Что можно сделать из дисковода дискет. Из старого флоппи-дисковода – станок для правки мелких свёрл

Однажды, разбирая коробку с компьютерным хламом, я обнаружил у себя несколько дисководов от от старых 3-х дюймовых гибгих дисков. В свое время я извлек из них шаговые двигатели, а выбросить оставшиеся внутренности не поднялась рука. Сейчас мое внимание привлек двигатель для вращения дисков. Он выполнен самостоятельным блоком на отдельной печатной плате вместе с контроллером привода.
Задача состояла в том, как его запустить. Поиск решения в сети Internet по запуску такого двигателя не дал какого-либо положительного результата. Было множество статей по использованию шаговых двигателей позиционирующих магнитную головку и практически ничего по запуску "блина" - двигателя вращения диска. Единственная обнаруженная статья была на английском языке, но там описывался очень древний и конкретный дисковод... В общем пришлось искать способ запуска самостоятельно.

С чего я начал. К плате управления подходит шлейф из 4-5 цветных проводов в зависимости от типа дисковода. Два из них подают питание 12V (это было не трудно проследить), и как правило имеют цвета черный(общий) и красный(+). Оставшиеся провода, как я предположил, должны управлять пуском двигателя и скорее всего имеют ТТЛ уровни.

На плате я также обнаружил два фотоэлемента: один на краю платы - он определяет, что диск вставлен в приемник; второй фотоэлемент стоит ближе к центру двигателя - он позиционирует начальное положение диска в котором имеется соответсвующее отверстие. Нас интересует первый (удаленный) фотоэлемент, так как при вставленном диске мотор уже начинает вращаться (в подключенном к компьютеру дисководу).
Фотография контроллера с мотором от дисковода фирмы TEAC приведена на рисунке 1.

Далее, проследив на плате цепь от фотоэлемента, я установил, что она через транзистор поступает на вход управления микросхемы H13431 - контроллер двигателя (описание этой микросхемы нашел только на японском языке). На тот же транзистор подключен через диод один из проводов входного шлейфа.
Далее - дело техники. Подал на плату питание 12 вольт. Через резистор номиналом 3,3 ком вычисленный контак соединил с плюсом питания. ВСЕ!!! Двигатель начал вращаться!
Фрагмент платы с установленныи резистором показан на рисунке 2. Крайний левый контакт не задействован (видимо какой-то выходной сигнал). Следы пайки на плате - моя оплошность: подал на входной контакт непосредственно напряжение питания 12В и сжег транзистор, далее действовал осторожнее - через резистор номиналом 3,3 ком.

На другом дисководе (рис.3) с названием Sankyo и микросхемой контроллера M51784 пошел таким же путем (описание этой микросхемы есть на сайте www.datasheetcatalog.com). Нашел входной контакт на плате который выходит через резистор на управляющий транзистор и фотоэлемент. Также через резистор подал на него положительный потенциал. И... тишина. Попробовал поочередно позамыкать на "землю" оставшиеся два входных контакта... Заработало!!! Что это за контакт я не стал выяснять.

Увеличенный фрагмент второй доработанной платы приведен на рисунке 4. "Земляной" контакт и контакт от него слева запаяны вместе. Крайний левый контакт остался свободным.

Таким образом порядок подключения неизвестного дисковода достаточно прост:

1. Находим провода питания (обычно красный+ и черный-).

2. Пытаемся найти цепь управляющего транзистора и фотоэлемента (примерная схема на рис.5).

3. Если двигатель не вращается оставшиееся контакты замыкаем на "землю" (или подаем на них положительный потенциал через ограничительный резистор в несколько ком).

Дальнейшие эксперимены с двигателем показали, что он работоспособен в диапазоне питающих напряжений от 7 до 12 вольт. При этом скорость вращения его очень стабильна, так как задается кварцевым или пъезокерамическим резонатором. Кстати можно попытаться поставить резонатор на другую частоту тем самым изменив скорость вращения. На моих платах резонатор выполнен в виде пластмассового прямоугольника синего цвета - его легко найти.

Применение данного двигателя оставляю на вашу фантазию. Желаю удачи!

В самом дальнем ящике при ревизии обнаружились два флоппика (откуда они там взялись, в памяти не сохранилось).

Корпус понравился! Начались мысленные поиски под что бы приспособить. Посетила мысля засунуть туда небольшой оконечник на микрушке. В наличии была TDA1557 на ней и решено было сделать. При компоновке оказалось, что остается куча свободного места. Это обстоятельство подтолкнуло - а не забабахать ли полный УЗЧ с регулировкой тембров, дальше больше - еще и с индикацией уровня сигнала.
Что вышло, читайте дальше.

Начинка

УМЗЧ TDA1557. Схемы были взяты практически с Datasheet.

Чтобы микрушка не перегревалась, вмонтирован блок управления вентилятором. Срабатывание настроено примерно на 45°.

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только

Блок регулировок LM1036

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


Из регулятора исключен регулятор баланса (заменен постоянными резисторами, т. к. четыре переменника не поместились на лицевой панели).

Блок индикации KA2281


Затем все было собрано на центральную часть корпуса флоппаря.




Результат:



Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только

Работа по доработке средней части корпуса была уже знакома.

Все поместилось и заработало (правда, не сразу - огромное спасибо riswel за консультации).

Относятся к устройствам для долговременного хранения данных и являются старейшими устройствами компьютера, в качестве носителя информации применяются дискеты диаметром 3,5 дюйма (объем дискеты от 1,44 MB до 2,88 MB, в зависимости от типа дисковода и дискеты).

Дисковод состоит из четырёх основных элементов: рабочий двигатель, рабочие головки, шаговые двигатели, управляющая электроника.

Рабочий двигатель. Двигатель включается только тогда, когда в дисковод вставлена дискета. Обеспечивает постоянную скорость вращения дискеты  300 об.мин. Для запуска двигателю необходимо в среднем 400 мс.

Рабочие головки. Дисковод оснащается двумя комбинированными головками (для чтения и записи каждая), которые располагаются над рабочей поверхностью дискеты. Так как обычно дискеты двухсторонние, т.е. имеют две рабочие поверхности, то одна головка предназначена для верхней, а другая головка для нижней рабочей поверхности дискеты.

Шаговые двигатели. Позиционирование головок выполняется при помощи двух двигателей. Двигатели перемещают головки над рабочей поверхностью для считывания данных.

Управляющая электроника. Электронные схемы размещаются в нижней части дисковода. Они выполняют функции передачи сигналов к контроллеру, т.е. отвечают за преобразование информации, которую считывают или записывают головки.

На данный момент дисководы морально и физически устарели, они не отвечают современным требованиям, к накопителям информации, особенно к объёму переносимой информации. Современные производители компьютеров всё реже включают дисковод в базовую комплектацию.

Жесткий диск (винчестер, Накопитель на жестких магнитных дисках)

Накопитель на жестких магнитных дисках (НЖМД) – это устройство с несменным носителем. Его конструктивная схема сходна со схемой НГМД, но реализация отличается, и существенно.

Конструкция жесткого диска (Рис.1)

Накопитель на жестких магнитных дисках состоит из четырех главных элементов, каждый из которых вносит свой вклад в его общие характеристики:

Данные хранятся на пластинах в виде концентрических дорожек, каждая из которых делится на секторы, содержащие данные (в подавляющем большинстве случаев размер сектора составляет 512 байт) и коды коррекции ошибок. Процесс такой разметки диска на сектора, состоящий в записи на его поверхность секторных меток и идентификационных номеров и называется физическим или низкоуровневым форматированием. Количество секторов на дорожке в современных дисках варьируется в зависимости от длины дорожки, т. е. на внешних дорожках секторов больше, а на внутренних меньше (так называемый метод зонно_битовой записи - zoned bit recording). Совокупность дорожек, находящихся под головками в определенном их положении на всех пластинах диска, называется цилиндром .

Пластины представляют собой диски из алюминиевого сплава или стеклообразного материала(стеклянные пластины получили в последнее время более широкое распространение), поверхность которых покрыта несколькими слоями магнитных и немагнитных материалов, защищенных сверху тонким слоем алмазоподобного графита. Размеры и ориентация частиц магнитного слоя определяют вместе с размерами зазора магнитной головки возможную плотность записи. Заметим, что поверхностная плотность записи имеет две составляющие - продольную (определяется размерами магнитных доменов, представляющих каждый бит одной дорожки) и поперечную (определяется расстоянием между соседними дорожками). Одно из последних достижений в увеличении плотности записи за счет уменьшения размеров магнитных частиц - разработанное IBM покрытие с антиферромагнитной связью (AFC, AntiFerromagnetically Coupled). Такое покрытие, неофициально называемое «пыльцой эльфов», состоит из двух магнитных слоев, «проложенных» тончайшим (его толщина составляет всего три атомных диаметра!) слоем парамагнитного металла рутения. В этом «сэндвиче» вместо одиночных магнитных доменов образуются магнитные пары с противоположно направленными векторами намагниченности, обеспечивающие повышенную стойкость к размагничиванию. Пластины укреплены на шпинделе двигателя, который вращает их с весьма высокими угловыми скоростями (до 15 тыс. об./мин).

Головка записи-чтения - ключевой элемент НЖМД. Ее чувствительность и величина магнитного зазора в большой степени определяют плотность записи накопителя. Головка «летит» над поверхностью вращающейся пластины на расстояниях порядка 10-15 нм. Расстояние от головки до магнитного слоя при этом заметно больше - до 30 нм. Защитный слой из алмазоподобного графита, наносимый на головку и пластины, обладает чрезвычайно высокими прочностью и гладкостью, так что «падение» головки на поверхность пластины в случае, например, непредвиденной остановки двигателя не приводит в современных накопителях к выходу их из строя, как это было в НЖМД первых поколений.

Позиционер (actuator) - «средство доставки» головок к нужному цилиндру диска. Понятно, что от скорости и точности его работы зависит как время доступа к данным, так и допустимое расстояние между дорожками, т. е. в конечном счете плотность записи. Кроме основных своих функций, позиционер в современных дисках служит еще и средством обеспечения надежности. Он должен вывести головки из зоны возможного соприкосновения с носителем в случае остановки основного двигателя, пропадания питания и других непредвиденных ситуаций.

Контроллер управляет всеми электронными и электромеханическими компонентами накопителя и содержит все необходимые для чтения и записи данных аналоговые и цифровые схемы. Он строится, как правило, на базе специализированного процессора, оснащенного буферной памятью для промежуточного хранения данных записи-чтения и ПЗУ или ППЗУ со встроенным программным обеспечением. Контроллер вместе с позиционером обеспечивают безопасность диска в случае пропадания питания или остановки двигателя, выводя головки из зоны возможного соприкосновения. Кроме того, контроллер обеспечивает перевод диска в режим экономии энергии при отсутствии обращений к нему в течение некоторого времени.

Из дискет делали сумки, клали их как подставки под чашки, металлические сердцевинки магнитных дисков превращали в детали для админского бубна, а сами магнитные диски использовали вместо светофильтров, чтобы смотреть на солнце. О том, что у меня вышло, когда в моей голове встретилось искусство и гиковость и написано в этом посте.

Рисовать я люблю. Маркеров, ручек и карандашей у меня великое множество, и в какой-то момент я понял, что обычных подставок и пеналов, коих много в канцелярских магазинах, мне не хватит. Хотелось чего-то своего и подогнанного под свои нужды. Началось всё с того, как я прочитал пост на лайфхакере о подставке для ручек из дискет. Делается она очень просто - берется пять дискет и сцепляется кольцами друг к другу. Я усовершенствовал схему и не сцеплял их, а склеил. Сделанная по этому методу подставка была позднее модифицирована добавлением крышечки на скотче в коробочку для ластиков.

Одной подставки не хватило и я сделал ещё одну, заменив нижную дискету компакт-диском, это увеличило стабильность, да и выглядит это дело неплохо. Позднее я сделал ещё одну подставку по старому методу и склеил её с новой, дополнительно добавив внутрь несколько перегородок из таких же дискет. Уже два года верой и правдой она мне служит на столе.

Но и этого было недостаточно и тогда я стал делать ещё подставки. К компакт-диску добавился ещё один компакт-диск, что утолщало днище, делало его красивым снизу и ещё больше улучшало стабильность. Между дисками клалась бумажка, чтобы ничего не вываливалось в центре «блина». Для соединения подставок друг с другом часть диска спиливалась с обеих сторон. Дальше я стал сразу же спиливать угол диска и не использовать лишние дискеты для соединения двух подставок, и делал их сразу сцепленными, стенка между коробочками была общей на две. Перегородки были расчитаны на разные маркеры, от толстенных до тонких. Вот такой поезд теперь красуется у меня на столе.

Но ручек становилось всё больше и хотелось сделать ещё более удобную подставку. Достав специально купленную коробку дискет я решил сделать подставку, стоящую под углом. Методика была та же, что и в самый первый раз - коробка с днищем из дискеты или картонки (для оригинального вида), разделители из дискет, но сбоку были прицеплены ещё два диска, которые держат подставку под углом. В первый раз я использовал маленькие саморезы, но даже с ними успел намучатьсяя, во второй - приклеил их. Подставки получилась

невероятно удобными и занимают почетное место возле ноутбука.

Под углом чернила меньше портятся и доставать рисовательные палочки удобнее, к тому же сразу видно цвет или толщину.

Теперь я думаю, куда применить старые сидюки и дивидюки, коих у меня накопилось великое множество. Не уж-то сделать тот самый бубен?

Здравствуйте все. Наверно многие из нас видели в интернете видео с музыкальными флоппи дисководами. Если нет, обязательно посмотрите. Вот некоторые из них:


Итак, вы посмотрели и до сих пор не ушли с этой страницы? Тогда устройтесь поудобнее, ибо дальше вы узнаете, как повторить эту «магию».

Начнем с того, что музыку в вашем флоппи играет не маленький гномик с виолончелью. Высота звука изменяется с изменением скорости вращения нашего дисковода. Думаю, все понимают, что не вокруг своей оси.

Но одно дело, когда у нас есть постоянное количество оборотов. Тогда мы имеем всего лишь монотонное гудение, одна нота. Другое дело, когда мы хотим получить «имперский марш» или мурку. Для этого нам нужно будет менять обороты, и учитывать время длительности каждой ноты.

Мы с вами умнее и поэтому мы заставим компьютер сыграть за нас эту мелодию. А для этого нам понадобится контроллер. Например, ардуино. С его помощью мы и заставим сегодня «петь» наши флоппи дисководы.


Итак, приступим, для начала нам будет нужен лишний блок питания для компьютера, ибо приводы наших музыкальных вертушек требуют, чтобы их кормили электрическим током.

Нашли? Теперь переходим к подключению:
1) Соединяем черный и зеленый контакты, в нашем блоке питания. Это требуется, чтобы его включить.


2) 11 и 12 контакты дисковода замыкаем между собой с помощью прыгуна (jumper). Да, я знаю, что не стоит переводить такие названия.
3) 17 и 19 подключаем к земле ардуино (GND).
4) 18 к 3 диджитал пину ардуино.
5) 20 тоже флоппи, к 2 д.п.
6) Запитываем.

Теперь софт:
1) Скачиваем IDE, ставим драйвера.
2) Качаем библиотеку TimerOne в папку к ардуино.
3) Заливаем скетч.
4) Все подключено, все залито? Устанавливаем Java JDK среду NetBeans.
5) Качаем MoppyDesk и драйвера к ней. Это программа, которая через микроконтроллер заставляет дисковод «петь»
Запускаем MoppyDesk через NotBeans. Смотрим, куда установлен ардуино, выбираем этот ком порт. Дальше, нажимаем Connect и выбираем миди файл, Start.