодирующего устройства. Расчет характеристик для основного и обходного канала передачи данных.

    курсовая работа , добавлен 11.03.2015

    Модели частичного описания дискретного канала. Система с РОС и непрерывной передачей информации (РОС-нп). Выбор оптимальной длины кодовой комбинации при использовании циклического кода в системе с РОС. Длина кодовой комбинации.

    курсовая работа , добавлен 26.01.2007

    Технические системы сбора телеметрической информации и охраны стационарных и подвижных объектов, методы обеспечения целостности информации. Разработка алгоритма и схемы работы кодирующего устройства. Расчет технико-экономической эффективности проекта.

    дипломная работа , добавлен 28.06.2011

    Исследование и специфика использования инверсного кода и Хемминга. Структурная схема устройства передачи данных, его компоненты и принцип работы. Моделирование датчика температуры, а также кодирующего и декодирующего устройства для инверсного кода.

    курсовая работа , добавлен 30.01.2016

    Проектирование среднескоростного тракта передачи данных между двумя источниками и получателями. Сборка схемы с применением пакета "System View" для моделирования телекоммуникационных систем, кодирующего и декодирующего устройства циклического кода.

    курсовая работа , добавлен 04.03.2011

    Расчет числа каналов на магистрали. Выбор системы передачи, определение емкости и конструктивный расчет оптического кабеля. Выбор и характеристика трассы междугородной магистрали. Расчет сигнала, числовой апертуры, нормированной частоты и числа мод.

    курсовая работа , добавлен 25.09.2014

    Модель частичного описания дискретного канала, модель Пуртова Л.П. Структурная схема системы с РОСнп и блокировкой и структурная схема алгоритма работы системы. Построение схемы кодера для выбранного образующего полинома и пояснение его работы.

    курсовая работа , добавлен 19.10.2010

    Классификация систем синхронизации, расчет параметров с добавлением и вычитанием импульсов. Построение кодера и декодера циклического кода, диаграммы систем с обратной связью и ожиданием для неидеального обратного канала, вычисление вероятности ошибок.

    курсовая работа , добавлен 13.04.2012

    Сущность кода Хэмминга. Схемы кодирующего устройства на четыре информационных разряда и декодера. Определение числа проверочных разрядов. Построение корректирующего кода Хэмминга с исправлением одиночной ошибки при десяти информационных разрядах.

    курсовая работа , добавлен 10.01.2013

    Изучение закономерностей и методов передачи сообщений по каналам связи и решение задачи анализа и синтеза систем связи. Проектирование тракта передачи данных между источником и получателем информации. Модель частичного описания дискретного канала.