История создания элт - мониторов. Crt (элт) монитор: конструкция, принцип работы, плюсы и минусы Принцип работы элт монитора изображение формируется

Изготовители электронно-лучевых трубок еще не исчерпали своего потенциала и словно только пробуют силы, держа в руках давно испытанный, но по-прежнему дорогостоящий компонент, технологический прогресс которого идет болезненно медленно на фоне стремительно развивающихся новинок. Профессиональные мониторы становятся дешевле, и этот факт, несомненно, очень радует пользователей, нуждающихся в высоком качестве картинки на экране. Если раньше они предпочитали только мониторы brand name (от Sony или ViewSonic) - хорошие, конечно, но довольно дорогие, то теперь на рынке появляется все больше моделей, обладающих порой даже более высокими характеристиками и к тому же позволяющих сэкономить ощутимую сумму.

Как устроена электронно-лучевая трубка

Электронно-лучевая трубка (ЭЛТ; Cathode Ray Tube, или CRT) - это традиционная технология формирования изображения на «дне» герметично запечатанной стеклянной «бутылки». Мониторы получают сигнал от компьютера и преобразуют его в форму, воспринимаемую электронно-лучевой пушкой, расположенной в «горлышке» огромной колбы. Пушка «стреляет» в нашу сторону, а широкое дно (куда мы, собственно, и смотрим) состоит из «теневой маски» и люминесцентного покрытия, на котором создается изображение. Электромагнитные поля управляют пучком электронов: отклоняющая система изменяет направление потока частиц таким образом, что они достигают нужного места на экране, проходя через теневую маску, падают на фосфоресцирующую поверхность и формируют изображение (активизированный электронным лучом участок экрана испускает свет, видимый глазом; рис.1). Такая технология называется «эмиссионной».Экран монитора представляет собой матрицу, состоящую из гнезд-триад, определенной структуры и формы (зависящей от конкретной технологии изготовления - см. далее). Каждое такое гнездо состоит из трех элементов (точек, полос или других структур), формирующих RGB-триаду, в которой основные цвета располагаются настолько близко друг к другу, что отдельные элементы неразличимы для глаза.

Таким образом, электронно-лучевые трубки, используемые в современных мониторах, имеют следующие основные элементы:

  • электронные пушки (по одной на каждый цвет RGB-триады или одну, но испускающую три пучка);
  • отклоняющую систему, то есть набор электронных «линз», формирующих пучок электронов;
  • теневую маску, обеспечивающую точное попадание электронов от пушки каждого цвета в «свои» точки экрана;
  • слой люминофора, формирующий изображение при попадании электронов в точку соответствующего цвета.

С этими элементами и связана непрерывная борьба производителей за качество изображения.

Электронная пушка состоит из подогревателя, катода, испускающего поток электронов, и модулятора, ускоряющего и фокусирующего электроны.

В современных кинескопах применяются оксидные катоды, в которых электроны испускаются эмиссионным покрытием из редкоземельных элементов, нанесенным на никелевый колпачок с расположенной внутри него нитью накала. Подогреватель обеспечивает нагревание катода до температуры 850-880 °C, при которой и происходит испускание (эмиссия) электронов с поверхности катода. Остальные электроды трубки используются для ускорения и формирования пучка электронов.

Соответственно каждая из трех электронных пушек создает пучок электронов для формирования своего цвета. При этом различают ЭЛТ с дельтовидным и планарным расположением пушек.

В случае дельтовидного расположения электронные пушки размещаются в вершинах равностороннего треугольника под углом 1° к оси кинескопа.

Ошибка в значении угла наклона не должна превышать 1’. Наклон пушек выбирается таким образом, чтобы электронные лучи пересекались в некоторой точке (точке схождения) и дальше, расходясь на определенный угол, образовывали на маске небольшой круг, в пределах которого одновременно может находиться только одно отверстие теневой маски и одна RGB-триада (три точки люминофора основных цветов). Соответственно точки люминофора при этом также располагают по вершинам равностороннего треугольника, образующего эту триаду. Центр каждого отверстия в теневой маске расположен напротив оси симметрии данной триады точек люминофора.

Электронные лучи, расходясь после теневой маски, попадают на точки люминофора соответствующего цвета и заставляют их светиться.

Теневая маска

Электронный луч достигает экрана, пройдя через теневую маску, которая может иметь различную (точечную или линейную) структуру. Теневая маска, выполненная из тонкого сплава, направляет электронный луч на флуоресцирующий материал определенного цвета.

При этом маска задерживает 70-85% всех электронов, испускаемых катодами, в результате чего она нагревается до высокой температуры.

Раньше маски изготавливали из сплавов на основе железа, и при сильном нагревании они деформировались, в результате чего отверстия смещались относительно триад люминофора. Для компенсации смещений маска крепилась к экрану при помощи системы «замков» из материала со специально подобранным коэффициентом температурного расширения; при нагревании эти «замки» перемещали маску вдоль оси ЭЛТ в сторону экрана.

В современных моделях применяется теневая маска из инвара - специального сплава с оченьнебольшим коэффициентом температурного расширения, поэтому смещение масок при нагреве остается минимальным.

В кинескопах с планарным расположением пушек используются щелевые маски, а люминофор трех основных цветов наносится на экран в виде вертикальных чередующихся полосок таким образом, чтобы одному щелевидному отверстию соответствовала своя RGB-триада. В таких ЭЛТ все три электронные пушки соосны друг другу, расположены в одной вертикальной плоскости и наклонены под небольшим углом к горизонтальной плоскости. Такое расположение в значительной мере позволяет скомпенсировать воздействие на пучки электронов магнитного поля Земли и упростить сведение лучей.

Расходясь после точки схождения, лучи образуют эллипс, охватывающий одновременно только одно отверстие щелевой маски и соответственно три находящиеся за ней полоски люминофора. Отверстие щелевой маски находится напротив средней (зеленой) полоски люминофора.

Отношение площади отверстий к общей площади маски в электронно-лучевых трубках такого типа значительно выше, чем у теневой маски, поэтому та же яркость свечения может быть достигнута при значительно меньшей мощности электронных пучков и, следовательно, срок службы таких кинескопов существенно больше.

Экран монитора

По достижении поверхности экрана луч взаимодействует с ним, при этом энергия электронов преобразуется в световую. Экран представляет собой обладающую особыми оптическими свойствами стеклянную поверхность, на которой распылен специальный фосфоресцирующий материал. Высокое качество изображения достигается правильным выбором материалов и технологии. Фосфоресцирующий материал должен обеспечивать требуемую энергетическую эффективность, разрешающую способность, долговечность, точную цветопередачу и послесвечение.

Антибликовая панель (AR panel)

Для минимизации отражающих свойств экрана используются специальные антибликовые панели. Не ухудшая изображения, они ослабляют блики, а также уменьшают электромагнитное излучение монитора. Однако, ввиду высокой стоимости таких панелей, они используются в дорогих мониторах с большим разрешением, например в 21-дюймовых. В последнее время вместо антибликовой панели на мониторах с диагональю 21 дюйм и меньше используют антибликовое покрытие. Такое покрытие, как и панели, ограничивает излучение в соответствии со стандартами ТСО. Новые технологии позволяют перейти к коммерческому использованию мониторов с антибликовым покрытием.

Антистатическое покрытие

Антистатическое покрытие экрана обеспечивается с помощью напыления специального химического состава для предотвращения накопления электростатического заряда. Оно требуется в соответствии с рядом стандартов по безопасности и эргономике, в том числе MPR II.

Светопередача монитора

Отношение полезной световой энергии, прошедшей через переднее стекло монитора, к излученной внутренним фосфоресцирующим слоем называется коэффициентом светопередачи. Как правило, чем темнее выглядит экран при выключенном мониторе, тем ниже этот коэффициент. При высоком коэффициенте светопередачи для обеспечения требуемой яркости изображения требуется небольшой уровень видеосигнала и упрощаются схемотехнические решения. Однако при этом уменьшается перепад между излучающими участками и соседними, что влечет за собой ухудшение четкости и снижение контрастности изображения и, как следствие, - ухудшение его общего качества. В свою очередь, при низком коэффициенте светопередачи улучшаются фокусировка изображения и качество цвета, однако для получения достаточной яркости требуется мощный видеосигнал и усложняется схема монитора. Обычно 17-дюймовые мониторы имеют коэффициент светопередачи 52-53%, а 15-дюймовые - 56-58%, хотя в зависимости от конкретно выбранной модели эти значения могут варьироваться. Поэтому при необходимости определения точного значения коэффициента светопередачи следует обращаться к документации производителя.

Горизонтальная развертка

Время горизонтального перемещения луча от левого до правого края экрана называется периодом горизонтальной развертки. Величина, обратно пропорциональная этому периоду, называется частотой горизонтальной развертки, или просто горизонтальной разверткой (иногда встречаются названия «частота строчной развертки», или «строчная частота»), и измеряется в килогерцах (кГц). Например, для монитора с разрешением 1024 x 768 пикселов горизонтальная развертка обратно пропорциональна времени, за которое луч сканирует 1024 пиксела. При увеличении разрешающей способности за тот же период времени лучом должно быть отсканировано большее число пикселов. При увеличении частоты кадров частота горизонтальной развертки также должна быть увеличена.

Вертикальная развертка, или частота кадров

Монитор с электронно-лучевой трубкой обновляет изображение на экране десятки раз в секунду. Это число называется частотой вертикальной развертки, или частотой обновления экрана, и измеряется в герцах (Гц).

Монитор с вертикальной разверткой 60 Гц имеет такую частоту мерцания, как лампа дневного света в США (несколько выше, чем в Европе, где частота сети 50 Гц). Обычно при частотах выше 75 Гц мерцание незаметно для глаза (режим без мерцания). Стандарт VESA рекомендует работу на частоте 85 Гц, считая это важным потребительским показателем эргономичности монитора.

Расчет частоты горизонтальной развертки исходя из частоты кадров: Горизонтальная развертка = (число строк) x (вертикальная развертка) x 1,05. Например, требуемая горизонтальная развертка при вертикальной частоте 85 Гц и разрешении 1024 x 768 составляет: 768 x 85 x 1,05 = 68 500 Гц = = 68,5 кГц.

Разрешение

Разрешающая способность характеризует качество воспроизведения изображения монитором. Для получения высокого разрешения в первую очередьвысококачественным должен быть видеосигнал. Электронные цепи должны обработать его таким образом, чтобы обеспечить правильные уровни и сочетания фокусировки, цвета, яркости и контраста. Разрешающая способность характеризуется числом точек, или пикселов (dot) на число строк (line). Например, разрешение монитора 1024 x 768 означает возможность различить до 1024 точек по горизонтали при числе строк до 768.

Частота пикселов

Например, если горизонтальное разрешение 820 точек, а период отображения данных по горизонтали 10,85 нс = 10,85 x 10-6 с, то требуется частота пикселов (pixel rate) примерно 76 МГц. Монитор с высоким разрешением может выводить на экран в 24 раза больше информации, нежели телевизор.

Контраст, равномерность

Контраст характеризует яркость экрана по сравнению с темной зоной в отсутствие видеосигнала. Контраст можно настроить регулировкой «Усиление», воздействуя на входной видеосигнал.

Под равномерностью понимается постоянство уровня яркости по всей поверхности экрана монитора, которое обеспечивает пользователю комфортные условия для работы. Временная неравномерность цвета может быть устранена размагничиванием экрана. Принято различать «равномерность распределения яркости» и «равномерность белого».

Сведение: статическое, динамическое

Для получения четкого изображения и чистых цветов на экране монитора красный, зеленый и синий лучи, исходящие из всех трех электронных пушек, должны попадать в точно заданное место на экране. Термин «несведение лучей» означает отклонение красного и синего от центрирующего зеленого.

Под статическим несведением понимается несведение трех цветов (RGB), одинаковое на всей поверхности экрана, вызванное незначительной погрешностью при сборке электронной пушки. Изображение на экране может быть откорректировано регулировкой статического сведения.

В то время как в центре экрана монитора изображение остается четким, на его краях может проявиться несведение. Оно вызывается ошибками в обмотках или при их установке и может быть устранено с помощью магнитных пластин.

Динамическая фокусировка

Электронный луч, если не предприняты специальные меры, расфокусируется (увеличивается в диаметре) по мере удаления его от центра экрана. Для компенсации искажения формируется специальный компенсирующий сигнал. Величина компенсирующего сигнала зависит от свойств ЭЛТ и ее отклоняющей системы. Чтобы устранить смещение фокуса, вызванное различием в путях пробега луча (расстоянии) от электронно-лучевой пушки до центра и до краев экрана, требуется увеличивать напряжение с ростом отклонения луча от центра с помощью высоковольтного трансформатора, как показано на рис. 4.

Чистота изображения

Чистота и четкость изображения достигается, когда каждый из электронных лучей RGB падает на поверхность экрана в строго определенной точке. Отсюда следует, что требуется выверенная взаимосвязь между электронной пушкой, отверстиями теневой маски и точками фосфоресцирующей поверхности (люминофора) экрана. Нарушение чистоты и четкости изображения могут быть обусловлены следующими причинами:

  • наклоном электронной пушки или смещением луча;
  • смещением центра пушки вперед или назад;
  • отклонением луча, вызванным влиянием внешних магнитных полей, включая магнитное поле Земли.

Мерцание

Монитору свойственно мерцание. Оно связано с тем, что по истечении определенного времени происходит ослабление излучения света фосфором. Чтобы поддерживать свечение, экран должен быть подвержен периодическому воздействию луча от электронно-лучевой трубки. Мерцание становится заметным, если интервал времени между воздействиями слишком велик или недостаточно время послесвечения фосфоресцирующего вещества экрана.

Эффект мерцания может также усугубляться ярким экраном и большим углом зрения к нему. Устранению мерцания как проблеме эргономики в последнее время уделяется все больше внимания - мерцание экрана, таким образом, становится ключевым коммерческим показателем товара. Уменьшение мерцания достигается увеличением частоты регенерации (обновления) экрана на каждом уровне разрешения. Стандарт VESA рекомендует использовать частоту не менее 85 Гц.

Дрожание (Jitter)

Дрожание изображения возникает вследствие высокочастотных вибраций отверстий маски монитора, вызванных как взаимовлиянием сети, сигналов видео, смещения, блока управления микропроцессорными цепями, так и неправильной организацией заземления. Термин «дрожание» относится к колебаниям с частотами выше 30 Гц. При частотах от 1 до 30 Гц чаще употребляют термин «плавание», а ниже 1 Гц - «дрейф». Дрожание в той или иной степени свойственно всем мониторам. Хотя незначительное дрожание может остаться для пользователя незаметным, оно все же вызывает утомление глаз и должно быть отрегулировано. В части 3 ISO 9241 (Предписания по эргономике) допускается диагональное отклонение точки не более 0,1 мм.

Классификация мониторов по типу маски

Современные мониторы с любой маской имеют практически плоскую форму экрана, благодаря которой существенно снижаются искажения геометрии, особенно по углам. Поэтому тип маски по форме экрана определить не так просто.

На сегодняшний день в ЭЛТ-дисплеях используются три основные технологии формирования матриц и масок для RGB-триад:

  • трехточечная теневая маска (DOT-TRIO SHADOW-MASK CRT);
  • щелевая апертурная решетка (APERTURE-GRILLE CRT);
  • гнездовая маска (SLOT-MASK CRT).
Тип маски можно определить, посмотрев на экран в 10-20-кратную лупу. Однако при создании мониторов помимо масок используются различные отклоняющие системы и другая электроника. Хотя сам экран и является наиболее важным фактором, определяющим эксплуатационные параметры дисплея, отклоняющая система и видеоусилитель также играют важную роль. Поэтому не следует думать, что при использовании одного и того же типа матрицы изготовители получают мониторы с одинаковыми параметрами.

Изготовители различных моделей говорят о больших преимуществах именно своей технологии, но тот факт, что на рынке предлагается несколько моделей и, кроме того, многие производители мониторов выпускают модели с различными типами матриц, показывает, что однозначного выбора не бывает. Предпочтения определяются только вкусами пользователя и его задачами.

ЭЛТ-мониторы с трехточечной теневой маской

Наиболее старая и широко используемая технология с так называемой теневой маской использует перфорированную металлическую пластину, помещаемую перед люминофором. Она маскирует три отдельных луча, каждый из которых управляется собственной электронной пушкой. Маскирование обеспечивает необходимую концентрацию каждого луча и обеспечивает его попадание только на нужный цветовой участок люминофора. Однако практика показывает, что ни один из мониторов не обеспечивает идеального выполнения этой задачи по всей поверхности экрана.

Ранние ЭЛТ-дисплеи с теневой маской имели выраженную криволинейную (сферическую) поверхность. Это позволяло добиваться лучшей фокусировки и уменьшало нежелательные эффекты и отклонения, вызываемые нагревом. В настоящее время большинство профессиональных и специализированных мониторов имеет практически плоский прямоугольный экран (типа FST).

Мониторы с теневой маской имеют свои преимущества:

  • текст выглядит лучше (особенно при малом размере точек);
  • цвета «натуральнее» и точнее (что особенно важно для компьютерной графики и в полиграфии);
  • отлаженная технология обеспечивает лучшее соотношение стоимости и эксплуатационных качеств.

Из недостатков можно отметить меньшую яркость таких мониторов, недостаточную контрастность изображения и более короткий срок службы, по сравнению с другими типами дисплеев.

ЭЛТ-мониторы с щелевой апертурной решеткой

Новую технологию изготовления CRT-дисплеев - с апертурной решеткой вместо традиционной точечной маски - впервые предложила фирма Sony, выпустив мониторы с трубкой Trinitron. В электронных пушках этих трубок используются динамические квадрупольные магнитные линзы, позволяющие формировать очень тонкий и точно направленный пучок электронов.

Благодаря такому решению значительно снижается астигматизм - рассеивание электронного пучка, приводящее к недостаточной резкости и контрастности изображения (особенно по горизонтали). Но главное отличие от технологии с теневой маской здесь состоит в том, что вместо металлической пластины с круглыми отверстиями, выполняющей функции маски, здесь используется вертикальная проволочная сетка (апертурная решетка) и люминофор наносится не в виде точек, а в виде вертикальных полос.

Мониторы с апертурной решеткой имеют следующие преимущества:

  • в тонкой сетке меньше металла, что позволяет использовать больше энергии электронов на реакцию с люминофором, а значит, меньше рассеивается на решетке и уходит в тепло;
  • увеличенная площадь покрытия люминофором позволяет повысить яркость излучения при той же интенсивности пучка электронов;
  • в связи со значительным общим повышением яркости можно использовать более темное стекло и получать на экране более контрастное изображение;
  • экран монитора с апертурной решеткой более плоский, чем у дисплеев с теневой маской, а в последних моделях даже не цилиндрический, как раньше, а почти абсолютно ровный, что гораздо удобнее в работе и уменьшает количество бликов и отражений.

Из недостатков можно отметить только «неприятные» горизонтальные нити - ограничители, используемые в таких мониторах для придания проволочной сетке дополнительной жесткости. Хотя проволочки в апертурной решетке туго натянуты, в процессе работы они могут вибрировать под воздействием пучков электронов. Демпферная нить (а в экранах больших размеров - две нити) служит для ослабления колебаний и гашения вибрации. По этим нитям мониторы с трубкой Trinitron можно отличить от других моделей. Кроме того, если в процессе работы такого монитора его слегка качнуть, колебания изображения будут видны даже невооруженным глазом. Именно поэтому мониторы с этими трубками не рекомендуется ставить на системные блоки типа desktop.

Остается добавить, что в электронно-лучевых трубках Sony Trinitron используется система трех пучков электронов, излучаемых одной пушкой, а в трубках с подобной апертурной решеткой компании Mitsubishi - Diamondtron - система из трех лучей с тремя пушками.

ЭЛТ-мониторы с гнездовой маской

И, наконец, последний, комбинированный тип электронно-лучевой трубки, так называемый CromaСlear/OptiClear (впервые предложенный фирмой NEC) - это вариант теневой маски, в которой используются не круглые отверстия, а щели, как в апертурной решетке, только короткие - «пунктиром», и люминофор наносится в виде таких же эллиптических полосок, а полученные таким образом гнезда для большей равномерности расположены в «шахматном» порядке.

Такая гибридная технология позволяет сочетать все преимущества вышеописанных типов при отсутствии их недостатков. Четкий и ясный текст, натуральные, но достаточно яркие цвета и высокая контрастность изображения неизменно привлекают к этим мониторам все группы пользователей.

В статье использованы некоторые материалы с русскоязычного Web-сайта компании Samsung Electronics (http://www.samsung.ru).

КомпьютерПресс 5"2000

Поговорим о мониторах - ЖК и ЭЛТ, о том что лучше. Раньше, когда еще были черно-белые выпуклые мониторы - то работа за компьютером для глаз всегда была небезопасной. Но сейчас время изменилось и прогресс мониторов виден невооруженным глазом.

  • Сравнение ЖК и ЭЛТ
  • Сегодня мониторы уже очень изменились, они стали совсем другие - на смену ЭЛТ пришли ЖК мониторы, они не большие по сравнению с ЭЛТ и на столе уже не занимают огромного места. А также они меньше потребляют электричества. Но что лучше сегодня, ЭЛТ или ЖК? Обычные пользователи хором ответят что ЖК, но так ли на самом деле?

    Монитор, как много в этом слове, часто мы именно на него смотрим больше времени чем на родных или детей, поэтому к сожалению к выбору монитора необходимо подойти очень серьезно и ответственно.

    ЭЛТ или электронно-лучевая трубка

    ЭЛТ монитор представляет из себя стеклянную трубку, которая заполнена вакуумом. Фронтальной частью монитора выступает люминофор. Для люминофора выступают сложные составы на основе редкоземельных металлов, таких как иттрия, эрбия. Если простыми словами, то люминофор это вещество, которые образует свет, когда на него подают заряженные частицы. Чтобы ЭЛТ-монитор выводил изображение, используется электронная пушка, она пропускает поток электронов через металлическую маску (решетку) на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками.

    Если взять к примеру новый монитор ЭЛТ типа, то конечно он будет показывать очень хорошо (при необходимости изображение можно корректировать). У ЭЛТ монитора есть одна сильная сторона, которой обладают только дорогие ЖК — это цветопередача. Как ни крути, но у ЭЛТ она куда лучше, чем у ЖК. Только IPS матрицы в ЖК мониторах позволяют сравнятся с цветопередачей ЭЛТ.

    В обычных ЭЛТ-мониторах используются три электронные пушки, когда в старых, еще черно-белых была задействована только одна.

    Человеческий глаз может реагировать только на три основных цвета, это красный, синий и зеленый и на их комбинации, они и создают огромное количество цветов или оттенков. Фронтальная часть монитора составляет люминофор, а вернее его слой, и он состоит из точек - настолько маленьких, что их почти невозможно разглядеть. Именно они в прямом смысле воспроизводят основные цвета RGB.

    RGB (Red, Green, Blue) - аддитивная цветовая модель, которая описывает метод синтеза цвета для цвето-воспроизведения.

    Кроме электронно-лучевой трубки, также присутствует электроника, при помощи которой обрабатывается поступающий сигнал от видеокарты компьютера. Электроника занимается оптимизацией выводимого изображения - усиливает сигнал и стабилизирует, именно поэтому на мониторе картинка стабильная, даже если сигнал нестабильный.

    Минусом ЭЛТ-мониторов является то, что они вредны на глаза, а также много берут света. И при этом, со временем они мутнеют, сегодня почти не найти монитора ЭЛТ который показывает так, как ЖК, а если он еще и больше 17-ти дюймов то его «мыльность» будет заметна сразу.

    ЖК или жидкокристаллические мониторы

    Жидкие кристаллы, на которых основаны ЖК-мониторы, характеры переходным состоянием вещества между твердым и жидким, при этом сохраняется кристаллическая структура молекул и обеспечивается текучесть. Матрица такого монитора действительно в некотором смысле жидкая, к примеру если вы легко надавите пальцем по работающему монитору, то вы увидите как смещается жидкость, которая находится внутри. Это жидкокристаллический раствор. Сперва жидкие кристаллы использовались в дисплеях калькуляторов, а также цифровых часов, затем уже перешли на КПК и мониторы компьютеров.

    Сегодня уже не почти, а полностью ЭЛТ вытеснены ЖК-мониторами.

    ЖК - это две панели, они сделаны из очень тонкого и чистого стекла (подложка), между этими панелями - тонкий слой жидких кристаллов (называемые пикселями), они и участвуют в построении изображения. В отличии от ЭЛТ-мониторов, у ЖК есть такое понятие как «родное» разрешение - это то, на котором монитор желательно чтобы работал. Именно такое расширение позволит монитору выводи картинку наиболее качественно. Если выставить другое расширение, то изображение будет или вытянуто (резкость ухудшается, присутствуют небольшие искажения), или наоборот - будет изменено расширение, но часть экрана будет заполнена черным цветом, чтобы сохранить качество.

    Контрастность мониторов определяется соотношением яркостей между белым (как самым ярким) и черным (самый темный) цветом. Хороший показатель - 120:1. Точно изображение полутонов способны дать мониторы с контрастностью 300:1.

    Сравнение ЖК и ЭЛТ

    ЖК мониторы хороши тем, что они полностью плоские, картинка более четкая чем у ЭЛТ-монитора, и насыщенность цветом также может быть выше. Отсутствуют любые искажения, а также вечная проблема «мыла» (мутное изображение) - все это отсутствует у «тонких» мониторов, чем они и идут впереди ЭЛТ.

    Вот на этой картинке дополнительная информация о разнице мониторов, но интересно то, что картинка немного мутная, размытая, вот именно так сейчас показывают многие ЭЛТ мониторы (так как новые не выпускают уже и они старые):

    Поэтому можно сделать выводы, что ЖК монитор - лучше, и ЭЛТ не просто так ушли в прошлое, но если есть возможность то покупайте дорогой монитор, они менее вредны для глаз при длительной работе за компьютером.

    Вот вам на заметку. Многие 15-дюймовые ЖК мониторы в работающем режиме потребляют около 20-40 ватт (в режиме ожидания меньше 5-ти ватт), можете это сравнить с 17-дюймовым ЭЛТ монитором, который в работе потребляет от 90 до 120 ватт (в режиме ожидании — 15 ватт). Можете представить? Я вам еще посчитаю — если монитор будет работать примерно восемь часов в день и так всю рабочую неделю, то в год 17-ти дюймовый ЭЛТ будет потреблять 300 кВт, это учитывая режим ожидания в час-два, в то время как 15-ти дюймов ЖК — 60 кВт (17 дюймов не думаю что будет намного больше). Это для вас мелочи, но если в компании компьютеров сто, двести, триста — то есть повод задуматься о новом типе монитора.

    Но есть и сильные стороны у ЭЛТ мониторов, как правило они интересны по большой части дизайнерам - цветопередача. Если вы поработаете некоторое время за ЖК, а потом посмотрите на ЭЛТ, то вы хорошо заметите разницу между цветопередачей и обьемностью изображения.

    УСТРОЙСТВА ОТОБРАЖЕНИЯ ИНФОРМАЦИИ

    Мониторы

    К устройствам отображения информации относятся прежде все­го мониторы, а также устройства, ориентированные на решение мультимедийных или презентационных задач: устройства форми­рования объемных (стереоскопических) изображений и проекто­ры.

    Монитор является важнейшим устройством отображения ком­пьютерной информации. Типы современных мониторов отлича­ются большим разнообразием. По принципу действия все монито­ры для ПК можно разделить на две большие группы:

    · на основе электронно-лучевой трубки (ЭЛТ), называемой ки­нескопом;

    · плоскопанельные, выполненные в основном на основе жид­ких кристаллов.

    Мониторы на основе ЭЛТ

    Мониторы на основе ЭЛТ - наиболее распространенные уст­ройства отображения информации. Используемая в этом типе мо­ниторов технология была разработана много лет назад и первона­чально создавалась в качестве специального инструментария для измерения переменного тока, т.е. для осциллографа.

    Конструкция ЭЛТ-монитора представляет собой стеклянную трубку, внутри которой находится вакуум. С фронтальной сторо­ны внутренняя часть стекла трубки покрыта люминофором. В ка­честве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и др. Люминофор - это вещество, которое испускает свет при бомбардировке его заряженными частицами. Для создания изображения в ЭЛТ-мониторе используется электронная пушка, которая испускает поток электронов сквозь металлическую маску или решетку на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точ­ками. Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, т. е. поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение на мониторе. Как правило, в цветном ЭЛТ-мониторе используются три электронные пушки, в отличие от одной пушки, применяемой в монохромных мони­торах.

    На пути пучка электронов обычно находятся дополнительные электроды: модулятор, регулирующий интенсивность пучка элек­тронов и связанную с ней яркость изображения; фокусирующий электрод, определяющий размер светового пятна; размещенные на основании ЭЛТ катушки отклоняющей системы, которые из­меняют направление пучка. Любое текстовое или графическое изоб­ражение на экране монитора состоит из множества дискретных точек люминофора, называемых пикселами и представляющих со­бой минимальный элемент изображения-растра.

    Формирование растра в мониторе производится с помощью специальных сигналов, поступающих на отклоняющую систему. Под действием этих сигналов производится сканирование луча по поверхности экрана по зигзагообразной траектории от левого верх­него угла до правого нижнего, как показано на рис. 4.1. Ход луча по горизонтали осуществляется сигналом строчной (горизонталь­ной) развертки, а по вертикали - кадровой (вертикальной) раз­вертки. Перевод луча из крайней правой точки строки в крайнюю левую точку следующей строки (обратный ход луча по горизонта­ли) и из крайней правой позиции последней строки экрана в крайнюю левую позицию первой строки (обратный ход луча по вертикали) производится посредством специальных сигналов об­ратного хода. Мониторы такого типа называются растровыми. Элек­тронный луч в этом случае периодически сканирует экран, обра­зуя на нем близко расположенные строки развертки. По мере дви­жения луча по строкам видеосигнал, подаваемый на модулятор, изменяет яркость светового пятна и образует видимое на экране изображение. Разрешающая способность монитора определяется числом элементов изображения, которые он способен воспроизводить по горизонтали и вер­тикали, например, 640x480 или 1024 х 768 пикселов.


    В отличие от телевизора, где ви­деосигнал, управляющий яркостью электронного пучка, является ана­логовым, в мониторах ПК исполь­зуются как аналоговые, так и циф­ровые видеосигналы. В связи с этим мониторы для ПК принято разде­лять на аналоговые и цифровые. Пер­выми устройствами отображения информации ПК были цифровые мониторы.

    В цифровых мониторах управление осуществляется двоичными сигналами, которые имеют только два значения: логическая 1 и логический 0 («да» и «нет»). Уровню логической единицы соответ­ствует напряжение около 5 В, уровню логического нуля - не бо­лее 0,5 В. Поскольку те же уровни «1» и «0» используются в широ­ко распространенной стандартной серии микросхем на основе транзисторно-транзисторной логики (TTL - Transistor Transistor Logic - транзисторно-транзисторная логика), цифровые монито­ры называют TTL-мониторами.

    Первые TTL-мониторы были монохромными, впоследствии появились цветные. В монохромных цифровых мониторах точки на экране могут быть только светлыми или темными, различаясь яр­костью. Электронно-лучевая трубка монохромного монитора име­ет только одну электронную пушку; она меньше цветных ЭЛТ, благодаря чему монохромные мониторы компактнее и легче дру­гих. Кроме того, монохромный монитор работает с более низким анодным напряжением, чем цветной (15 кВ против 21 - 25 кВ), поэтому потребляемая им мощность значительно ниже (30 Вт вме­сто 80 - 90 Вт у цветных).

    В кинескопе цветного цифрового монитора содержатся три элек­тронные пушки: для красного (Red), зеленого (Green) и синего (Blue) цветов с раздельным управлением, поэтому его называют RGB-монитором.

    Цифровые RGB-мониторы поддерживают и монохромный ре­жим работы с отображением до 16 градаций серого цвета.

    Аналоговые мониторы, так же как и цифровые, бывают цвет­ными и монохромными, при этом цветной монитор может рабо­тать в монохромном режиме.

    Главная причина перехода к аналоговому видеосигналу со­стоит в ограниченности палитры цветов цифрового монитора. Аналоговый видеосигнал, регулирующий интенсивность пучка электронов, может принимать любое значение в диапазоне от 0 до 0,7 В. Поскольку этих значений бесконечно много, палитра ана­логового монитора неограничена. Однако видеоадаптер может обеспечить только конечное количество градаций уровня видео­сигнала, что в итоге ограничивает палитру всей видеосистемы в целом.

    Для понимания принципа формирования растра цветных мони­торов следует представлять механизм цветового зрения. Свет - это электромагнитные колебания в определенном диапазоне длин волн. Человеческий глаз способен различать цвета, соответствую­щие различным областям спектра видимого излучения, который занимает лишь незначительную часть общего спектра электромаг­нитных колебаний в диапазоне длин волн от 0,4 до 0,75 мкм.

    Совокупное излучение длин волн всего видимого диапазона воспринимается глазом как белый свет. Глаз человека имеет рецепторы трех типов, ответственные за восприятие цвета и разли­чающиеся своей чувствительностью к электромагнитным колеба­ниям различных длин волн. Одни из них реагируют на фиолетово-синий, другие - на зеленый, третьи - на оранжево-красный цвет. Если на рецепторы свет не попадает, глаз человека воспринимает черный цвет. Если все рецепторы освещаются одинаково, человек видит серый или белый цвет. При освещении объекта часть света отражается от него, а часть поглощается. Плотность цвета опреде­ляется количеством поглощенного объектом света в данном спек­тральном диапазоне. Чем плотнее цветовой слой, тем меньше све­та отражается и, как следствие, более темным получается оттенок цвета (тон).

    Физиологические особенности цветового зрения исследовались М. В. Ломоносовым. В основу разработанной им теории цветового зрения положен экспериментально установленный факт, что все цвета могут быть получены путем сложения трех световых потоков с высокой насыщенностью, например, красного, зеленого и си­него, называемых основными или первичными.

    Обычно световое излучение возбуждает все рецепторы челове­ческого глаза одновременно. Зрительный аппарат человека анализи­рует свет, определяя в нем относительное содержание различных излучений, а затем в мозгу происходит их синтез в единый цвет.

    Благодаря замечательному свойству глаза - трехкомпонент-ности цветного восприятия - человек может различать любой из цветовых оттенков: достаточно информации только о количественном соотношении интенсивностей трех основных цве­тов, поэтому нет необходимости в непосредственной передаче всех цветов. Таким образом, благодаря физиологическим особенностям цветового зрения, значительно сокращается объем информации о цвете и упрощаются многие технологические решения, связан­ные с регистрацией и обработкой цветных изображений.

    Еще одним важным свойством цветового зрения является про­странственное усреднение цвета, которое заключает­ся в том, что если на цветном изображении имеются близко рас­положенные цветные детали, то с большого расстояния цвета отдельных деталей неразличимы. Все близко расположенные цвет­ные детали будут выглядеть окрашенными в один цвет. Благодаря этому свойству зрения в электронно-лучевой трубке монитора фор­мируется цвет одного элемента изображения из трех цветов рас­положенных рядом люминофорных зерен.

    Указанные свойства цветового зрения использованы при раз­работке принципа действия ЭЛТ цветного монитора. В электрон­но-лучевой трубке цветного монитора расположены три элект­ронные пушки с независимыми схемами управления, а на внут­реннюю поверхность экрана нанесен люминофор трех основных цветов: красного, синего и зеленого.

    Рис. 4.2. Схема образования цветов на экране монитора

    На рис. 4.2 представлена схема образования цветов на экране монитора. Электронный луч каждой пушки возбуждает точки лю­минофора, и они начинают светиться. Точки светятся по-разному и представляют собой мозаичное изображение с чрезвычайно ма­лыми размерами каждого элемента. Интенсивность свечения каж­дой точки зависит от управляющего сигнала электронной пушки. В человеческом глазу точки с тремя основными цветами пересека­ются и накладываются друг на друга. Изменением соотношения интенсивностей точек трех основных цветов получают требуемый оттенок на экране монитора. Для того чтобы каждая пушка на­правляла поток электронов только на пятна люминофора соот­ветствующего цвета, в каждом цветном кинескопе имеется спе­циальная цветоделительная маска.

    В зависимости от расположения электронных пушек и конст­рукции цветоделительной маски (рис. 4.3) различают ЭЛТ четы­рех типов, используемые в современных мониторах:

    · ЭЛТ с теневой маской {Shadow Mask) (см. рис. 4.3, а) наибо­лее распространены в большинстве мониторов, производимых LG, Samsung, Viewsonic, Hitachi, Belinea, Panasonic, Daewoo, Nokia;

    · ЭЛТ с улучшенной теневой маской (EDP - Enhenced Dot Pitch) (см. рис. 4.3, 6);

    · ЭЛТ со щелевой маской (Slot Mask) (см. рис. 4.3, в), в которой люминофорные элементы расположены в вертикальных ячейках, а маска сделана из вертикальных линий. Вертикальные полосы разделены на ячейки, содержащие группы из трех люминофорных элементов трех основных цветов. Этот тип маски применяется фирмами NEC и Panasonic;

    · ЭЛТ с апертурной решеткой из вертикальных линий {Aperture Grill) (см. рис. 4.3, г). Вместо точек с люминофорными элемента­ми трех основных цветов апертурная решетка содержит серию нитей, состоящих из люминофорных элементов, выстроенных в виде вертик&тьных полос трех основных цветов. По этой техноло­гии производятся трубки Sony и Mitsubishi.

    Конструктивно теневая маска представляет собой металличе­скую пластину из специального материала, инвара, с системой отверстий, соответствующих точкам люминофора, нанесенным на внутреннюю поверхность кинескопа. Температурная стабилизация формы теневой маски при ее бомбардировке электронным пуч­ком обеспечивается малым значением коэффициента линейного расширения инвара. Апертурная решетка образована системой щелей, выполняющих ту же функцию, что и отверстия в теневой маске.

    Оба типа трубок (с теневой маской и апертурной решеткой) имеют свои преимущества и области применения. Трубки с тене­вой маской дают более точное и детализированное изображение, поскольку свет проходит через отверстия в маске с четкими кра­ями. Поэтому мониторы с такими ЭЛТ рекомендуется использо­вать при интенсивной и длительной работе с текстами и мелкими элементами графики. Трубки с апертурной решеткой имеют более ажурную маску, они меньше заслоняют экран и позволяют полу­чить более яркое, контрастное изображение в насыщенных цветах. Мониторы с такими трубками хорошо подходят для настольных издательских систем и других приложений, ориентированных на работу с цветными изображениями.

    Минимальное расстояние между люминофорными элемента-Ми одинакового цвета в теневых масках называется Dot Pitch (шаг точки) и является индексом качества изображения. Шаг точки обычно измеряется в миллиметрах. Чем меньше значение шага точки, тем выше качество воспроизводимого на мониторе изоб­ражения. Среднее расстояние между точками люминофора назы­вается зерном. У различных моделей мониторов данный пара­метр имеет значение от 0,2 до 0,28 мм. В ЭЛТ с апертурной решет­кой среднее расстояние между полосами называется Strip Pitch (шаг п о л о с ы) и измеряется в миллиметрах. Чем меньше вели­чина шага полосы, тем выше качество изображения на мониторе. Нельзя сравнивать размер шага для трубок разных типов: шаг то­чек (или триад) трубки с теневой маской измеряется по диагона­ли, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, - по горизонтали. Поэтому при одинаковом шаге точек трубка с теневой маской имеет большую плотность точек, чем трубка с апертурной решеткой. Для приме­ра: 0,25 мм шага точки приблизительно эквивалентно 0,27 мм шага полосы.

    Помимо электронно-лучевой трубки монитор содержит управ­ляющую электронику, которая обрабатывает сигнал, поступаю­щий напрямую от видеокарты ПК. Эта электроника должна опти­мизировать усиление сигнала и управлять работой электронных пушек.

    Выведенное на экран монитора изображение выглядит стабиль­ным, хотя на самом деле таковым не является. Изображение на экране воспроизводится в результате процесса, в ходе которого свечение люминофорных элементов инициируется электронным лучом, проходящим последовательно по строкам. Этот процесс происходит с высокой скоростью, поэтому кажется, что экран светится постоянно. В сетчатке глаза изображение хранится около 1/20 с. Это означает, что если электронный луч будет двигаться по экрану медленно, глаз воспримет это как отдельную движущуюся яркую точку, но когда луч начинает двигаться с высокой скорос­тью, прочерчивая на экране строку 20 раз в секунду, глаз увидит равномерную линию на экране. Если обеспечить последовательное сканирование лучом экрана по горизонтальным линиям сверху вниз за время меньшее 1/25 с, глаз воспримет равномерно осве­щенный экран с небольшим мерцанием. Движение самого луча происходит настолько быстро, что глаз не в состоянии его заме­тить. Считается, что мерцание становится практически незамет­ным при частоте повторения кадров (проходов луча по всем эле­ментам изображения) примерно 75 раз в секунду.

    Высвеченные пикселы экрана должны продолжать светиться в течение времени, которое необходимо электронному лучу, чтобы просканировать весь экран и вернуться снова для активизации данного пиксела при прорисовке уже следующего кадра. Следова­тельно, минимальное время послесвечения должно быть не мень­ше периода смены кадров изображения, т.е. 20 мс.

    ЭЛТ-мониторы имеют следующие основные характеристики.

    Диагональ экрана монитора - расстояние между левым нижним и правым верхним углом экрана, измеряемое в дюймах. Размер видимой пользователю области экрана обычно несколько мень­ше, в среднем на 1", чем размер трубки. Производители могут указывать в сопровождающей документации два размера диагона­ли, при этом видимый размер обычно обозначается в скобках или с пометкой «Viewable size», но иногда указывается только один размер - размер диагонали трубки. В качестве стандарта для ПК выделились мониторы с диагональю 15", что примерно соответ­ствует 36 - 39 см диагонали видимой области. Для работы в Windows желательно иметь монитор размером, по крайней мере, 17". Для профессиональной работы с настольными издательскими систе­мами (НИС) и системами автоматизированного проектирования (САПР) лучше использовать монитор размером 20" или 21".

    Размер зерна экрана определяет расстояние между ближайши­ми отверстиями в цветоделительной маске используемого типа. Расстояние между отверстиями маски измеряется в миллиметрах. Чем меньше расстояние между отверстиями в теневой маске и чем больше этих отверстий, тем выше качество изображения. Все мониторы с зерном более 0,28 мм относятся к категории грубых и стоят дешевле. Лучшие мониторы имеют зерно 0,24 мм, достигая 0,2 мм у самых дорогостоящих моделей.

    Разрешающая способность монитора определяется количеством элементов изображения, которые он способен воспроизводить по горизонтали и вертикали. Мониторы с диагональю экрана 19"под­держивают разрешение до 1920 х 14400 и выше.

    Тип электронно-лучевой трубки следует принимать во внимание при выборе монитора. Наиболее предпочтительны такие типы кинескопов, как Black Trinitron, Black Matrix или Black Planar. Мо­ниторы этих типов имеют особое люминофорное покрытие.

    Потребляемая мощность монитора указывается в его техниче­ских характеристиках. У мониторов 14" потребляемая мощность не должна превышать 60 Вт.

    Покрытия экрана необходимы для придания ему антибликовых и антистатических свойств. Антибликовое покрытие позво­ляет наблюдать на экране монитора только изображение, форми­руемое компьютером, и не утомлять глаза наблюдением отражен­ных объектов. Существует несколько способов получения анти­бликовой (не отражающей) поверхности. Самый дешевый из них - протравливание. Оно придает поверхности шероховатость. Однако графика на таком экране выглядит нерезко, качество изображе­ния низкое. Наиболее популярен способ нанесения кварцевого покрытия, рассеивающего падающий свет; этот способ реализо­ван фирмами Hitachi и Samsung. Антистатическое покры­тие необходимо для предотвращения прилипания к экрану пыли вследствие накопления статического электричества.

    Защитный экран (фильтр) должен быть непременным атрибу­том ЭЛТ-монитора, поскольку медицинские исследования пока­зали, что излучение, содержащее лучи в широком диапазоне (рент­геновское, инфракрасное и радиоизлучение), а также электро­статические поля, сопровождающие работу монитора, могут весьма отрицательно сказываться на здоровье человека.

    По технологии изготовления защитные фильтры бывают: се­точные, пленочные и стеклянные. Фильтры могут крепиться к передней стенке монитора, навешиваться на верхний край, встав­ляться в специальный желобок вокруг экрана или надеваться на монитор.

    Сеточные фильтры практически не защищают от электромаг­нитного излучения и статического электричества и несколько ухуд­шают контрастность изображения. Однако эти фильтры неплохо ослабляют блики от внешнего освещения, что немаловажно при длительной работе с компьютером.

    Пленочные фильтры также не защищают от статического элект­ричества, но значительно повышают контрастность изображения, практически полностью поглощают ультрафиолетовое излучение и снижают уровень рентгеновского излучения. Поляризационные пленочные фильтры, например фирмы Polaroid, способны пово­рачивать плоскость поляризации отраженного света и подавлять возникновение бликов.

    Стеклянные фильтры производятся в нескольких модификаци­ях. Простые стеклянные фильтры снимают статический заряд, ослабляют низкочастотные электромагнитные поля, снижают интенсивность ультрафиолетового излучения и повышают кон­трастность изображения. Стеклянные фильтры категории «полная защита» обладают наибольшей совокупностью защитных свойств: практически не дают бликов, повышают контрастность изобра­жения в полтора-два раза, устраняют электростатическое поле и ультрафиолетовое излучение, значительно снижают низкочастот­ное магнитное (менее 1000 Гц) и рентгеновское излучение. Эти фильтры изготавливаются из специального стекла.

    Безопасность монитора для человека регламентируется стан­дартами ТСО: ТСО 92, ТСО 95, ТСО 99, предложенными Швед­ской конфедерацией профсоюзов. ТСО 92, выпущенный в 1992 г., определяет параметры электромагнитного излучения, дает опре­деленную гарантию противопожарной безопасности, обеспечива­ет электрическую безопасность и определяет параметры энерго­сбережения. В 1995 г. стандарт существенно расширили (ТСО 95), включив в него требования к эргономике мониторов. В ТСО 99 требования к мониторам еще более ужесточили. В частности, ста­ли жестче требования к излучениям, эргономике, энергосбере­жению, пожаробезопасности. Присутствуют здесь и экологические требования, которые ограничивают наличие в деталях монитора различных опасных веществ и элементов, например тяжелых ме­таллов.

    Срок службы монитора в значительной мере зависит от темпе­ратуры его нагрева при работе. Если монитор очень сильно нагре­вается, можно ожидать, что срок его службы будет невелик. Мо­нитор, корпус которого имеет большое число вентиляционных отверстий, соответственно хорошо охлаждается. Хорошее охлаж­дение препятствует быстрому выходу его из строя.

    Здравствуйте, читатели моего блога, которых заинтересовал ЭЛТ монитор. Я постараюсь, чтобы эта статья была интересна всем, и тем, кто уже не застал их, и тем, у кого данное устройство приятно ассоциируется с первым опытом освоения персонального компьютера.

    Сегодня дисплеи ПК представляют собой плоские и тонкие экраны. Но в некоторых малобюджетных организациях можно встретить и массивные кинескопные мониторы. С ними связана целая эпоха в развитии мультимедийных технологий.

    Свое официальное название ЭЛТ мониторы получили от русской аббревиатуры термина «электронно-лучевая трубка». Английским аналогом которой является фраза Cathode Ray Tube с соответствующим сокращением CRT.

    До того как в домах появились ПК, данный электротехнический прибор был представлен в нашем быту кинескопными телевизорами. Они одно время даже использовались в качестве дисплеев (прикиньте). Но об этом позже, а сейчас давайте немного разберемся в принципе действия ЭЛТ, что позволит нам говорить о таких мониторах на боле серьезном уровне.

    Прогресс кинескопных мониторов

    История развития электронно-лучевой трубки и ее превращение в ЭЛТ мониторы с достойным разрешением экрана насыщена интересными открытиями и изобретениями. Сначала это были приборы типа осциллограф, экраны радаров РЛС. Потом развитие телевидения подарило нам более удобные для просмотра устройства.

    Если говорить конкретно о дисплеях персональных компьютеров, доступных широкому кругу пользователей, то титул первого моника наверное, стоит отдать векторной дисплейной станции IBM 2250. Создали его в 1964 году для коммерческого использования вместе с ЭВМ серии System/360.

    Компании IBM принадлежит много разработок по оснащению ПК мониторами, в том числе и проектирование первых видеоадаптеров, ставших прообразом современных мощных и стандартов передаваемого на дисплей изображения.

    Так, в 1987 увидел свет адаптер VGA (Video Graphics Array) работающий с разрешением 640×480 и соотношением сторон 4:3. Эти параметры оставались базовыми для большинства выпускаемых мониторов и телевизоров до появления широкоформатных стандартов. В процессе эволюции ЭЛТ мониторов происходило множество изменений в технологии их производства. Но я хочу отдельно остановиться на таких моментах:

    Что определяет форма пикселя?

    Зная, как работает кинескоп, мы сможем разобраться в особенностях ЭЛТ мониторов. Луч, выпускаемый электронной пушкой, отклоняется индукционным магнитом, чтобы попасть точно в специальные отверстия в маске, расположенной перед экраном.

    Они формируют пиксель, а их форма определяет конфигурацию цветных точек и качественные параметры получаемой картинки:

    • Классические круглые отверстия, центры которых расположены по вершинам условного равностороннего треугольника образуют теневую маску. Матрица с равномерно распределенными пикселями обеспечивает максимальное качество при воспроизведении линий. И идеально подходит для офисных конструкторских приложений.
    • Для повышения яркости и контрастности экрана компания Sony использовали апертурную маску. Там вместо точек светились расположенные рядом прямоугольные блоки. Это позволяло максимально использовать площадь экрана (мониторы Sony Trinitron, Mitsubishi Diamondtron).
    • Совместить достоинства этих двух технологий удалось в щелевой решетке, где отверстия имели вид округленных сверху и снизу вытянутых прямоугольников. А блоки пикселей смещались относительно друг друга по вертикали. Такая маска применялась в дисплеях NEC ChromaClear, LG Flatron, Panasonic PureFlat;

    Но не только форма пикселя определяла достоинства монитора. Со временем и его размер стал иметь определяющее значение. Он изменялся в пределах от 0,28 до 0,20 мм, и маска с меньшими, более плотными отверстиями позволяла создавать изображения высокого разрешения.

    Важной и, увы, заметной для потребителя характеристикой оставалась частота обновления экрана, выражавшаяся в мерцании изображения. Разработчики старались изо всех сил, и постепенно вместо чувствительных 60 Гц динамика смены выводимой картинки достигла 75, 85 и даже 100 Гц. Последний показатель уже позволял работать с максимальным комфортом и глаза почти не уставали.

    Работая над улучшением качества продолжалась. Разработчики не забывали и о таком неприятном явлении, как низкочастотное электромагнитное излучение. В таких экранах это излучение направленно электронной пушкой прямо на пользователя. Для устранения этого недостатка использовались всевозможные технологии и применялись разные защитные экраны и защитные покрытия для экранов.

    Ужесточались и требования к безопасности мониторов, которые нашли отражение в постоянно обновляемых стандартах: MPR I, MPR II, TCO"92, TCO"95 и TCO"99.

    Монитор, которому доверяют профессионалы

    Работы над постоянным совершенствованием мультимедийной видео техники и технологий со временем привели к появлению цифрового видео высокой четкости. Чуть позже появились тонкие экраны с подсветкой от экономных светодиодных ламп. Эти дисплеи стали воплощением мечты, ведь они:

    • легче и компактней;
    • отличались низким уровнем энергопотребления;
    • намного безопаснее;
    • не имели мерцания даже на более низких частотах (там мерцание другого рода);
    • имели несколько поддерживаемых разъёмов;

    И не специалистам было понятно, что эпоха CRT мониторов завершилась. И казалось, что возврата к этим устройствам уже не будет. Но некоторые профессионалы, знающие все особенности новых и старых экранов, не спешили избавляться от высококачественных ЭЛТ дисплеев. Ведь по некоторым техническим характеристикам они явно выигрывали у своих ЖК конкурентов:

    • отличный угол обзора, позволял читать информацию, располагаясь сбоку от экрана;
    • ЭЛТ технология позволяла без искажений отображать картинку с любым разрешением, даже при использовании масштабирования;
    • понятие неработающих пикселей здесь отсутствует;
    • время инерции остаточного изображения пренебрежительно мало:
    • практически неограниченный диапазон отображаемых оттенков и потрясающая фотореалистичность цветопередачи;

    Именно последние два качества оставили кинескопным дисплеям шанс еще раз проявить себя. И они оказались до сих пор востребованы у игроманов и, особенно, у специалистов, работающих в сфере графического дизайна и обработки фотографий.

    Вот такая длинная и интересная история у старого, доброго друга, называемого ЭЛТ монитор. И если у вас дома или на предприятии еще остался такой, вы можете снова опробовать его в деле и по-новому оценить его качества.

    На этом я прощаюсь с вами, мои дорогие читатели.

    Технологии постоянно совершенствуются, поэтому каждый год появляются новые, современные устройства, в которых достаточно сложно разобраться новичку. Но не стоит забывать и об их «предках». Например, не многие знают, что такое ЭЛТ-монитор, в чём особенности внутренней конструкции и каков его принцип работы.

    Между тем для того чтобы выбирать для себя самую современную и подходящую технику, необходимо знать всю важную информацию о том, как она работает, ведь все новые модели разработаны на основе старых. Всё самое полезное об ЭЛТ-мониторе вы узнаете из данной статьи.

    Что представляет собой ЭЛТ-монитор

    Такой монитор, который иногда называют ещё аббревиатурой CRT, это экран, предназначенный для вывода различных изображений, текста, видео и других файлов. Проще говоря, это привычный нам всем дисплей компьютера, существовавший до появления жидкокристаллических моделей.

    Принцип его работы основывается на применении электронно-лучевой трубки. Первые подобные устройства появились ещё в конце XIX века, но они были мало похожи на то, что мы привыкли называть монитором сейчас.

    Самые первые устройства показывали исключительно чёрно-белое изображение и получили распространение примерно в сороковые годы прошлого века. С тех пор многое изменилось и возможности современных ЖК-экранов просто поражают. Они способны показывать действительно чёткую картинку, которая не притормаживает и не имеет «следов» предыдущего кадра или эффекта «смазанности».

    Кроме того, увеличился и размер дисплеев. Это позволяет сделать использование компьютера ещё более комфортным не только для работы, но и для просмотра фильмов, фотографий и прочих мультимедиа.

    Устройство ЭЛТ-монитора

    Определяющей деталью в этой конструкции является кинескоп, то есть электронно-лучевая трубка . Лучи электронов направляются с помощью специальных катушечек, отклоняющих и фокусирующих. Присутствует также внутренний магнитный экран и теневая маска. Сквозь них направляются лучи и таким образом изображение выводится на экран.

    Цветовая гамма, которая присутствует в каждом дисплее, обеспечивается с помощью особого покрытия, называемого люминофорным. Внутри также имеется хомут с монтажными креплениями, который защищает отдельные элементы конструкции.

    Теперь, когда вы знаете, что находится внутри у подобного монитора, можно ознакомиться с физическими принципами формирования его изображения. Это не такой сложный процесс, потому как подобные модели уже практически не используются и являются самыми первыми разработками в области мониторов.

    Принцип работы ЭЛТ-монитора

    Электронно-лучевая трубка является стеклянной и абсолютно герметичной, т. е. к ней нет доступа воздуха.

    Необходимое изображение формируется с помощью так называемой электронной пушки, откуда электроны направляются к дисплею. Трубка, покрытая на одном конце люминофорным составом, неширокая и довольно длинная.

    Электроны попадают на этот состав, который заставляет их преобразовывать энергию в свет. Таким образом проявляется широкая цветовая гамма, хоть она и может показаться относительно бедной тем, кто привык к невероятной яркости жидкокристаллических современных дисплеев.

    В большинстве случаев в подобных мониторах присутствуют только три цвета: зелёный, красный и синий, а остальные цветовые решения получаются путём смешивания этих цветов .

    Эти цвета признаны основными и считается, что глаза человека распознают в основном именно их.

    Как правильно настроить монитор

    Перед тем как переходить к использованию подобного экрана, его ещё следует настроить. Чаще всего покупатели предпочитают обратиться к специалистам, которые с помощью калибраторов настроят монитор правильно.

    ВАЖНО! Обратите внимание, что подобная настройка требуется только для ЭЛТ-мониторов, но никак не жидкокристаллических, которые теперь используются в подавляющем большинстве современных устройств. Такие мониторы отличаются своими крупными габаритами, поэтому их легко отличить от тонких и новых ЖК.

    Но не стоит паниковать и сразу же обращаться к профессионалам, за работу которых нужно платить. Можно попробовать настроить монитор самостоятельно с помощью имеющегося меню настроек.

    Прежде всего, обратите внимание на разрешение экрана. Это важно для корректного отображения картинки и её чёткости. Важно знать, какое именно разрешение подойдёт для каждого экрана. Другим важным параметром является частота экрана. Для подобных экранов она составляет примерно 100 гц. От этого напрямую зависит итоговое качество изображения.

    Также настройте яркость и контрастность. Таким образом вы сделаете картинку идеальной для себя.

    Теперь вы знаете, что такое ЭЛТ-монитор, в чём его особенности и как он работает. Немаловажным является умение настроить его так, чтобы всё, что появляется на экране, было хорошо различимо и радовало приемлемым качеством. Для этого важно понимать, каким образом изображение выводится на экран, а также как можно самостоятельно его улучшить.