Особенности иммунитета при вирусных инфекционных процессах. Роль лимфоидных клеток в противовирусном иммунитете (характеристика Т и В лимфоцитов). Лечение, защита от вирусных заболеваний

Ранняя стадия инфекции, как правило, состоит в противоборстве вируса с защитными системами организма-хозяина. Самый первый защитный барьер - кожные покровы и слизистые оболочки организма. В случае нарушения их целостности в действие вступают механизмы экстренной неспецифической защиты (факторы врожденного иммунитета). Среди них особо выделяют противовирусную активность интерферона, ЕК-клетки (естественные киллеры) и макрофаги.

Противовирусное действие интерферона . Инфицирование клетки вирусом вызывает синтез интерферона. Под его действием активируются защитные механизмы соседних клеток, обеспечивая их устойчивость к вирусной инфекции. Интерферон индуцирует синтез двух ферментов: протеинкеназы, что ведет к подавлению синтеза вирусных белков, и 2", 5"-олигоаденилатсинтетазы, активирующей эндонуклеазу, которая разрушает вирусную и-РНК. Кроме того, интерферон сильно активирует макрофаги и ЕК-клетки.

Противовирусное действие ЕК-клеток и макрофагов . Активные ЕК-клетки появляются уже через двое суток после заражения организма-хозяина вирусом. ЕК-клетки и макрофаги уничтожают зараженные клетки. Главным образом ЕК-клетки осуществляют реакцию антителозависимой клеточной цитотоксичности (АЗКЦ).

Если вирусу удается преодолеть барьеры врожденной защиты, он вызывает развитие специфического иммунного ответа с появлением Т-киллеров, Т-хелперов и противовирусных антител. Главную роль в иммунном ответе отводят антителам и Т-киллерам. Основные механизмы противовирусного иммунитета сводятся к блокаде распространения вирусных частиц и уничтожению зараженных вирусом клеток, т.е. клеток, которые фактически являются «фабриками» по производству новых вирусов.

Распространение вируса в организме блокируют в основном антитела. В процессе развития специфического иммунитета синтезируются антитела к большинству антигенов вируса. Однако считается, что вирусную инфекцию сдерживают в основном антитела к поверхностным гликопротеинам. Эти антигены, часто называемые протективными, локализованы на поверхности вирионов или экспрессируются на мембране зараженной вирусом клетки. Механизмы гуморального противовирусного иммунитета могут быть различными. Способ устранения инфекционности вирусных частиц зависит от их локализации - внеклеточной или внутриклеточной.

Антитела, адсорбируясь на поверхности вирионов, блокируют его жизненно важные функции. Прежде всего, это блокада прикрепления к клетке хозяина, проникновения в нее, раздевание вируса. Адсорбция антител на белках капсида не позволяет некоторым вирусам (вирусу чумы плотоядных, кори и др.) проникать из клетки в клетку путем их слияния. Кроме того, считают, что антитела, активируя систему комплемента, вызывают повреждения оболочки некоторых вирусов и блокируют клеточные рецепторы для вирусов. Однако в настоящее время этот процесс не считают существенным в противовирусной защите.

Действие антител, помимо нейтрализации внеклеточных вирусов, состоит в том, что они вызывают разрушение инфицированных вирусами клеток, активируя систему комплемента. Второй механизм действия антител на внутриклеточный вирус - это реакция антителозависимой клеточной цитотоксичности, осуществляемая ЕК-клетками. Антитела, фиксированные на мембране пораженной вирусом клетки, контактируют с ЕК-клетками (через Fc-фрагмент IgG), которые убивают зараженные клетки с помощью перфоринов и гранзимов.

В иммунитете к вирусным инфекциям Т-клетки выполняют разнообразные функции. Т-хелперы играют важную роль в образовании антител в ответ на антигены, кроме того, эти клетки помогают в индукции Т-киллеров, а также в привлечении макрофагов и Е-клеток в очаг вирусной инфекции и в их активации. Т-киллеры осуществляют противовирусный иммунологический надзор, и действуют они весьма эффективно и избирательно, разрушая инфицированные вирусами клетки с помощью перфоринов и гранзимов. Проникнув внутрь клетки-мишени, гранзимы через каскад реакций активируют эндонуклеазы. Этот фермент способствует разрыву цепей ДНК и развитию апоптоза (программированная гибель клеток).

Механизмы «ухода» вирусов от иммунного надзора организма хозяина. Вирусы обладают разнообразными свойствами защиты от распознавания их антителами: наиболее эффективно этому служит смена антигенов: в вирусных белках происходит изменение иммунодоминатных областей. Антигенная изменчивость наблюдается у вирусов иммунодефицита человека и у вирусов гриппа. Так, у вируса гриппа она называется антигенным «дрейфом» (постепенные изменения) и «шифтом» (резкие изменения). Гуморальный иммунитет к этим вирусным инфекциям сохраняется лишь до появления нового сероварианта возбудителя, что не позволяет рассчитывать на долговременный эффект вакцинации; антитела могут удалять вирусные антигены с плазматической мембраны клетки путем кеппинга (агрегации молекул клеточной поверхности). Так, герпесвирусы кодируют гликопротеины, связывающие антитела через Fc-фрагмент, при этом нарушается активация комплемента и блокируется действие противовирусных антител; ряд вирусов (цитомегало-, аденовирусы и др.) индуцируют выработку белков, подавляющих экспрессию молекул ГКГС класса на мембране пораженных клеток. Это дает вирусу преимущество, помогая избежать распознавание эти отдельные вирусы (герпесвирусы) обладают генами белков, гомологичных цитокиновым рецепторам. В результате эти «растворимые» рецепторы как «ловушки» связывают цитокины и нейтрализуют их действия; некоторые вирусы (вирус Эпштейна - Барра, аденовирусы) способны противодействовать эффекту интерферонов - они продуцируют короткие отрезки РНК, которые каким-то образом подавляют активацию протеинкиназы; многие вирусы способны вызывать у макрофагов выработку супрессирующих цитокинов, подавляющих развитие иммунного ответа.

Вирусы запускают противовирусный иммунитет – клеточный Т-лифоциты (цитотоксические СД8)

Также при поподании вирусов выделяется интерферон, продуцируется клетками в которые попал вирус, это противовирусный белок который защищает клетку от попадания в нее другого вируса.

Интерферон относится к важным защитным белкам иммунной системы. Открыт при изучении интерференции вирусов, т. е.

явления, когда животные или культуры клеток, инфициро­ванные одним вирусом, становились нечувс­твительными к заражению другим вирусом. Оказалось, что интерференция обусловлена образующимся при этом белком, обладаю­щим защитным противовирусным свойством. Этот белок назвали интерфероном.

Интерферон представляет собой семейство белков-гликопротеидов, которые синтезируются клетками иммунной системы и соединитель­ной ткани

Выработка интерферона резко возрастает при инфицировании виру­сами, а также при воздействии индукторов интерферона, например РНК, ДНК, сложных полимеров. Такие индукторы интерферона получили название интерфероногенов.

Помимо противовирусного действия интер­ферон обладает противоопухолевой защитой, так как задерживает пролиферацию (размноже­ние) опухолевых клеток, а также иммуномодулирующей активностью, стимулируя фагоцитоз, естественные киллеры, регулируя антителообразование В-клетками, активируя экспрессию главного комплекса гистосовместимости.

Механизм действия интерферона сложен. Интерферон непосредственно на вирус вне клетки не действует, а связывается со спе­циальными рецепторами клеток и оказыва­ет влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков.

Применение интерферона . Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или пос­тупать в организм извне. Поэтому его использу­ют с профилактической целью при многих ви­русных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепати­ты (В, С, D), герпес, рассеянный склероз и др


Особенности противовирусного иммунитета, гуморальные и патофизиологические механизмы. Ингибиторы, природа и свойства, Имунная система организма человка. Иммунокомпетентные клетки, их основные функции. Понятие о межклеточной кооперации и ее роли в иммуногенезе.

Противовирусный иммунитет. Основой противовирусного иммунитета является клеточный иммунитет. Клетки-мишени, ин­фицированные вирусом, уничтожаются цитотоксическими лим­фоцитами, а также NK-клетками и фагоцитами, взаимодействую­щими с Fc-фрагментами антител, прикрепленных к вирусспецифическим белкам инфицированной клетки. Проти­вовирусные антитела способны нейтрализовать только внеклеточно расположенные вирусы, как и факторы неспецифическо­го иммунитета - сывороточные противовирусные ингибиторы. Такие вирусы, окруженные и блокированные белками организ­ма, поглощаются фагоцитами или выводятся с мочой, потом и др. (так называемый «выделительный иммунитет»). Интерфероны усиливают противовирусную резистентность, индуцируя в клет­ках синтез ферментов, подавляющих образование нуклеиновых кислот и белков вирусов. Кроме этого, интерфероны оказывают иммуномодулирующее действие, усиливают в клетках экспрес­сию антигенов главного комплекса гистосовместимости (МНС). Противовирусная защита слизистых оболочек обусловлена сек­реторными IgA, которые, взаимодействуя с вирусами, препятст­вуют их адгезии на эпителиоцитах.

Структура иммунной системы. Иммунная система представлена лимфоидной тканью. Это спе­циализированная, анатомически обособленная ткань, разбросан­ная по всему организму в виде различных лимфоидных образо­ваний. К лимфоидной ткани относятся вилочковая, или зобная, железа, костный мозг, селезенка, лимфатические узлы (группо­вые лимфатические фолликулы, или пейеровы бляшки, минда­лины, подмышечные, паховые и другие лимфатические образо­вания, разбросанные по всему организму), а также циркулиру­ющие в крови лимфоциты. Лимфоидная ткань состоит из ретикулярных клеток, составляющих остов ткани, и лимфо­цитов, находящихся между этими клетками. Основными функ­циональными клетками иммунной системы являются лимфоци­ты, подразделяющиеся на Т- и В-лимфоциты и их субпопуля­ции. Общее число лимфоцитов в человеческом организме дос­тигает 10 12 , а общая масса лимфоидной ткани составляет при­мерно 1-2 % от массы тела.

Лимфоидные органы делят на центральные (первичные) и периферические (вторичные).

Кооперация иммунокомпетентных клеток . Иммунная реакция организма может иметь различный характер, но всегда начинается с захвата антигена макрофагами крови и тканей или же со связывания со стромой лимфоидных органов. Нередко антиген адсорбируется также на клетках паренхиматозных органов. В макрофагах он может полностью разрушаться, но чаше подвергается лишь частичной деградации. В частности, большинство антигенов в лизосомах фагоцитов в печение часа подвергается ограниченной денатурации и протеолизу. Оставшиеся от них пептиды (как правило, два-три остатка аминокислот) комплексируются с экспрессированными на внешней мембране макрофагов молекулами МНС.

Макрофаги и все другие вспомогательные клетки, несущие на внешней мембране антигены, называются антигенпрезентирующими, именно благодаря им Т- и В-лимфоциты, выполняя функцию презентации, позволяют быстро распознавать антиген.

Иммунокомпетентные клетки - клетки, способные специфически распознавать антиген и отвечать на него иммунной реакцией. Такими клетками являются Т- и В-Л, которые под влиянием чужеродных агентов дифференцируются в сенсибилизированный лимфоцит и плазматическую клетку.

Т-лимфоциты – это сложная по составу группа клеток, которая происходит от полипотентной стволовой клетки костного мозга, а созревает и дифференцируется в тимусе из предшественников. Т-лимфоциты разделяются на две субпопуляции: иммунорегуляторы и эффекторы. Задачу регуляции иммунного ответа выполняют Т-хелперы. Эффекторную функцияю осуществляют Т-киллеры и естественные киллеры. В орагнизме Т-лимфоциты обеспечивают клеточные формы иммунного ответа, определяют силу и продолжительность иммунной реакции.

B-лимфоциты – преимущественно эффекторные иммунокомпетентные клетки. Зрелые В-лимфоциты и их потомки – плазматические клетки являются антителопродуцентами. Их основными продуктами являются иммуноглобулины. В-лимфоциты участвуют в формировании гуморального иммунитета, В-клеточной иммунологической памяти и гиперчувствительности немедленного типа.

Макрофаги - клетки соединительной ткани, способные к активному захвату и перевариванию бактерий, остатков клеток и других чужеродных для организма частиц.

2.15 Антигены: определение, основные свойства. Антиге­ны бактериальной клетки.

Антиген – это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознаётся его иммунной системой и вызывает иммунные реакции, направленные на его устранение.

Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью.

Антигенность . Под антигенностью понимают потенциаль­ную способность молекулы антигена акти­вировать компоненты иммунной системы и специфически взаимодействовать с фактора­ми иммунитета (антитела, клон эффекторных лимфоцитов). Иными словами, антиген дол­жен выступать специфическим раздражителем по отношению к иммунокомпетентным клет­кам. При этом взаимодействие компоненты иммунной системы происходит не со всей молекулой одновременно, а только с ее не­большим участком, который получил название «антигенная детерминанта», или «эпитоп».

Чужеродность является обязательным усло­вием для реализации антигенности. По этому критерию система приобретенного иммунитета дифференцирует потенциально опасные объ­екты биологического мира, синтезированные с чужеродной генетической матрицы. Понятие «чужеродность» относительное, так как имму-нокомпетентные клетки не способны напря­мую анализировать чужеродный генетический код. Они воспринимают лишь опосредованную информацию, которая, как в зеркале, отражена в молекулярной структуре вещества.

Иммуногенность - потенциальная способ­ность антигена вызывать по отношению к себе в макроорганизме специфическую за­щитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы: 1. Молекулярные особенности антигена; 2. Клиренс антигена в организме; 3. Реактивность макроорганизма.

К первой группе факторов отнесены природа, химический состав, молекулярный вес, струк­тура и некоторые другие характеристики.

Иммуногенность в значительной степени за­висит от природы антигена. Важна также оптическая изомерия аминокислот, составляющих молекулу белка. Большое значение имеет размер и молекулярная масса антигена. На степень иммуногенности также оказыва­ет влияние пространственная структура анти­гена. Оказалась также существенной стерическая стабильность молекулы антигена. Еще одним важным условием иммуно­генности является растворимость антигена.

Вторая группа факторов связана с динамикой поступления антигена в организм и его выведе­ния. Так, хорошо известна зависимость иммуногенности антигена от способа его введения. На иммунный ответ влияет количество пос­тупающего антигена: чем его больше, тем более выражен иммунный ответ.

Третья группа объединяет факторы , опреде­ляющие зависимость иммуногенности от со­стояния макроорганизма. В этой связи на пер­вый план выступают наследственные факторы.

Специфичностью называют способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу. Это свойство обуслов­лено особенностями формирования иммунно­го ответа - необходима комплементарность рецепторного аппарата иммунокомпетентных клеток к конкретной антигенной детерминанте. Поэтому специфичность антигена во многом определяется свойствами составляющих его эпитопов. Однако при этом следует учитывать условность границ эпитопов, их структурное разнообразие и гетерогенность клонов антигенреактивных лимфоцитовой специфичности. В результате этого организм на антигенное раз­дражение всегда отвечает поликлональными им­мунным ответом.

Антиге­ны бактериальной клетки. В структуре бактериальной клетки разли­чают жгутиковые, соматические, капсульные и некоторые другие антигены. Жгутиковые, или Н-антигены, локализуют­ся в локомоторном аппарате бактерий - их жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При на­гревании флагеллин денатурирует, и Н-антиген теряет свою специфичность. Фенол не действует на этот антиген.

Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу со­ставляют ЛПС. О-антиген проявляет термос­табильные свойства - он не разрушается при длительном кипячении. Однако соматичес­кий антиген подвержен действию альдегидов (например, формалина) и спиртов, которые нарушают его структуру.

Капсулъные, или К-антигены, располагаются на поверхности клеточной стенки. Встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из по­липептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В, и L. Наибольшая термостабильность ха­рактерна для типа А, он не денатурирует даже при длительном кипячении. Тип В выдержи­вает непродолжительное нагревание (около 1 часа) до 60 "С. Тип L быстро разрушается при этой температуре. Поэтому частичное удале­ние К-антигена возможно путем длительного кипячения бактериальной культуры.

На поверхности возбудителя брюшного ти­фа и других энтеробактерий, которые облада­ют высокой вирулентностью, можно обнару­жить особый вариант капсульного антигена. Он получил название антигена вирулентнос­ти, или Vi-антигена. Обнаружение этого ан­тигена или специфичных к нему антител име­ет большое диагностическое значение.

Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие белки, которые секретируются бактериями в окружающую среду (на­пример, туберкулин). При взаимодействии со специфическими антителами токсины, фер­менты и другие биологически активные моле­кулы бактериального происхождения теряют свою активность. Столбнячный, дифтерий­ный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэ­тому их используют для получения анатокси­нов для вакцинации людей.

В антигенном составе некоторых бактерий выделяется группа антигенов с сильно выра­женной иммуногенностью, чья биологическая активность играет ключевую роль в формиро­вании патогенности возбудителя. Связывание таких антигенов специфическими антителами практически полностью инактивирует виру­лентные свойства микроорганизма и обеспечи­вает иммунитет к нему. Описываемые антиге­ны получили название протективных . Впервые протективный антиген был обнаружен в гнойном отделяемом карбункула, вызванного ба­циллой сибирской язвы. Это вещество являет­ся субъединицей белкового токсина, которая ответственна за активацию других, собственно вирулентных субъединиц - так называемого отечного и летального факторов


2.16 Иммуноглобулины, структура и функции.

Природа иммуноглобулинов. В ответ на введение антигена иммунная систе­ма вырабатывает антитела - белки, способные специфически со­единяться с антигеном, вызвавшим их образование, и таким образом участвовать в иммунологических реакциях. Относятся ан­титела к γ-глобулинам, т. е. наименее подвижной в электричес­ком поле фракции белков сыворотки крови. В организме γ-глобулины вырабатываются особыми клетками - плазмоцитами. γ-глобулины, несущие функции антител, получили название иммуноглобули­нов и обозначаются символом Ig. Следовательно, антитела - это иммуноглобулины , вырабатываемые в ответ на введение анти­гена и способные специфически взаимодействовать с этим же антигеном.

Структура антител. Белки иммуноглобулинов по химическому составу относятся к гликопротеидам, так как состоят из проте­ина и Сахаров; построены из 18 аминокислот. Имеют видовые отличия, связанные главным образом с набором аминокислот. Их молекулы имеют цилиндрическую форму, они видны в электронном микроскопе. До 80 % иммуноглобулинов имеют константу седиментации 7S; устойчивы к слабым кисло­там, щелочам, нагреванию до 60 °С. Выделить иммуноглобули­ны из сыворотки крови можно физическими и химическими ме­тодами (электрофорез, изоэлектрическое осаждение спиртом и кислотами, высаливание, аффинная хроматография и др.). Эти методы используют в производстве при приготовлении иммуно­биологических препаратов.

Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD. Иммуноглобулины М, G, А имеют под­классы. Например, IgG имеет четыре подкласса (IgG, IgG 2 , IgG 3 , IgG 4). Все классы и подклассы различаются по аминокис­лотной последовательности.

Молекулы иммуноглобулинов всех пяти классов состоят из полипептидных цепей: двух одинаковых тяжелых цепей Н и двух одинаковых легких цепей - L, соединенных между собой дисульфидными мостиками. Соответственно каждому классу иммуноглобулинов, т.е. М, G, A, E, D, разли­чают пять типов тяжелых цепей: μ (мю), γ (гамма), α (альфа), ε (эпсилон) и Δ (дельта), различающихся по антигенности. Легкие цепи всех пяти классов являются общими и бывают двух типов: κ (каппа) и λ (ламбда); L-цепи иммуноглобулинов различных классов могут вступать в соединение (рекомбинироваться) как с гомологичны­ми, так и с гетерологичными Н-цепями. Однако в одной и той же молекуле могут быть только идентичные L-цепи (κ или λ). Как в Н-, так и в L-цепях имеется вариабельная - V область, в которой последовательность амино­кислот непостоянна, и константная - С область с постоянным набором аминокислот. В легких и тяжелых цепях различают NH 2 - и СООН-концевые группы.

При обработке γ -глобулина меркаптоэтанолом разрушаются дисульфидные связи и молекула иммуноглобулина распадается на отдельные цепи полипептидов. При воздействии протеолитическим ферментом папаином иммуноглобулин расщепляется на три фрагмента: два не кристаллизующихся, содержащих детерминантные группы к антигену и названных Fab-фрагментами I и II и один кристаллизующий Fc-фрагмент. FabI- и FabII-фрагменты сходны по свойствам и аминокислотному составу и отличаются от Fc-фрагмента; Fab-и Fc-фрагменты являются компактными образованиями, соеди­ненными между собой гибкими участками Н-цепи, благодаря чему молекулы иммуноглобулина имеют гибкую структуру.

Как Н-цепи, так и L-цепи имеют отдельные, линейно свя­занные компактные участки, названные доменами; в Н-цепи их по 4, а в L-цепи - по 2.

Активные центры, или детерминанты, которые формиру­ются в V-областях, занимают примерно 2 % поверхности мо­лекулы иммуноглобулина. В каждой молекуле имеются две де­терминанты, относящиеся к гипервариабельным участкам Н-и L-цепей, т. е. каждая молекула иммуноглобулина может свя­зать две молекулы антигена. Поэтому антитела являются двух­валентными.

Типовой структурой молекулы иммуноглобулина является IgG. Остальные классы иммуноглобулинов отличаются от IgG дополнительными элементами организации их молеку­лы.

В ответ на введение любого антигена могут вырабатываться антитела всех пяти классов. Обычно вначале вырабатывается IgM, затем IgG, остальные - несколько позже.

Лекция 11

Основным механизмом противовирусного иммунитета являются иммунные клеточные реакции, осуществляемые Т-эффекторами, а основную роль в этих клеточных реак­циях играют Т-киллеры, которые распознают зараженную клетку в организме и вызывают ее цитолиз. В результате организм освобождается от клеток, продуцирующих ин­фекционное вирусное потомство.

Индуцированные вирусным антигеном Т-лимфоциты приобретают свойства распознавать вирусный антиген, на­ходящийся на поверхности зараженных клеток. Вирусные детерминанты, распознаваемые Т-лимфоцитами, сходны или идентичны детерминантам, выявляемым В-лимфоцитами на поверхности зараженных клеток. Однако в отли­чие от В-лимфоцитов, Т-лимфоциты распознают только те зараженные клетки, на поверхности которых вирусный антиген сцеплен с клеточными антигенами главного комп­лекса гистосовместимости - HLA у человека.

Т-лимфоциты обладают высокой специфичностью и могут, например, различать клетки, которые заражены вирусами гриппа типа А или гриппа типа В. Однако специфичность Т-лимфоцитов в отношении вирусов отно­сительна и варьирует у разных таксономических групп.

Существенным фактором в противовирусном иммуни­тете являются макрофаги. Они принимают участие в иммунной стимуляции, распознавании антигена, регуляции пролиферации и дифференцировки лимфоцитов. Кроме того, они являются активными помощниками в разруше­нии и удалении из организма неродственных антигенов. Цитотоксическая активность макрофагов имеет неспеци­фический характер и проявляется на ранних стадиях ин­фекционного процесса.

В противовирусном иммунитете имеют значение и другие факторы клеточного иммунитета, такие как актив­ность естественных киллеров и зависимая от антител цитотоксичность, обусловленная неиммунными лимфоидными клетками.

Клеточный иммунитет, как указывалось, играет более важную роль при вирусных инфекциях, нежели гумораль­ный иммунитет. Лишь часть вирусов (в частности, пикорнавирусы) быстро разрушают пораженные ими клетки, большинство же вирусов не вызывают немедленной их гибели, а онкогенные вирусы, наоборот, вызывают про­лиферацию пораженках клеток. Поэтому зараженные клетки становятся мишенью для цитолитического действия Т-эффекторов, естественных киллеров и макрофагов. Цито-литическое действие имеет место при всех вирусных ин­фекциях и поэтому должно быть отнесено вместе с интер­фероном (см. далее) к основным факторам, способствую­щим выздоровлению организма от вирусной инфекции.

Особенности иммунитета при некоторых вирусных ин­фекциях. Продолжительность и прочность иммунитета варьирует при разных вирусных инфекциях. Так, при оспе, кори, паротите иммунитет является весьма прочным. При других вирусных инфекциях иммунитет не столь стоек и продолжителен и поэтому возможны повторные заболе­вания. Это, по-видимому, относится к некоторым парамиксовирусам (респираторно-синцитиальный вирус), а также к риновирусам, хотя повторное заражение может объясняться заражением другими серологическими типами риновирусов.


Своеобразны особенности иммунитета при гриппе. Пе­ренесенная инфекция создает стойкий иммунитет: так, первая волна гриппа в 1977-1978 гг., вызванная вирусом H1N1, циркулировавшим в 1957 г., характеризовалась тем, что заболели почти исключительно лица моложе 20 лет, родившиеся после 1957 г. Таким образом, повторные заболевания гриппом одного и того же серотипа связаны не с нестойкостью иммунитета, а с антигенным дрейфом двух поверхностных вирусных белков. О прочности имму­нитета при гриппе свидетельствует феномен антигенной доминанты или «первородного антигенного греха». При повторных заболеваниях гриппом наряду с появлением антител к вирусу, вызвавшему заболевание, стимулируется рост антител к вирусу, с которым произошла первая встреча данного индивидуума. Этот феномен был широко использован для «серологической археологии» - выясне­ния, какие вирусы гриппа циркулировали в прошлом, до их открытия.

Многие вирусы персистируют в организме, несмотря на наличие антител. Например, аденовирусы могут дли­тельно персистировать в миндалинах, вирусы герпеса мо­гут длительно и даже пожизненно сохраняться в нервных клетках чувствительного ганглия тройничного нерва или в дорзальных ганглиях. При ряде персистентных вирусных инфекций причиной персистенции является недоступность вируса для циркулирующих в крови антител. Некоторые вирусы способны распространяться из клетки в клетку без выхода во внеклеточное пространство. Например, вирусы герпеса могут проникать из одной клетки в другую по цитоплазматическим мостикам. Многие вирусы (вирусы парагриппа человека, кори, респираторно-синцитиальный и др.) вызывают слияние соседних кле­ток и распространяются путем формирования симпласта или синцития. Возможно проникновение вируса и субвирус­ных компонентов в дочерние клетки при клеточном делении. Существует несколько способов «ускользания» вирусов от иммунологического надзора: 1) подавление фагоцитоза; 2) угнетение Т- и В-системы; 3) особая локализация вируса в организме, защищающая его от действия им-муноцитов. В результате создаются условия для распро­странения вируса в организме и его персистенции. Нару­шение функции лимфоцитов имеется при большинстве вирусных инфекций. Вирусы гриппа, кори, полиомиелита, герпеса, ротавирусы и особенно вирус СПИД угнетают иммунные реакции Т-лимфоцитов, препятствуют их сти­муляции. Вирус СПИД вызывает, деструкцию Т-хелперов. Вирусы герпеса - возбудители ветряной оспы и опоя­сывающего герпеса, цитомегалии, инфекционного мононуклеоза - приводят к увеличению абсолютного и от­носительного количества Т-супрессоров. Активацию су-прессоров вызывает вирус клещевого энцефалита.

Таким образом, приобретенный иммунитет после пере­несенной вирусной инфекции может быть разным: в одних случаях он защищает от повторных заболеваний на мно­гие годы или на всю жизнь; в других случаях утрачи­вается через несколько лет и даже месяцев, в связи с чем возможны повторные заболевания; в третьих случаях им­мунитет не предотвращает персистирование вируса в орга­низме и появление периодических рецидивов.

ИММУНОПАТОЛОГИЧЕСКИЕ РЕАКЦИИ

В иммунологии иммунопатологическими реакциями на­зывают такие иммунологические феномены, которые приводят к повреждению органов и тканей хозяина и одно­временно направлены против возбудителя. Однако при ви­русных инфекциях наряду с иммунопатологическими реак­циями, наблюдающимися и при других инфекциях (обра­зование иммунных комплексов, аутоантител и др.), встре­чаются и необычные феномены, которые также можно от­нести к иммунопатологии.

Сохранение инфекционного вируса в иммунном комп­лексе и макрофагах. При взаимодействии вирусов с анти­телами могут формироваться иммунные комплексы, в ко­торых вирусы сохраняют инфекционную активность. Обычно это имеет место при использовании недостаточной концентрации антител, однако избыток антител не всегда оказывает дополнительный инактивирующий эффект при ряде инфекций. Длительная циркуляция в организме та­ких иммунных комплексов приводит, во-первых, к посто­янному инфицированию чувствительных клеток, во-вторых, к антигенной стимуляции вирусспецифических иммунокомпетентных клеток. В результате формируются новые иммунные комплексы, содержащие инфекционный вирус. Образующиеся иммунные комплексы фиксируются на клетках, содержащих рецепторы к Fc-фрагменту иммуно­глобулина, и в результате создаются условия для прикреп­ления и проникновения в клетки вируса.

Увеличение количества связавшегося с клеткой вируса, находящегося в составе иммунных комплексов, объясняет­ся следующими причинами.

1. Клеточные рецепторы для ряда вирусов не могут обеспечить такого эффективного проникновения в клетку.

2. Агрегированный вирус труднее проникает в клетку, чем мономерная вирусная частица, окруженная антитела­ми.

3. Антитела защищают вирус от протеолитической деградации клеточными ферментами.

Феномен парадоксального усиления репродукции виру­сов при использовании недостаточных концентраций анти­вирусных антител присущ многим вирусам: альфа- и флавивирусам, буньявирусам, рабдовирусам, реовирусам. Особенно четко этот феномен проявляется при заражении вирусами макрофагов: связанные с антителами вирусные частицы лучше размножаются в макрофагах по сравнению со свободными. Наиболее четко феномен проявляется при использовании вируса денге (флавивирус).

Макрофаги способны фагоцитировать многие вирусы. Однако не все фагоцитированные вирусы разрушаются ферментными системами макрофагов; незавершенный фа­гоцитоз в ряде случаев может не предотвращать разви­тие инфекции, а становиться ее источником. Такая инфекция может протекать как в острой, так и хронической форме. Примером устанавливающейся персистенции при взаимодействии вируса и макрофагов является экспери­ментальная цитомегалия.

Иммунная деструкция зараженных клеток. Клеточные мембраны могут разрушаться гуморальными факторами - лимфотоксинами, которые синтезируются лимфоцитами. Лимфотоксины оказывают неспецифическое ферментатив­ное действие вблизи секретирующих их клеток. Однако основным механизмом деструкции зараженных клеток яв­ляется цитотоксическое действие Т-лимфоцитов. Вирус-специфические Т-киллеры появляются вскоре после зара­жения, через 1-3 суток. Способность Т-лимфоцитов разру­шать зараженные клетки может приводить не только к защитному эффекту и выздоровлению от инфекции, но и к иммунопатологическим реакциям в результате пораже­ния органов и тканей. Защитное или повреждающее дейст­вие Т-лимфоцитов зависит от стадии инфекции, в течение которой они действуют. Если разрушение зараженных кле­ток происходит на ранних стадиях инфекции, гибель немногочисленных зараженных клеток, находящихся, в основном, у входных ворот инфекции, не приведет к на­рушению гомеостаза, и наступит выздоровление. Напротив, при действии Т-лимфоцитов на более поздних стадиях инфекции, когда в результате распространения вируса в организме повреждены клетки многих органов и тканей, иммунный цитолиз может привести к некомпенсируемым нарушениям жизненно важных функций организма и усу­губить инфекционный процесс.

В ряде случаев специфические антитела могут воз­действовать на клетки в отсутствии комплемента (при некоторых иммунодефицитных состояниях, поражении нервных клеток, недоступных для комплемента и т. д.). Антитела в отсутствие литического действия комплемента приводят к уменьшению выхода вирусных белков на кле­точную поверхность, в результате чего может развиться внутриклеточная персистенция вирусных компонентов.

Единый механизм, лежащий в основе защитного и повреждающего действия иммунных Т-лимфоцитов, пред­полагает обязательное участие иммунопатологического компонента в патогенезе любой вирусной инфекции, и иммунопатологию можно рассматривать как обязательную плату за выздоровление при вирусных инфекциях. При разных инфекциях вирусной этиологии соотношение за­щитного и повреждающего действия Т-лимфоцитов су­щественно варьирует.

Аутоиммунные антитела. Деструкция зараженных ви­русом клеток в процессе инфекции приводит к появлению антигенно измененных клеточных структур, которые вос­принимаются организмом как чужеродные и вызывают формирование гуморальных и клеточных факторов имму­нитета, способных взаимодействовать с антигенами нор­мальных клеток. Конформационная перестройка молекулы антигена, взаимодействующего с антителом, также являет­ся причиной образования аутоантител против собственных иммуноглобулинов. В результате возникают аутоиммунные реакции. В их патогенезе важную роль играет нарушение сосудистой проницаемости под действием иммунных ком­плексов. В результате происходит антигенная стимуляция элементов лимфоидной ткани, синтез аутоантител и формирование ауто-Т-лимфоцитов, разрушающих ставшие чужеродными клеточные антигены. Аутоиммунные процес­сы часто приводят к развитию осложнений при вирусных инфекциях. С аутоиммунными процессами связано, на­пример, возникновение орхита как осложнения при ви­русном паротите, обусловленного повышением проницае­мости кровеносных и лимфатических сосудов тестикулярной ткани; возникновение миокардита при инфекции, выз­ванной вирусами Коксаки. У больных хроническим ге­патитом В обнаруживаются клетки с цитотоксической активностью к гепатоцитам, которая реализуется в присут­ствии антител против специфического липопротеина пе­чени, находящегося на поверхности гепатоцитов.

Иммунокомплексная патология. Образование иммун­ных комплексов при взаимодействии вируса с антителами является важным механизмом, обеспечивающим выздоров­ление и формирование противовирусного иммунитета. Однако иммунные комплексы могут оказывать не только защитное, но и повреждающее действие на организм. Им­мунокомплексная патология широко распространена при вирусных инфекциях и играет значительно большую роль в их патогенезе по сравнению с другими инфекционными и неинфекционными болезнями.

В образовании иммунных комплексов участвуют преи­мущественно антитела класса IgG, однако их формирова­ние может происходить и с участием IgM- и IgA-антител. Так, IgM- и IgA-антитела в составе иммунных комплексов были обнаружены в клубочковых отложениях почек при алеутской болезни норок, инфекционном мононуклеозе, ге­патите В. Формирование иммунных комплексов происхо­дит как в жидкой среде, так и на поверхности зараженных вирусом клеток. Может происходить связывание антител с вирусными гликопротеидами, расположенными на по­верхности зараженных клеток, с последующим освобожде­нием иммунных комплексов во внеклеточное пространство. Такие иммунные комплексы образуются при кори. Размер, растворимость и биологическая активность комплексов за­висят от отношения антигена к антителу и их относитель­ной концентрации. Иммунные комплексы склонны к агре­гации и вторичному связыванию различных молекул: ком­понентов комплемента, антител к ним, антиглобулинов, антиидиотипических антител.

Судьба иммунных комплексов и их биологическая активность в организме могут быть различными. Они могут взаимодействовать с клетками иммунной системы путем связывания с рецепторами к Fc-фрагменту имму­ноглобулинов, при этом аффинитет к рецепторам иммун­ных комплексов повышен по сравнению с иммуноглобули­ном. Взаимодействие с рецептором ведет к активации клеток, секреции биологически активных веществ, кото­рые увеличивают проницаемость сосудов, активизируют свертывающую систему крови и т. д. Иммунные комплексы могут изменить гуморальный и клеточный ответ путем взаимодействия с В- и Т-клетками, усиливать или подавлять активность лимфоцитов.

Иммунные комплексы могут циркулировать в кровотоке и в межтканевой жидкости. Крупные иммунные комплексы быстро выводятся из циркуляции с участием системы мононуклеарных фагоцитов. Мелкие иммунные комплексы могут фиксироваться в стенках сосудов или мембранах почечных клубочков. Иммунные комплексы, находящиеся в межтканевых пространствах, плохо выводятся и вызы­вают локальное воспаление ткани. Укрупнение иммунных комплексов, их сорбция на стенках сосудов и тканях вызывают повреждение органов и тканей и обусловливают «болезни иммунных комплексов», патогенез которых связан с развитием гломерулонефрита. и впервые разра­ботан при сывороточной болезни.

Элементы иммунокомплексной патологии встречаются при большинстве вирусных инфекций и играют значитель­ную роль в их патогенезе. Наиболее изучена иммунокомплексная патология при гепатите В, герпетической инфек­ции, геморрагической лихорадке денге, подостром склерозирующем панэнцефалите. В продромальном периоде гепатита В возникают васкулиты и артриты, обус­ловленные циркулирующими иммунными комплексами, содержащими HBs-антиген и анти-НВв-антитела, и гломерулонефриты, связанные с гранулярными отложениями иммунных комплексов в ткани почек.

В ядрах гепатоцитов при хроническом гепатите В регулярно обнаруживают как вирусные антигены, так и антитела класса IgG, которые проникают в клетку в результате нарушения проницаемости клеточных мембран. Основным антигенным компонентом является HBs-антиген, однако в иммунных комплексах обнаруживаются НВс- и НВе-антигены. При геморрагической лихорадке денге иммунные комплексы обусловливают усиленную репродукцию вируса путем взаимодействия с Fc-рецепто-рами моноцитов и активацию системы комплемента. При инфекционном мононуклеозе, лимфоме Беркитта и назофарингеальной карциноме обнаружены иммунные комплексы, содержащие аутоантитела. У больных цитомегалией детей обнаружены циркулирующие иммунные комплексы и иммунные комплексы в мембранах почечных клубочков. При ряде вирусных инфекций иммунокомп­лексная патология лежит в основе патогенеза. Так, гибель мышей, внутриутробно зараженных вирусом лимфоцитарного хориоменингита, наступает впоследствии от иммунокомплексного гломерулонефрита; та же причина гибели наблюдается при алеутской болезни норок. При других вирусных инфекциях иммунокомплексная патология явно не выражена, однако она также играет роль в патогенезезаболевания. Например, при полиовирусной инфекции формирование иммунных комплексов, фиксирующихся в стенках кровеносных сосудов, приводит к нарушению их проницаемости и способствует проникновению вирус­ных частиц через гематоэнцефалический барьер.

Сохранение инфекционной активности вируса в составе иммунных комплексов является одной из основных причин возникновения хронических форм вирусных инфекций. При этом создается порочный круг: длительно текущий патологический процесс наносит ущерб репарационным системам гомеостаза организма, что, в свою очередь, приводит к созданию условий для персистенции вируса или его компонентов.

ИНТЕРФЕРОН

А. Айзекс и Ж. Линдеман в 1957 г. обнаружили, что клетки, зараженные вирусом, вырабатывают особое вещест­во, угнетающее размножение как гомологичных, так и гетерологичных вирусов, которое они назвали интерфероном. В дальнейшем было показано, что существует много интерферонов и поэтому следует говорить о системе интерферона. Если иммунная система обеспечивает белковый гомеостаз и через него устраняет чужеродную генетическую информацию, то система интерферона непосредственно воздействует на чужеродную генетиче­скую информацию, устраняя ее из организма на клеточном уровне, и тем самым обеспечивает нуклеиновый гомеостаз. Система интерферона тесно взаимодействует с иммунной системой.

Интерфероны являются белками с молекулярной массой, колеблющейся у разных интерферонов от 22х10 3 (мышиный интерферон) до 94х10 3 (интерферон форели).

Интерфероны закодированы в генетическом аппарате клетки. Гены для человеческого фибробластного интерфе­рона располагаются во 2-й, 9-й и длинном плече 5-й хромосомы, а ген, регулирующий транскрипцию - в коротком плече той же хромосомы. Ген, детерминирующий восприимчивость к действию интерферона, локализован в 21-й хромосоме. Ген для ά-интерферона располагается в 9-й хромосоме, для γ-интерферона - в 11-й хромосоме.

Система интерферона не имеет центрального органа, так как способностью вырабатывать интерферон обладают все клетки организма позвоночных животных, хотя наиболее активно вырабатывают его клетки белой крови.

Интерферон спонтанно не продуцируется интактными клетками и для образования его нужны индукторы, како­выми могут быть вирусы, бактериальные токсины, экстракты из бактерий и грибов, фитогемагглютинины, синтетические вещества - поликарбоксилаты, полисуль­фаты, декстраны, но наиболее эффективными индукторами интерферона являются двунитчатые РНК: двунитчатые вирусные РНК и двунитчатые синтетические сополимеры рибонуклеотидов (поли-ГЦ, поли-ИЦ) и др. Индукция интерферона происходит вследствие дерепрессии его генов.

Типы интерферонов. Известны три типа интерферонов человека: ά-интерферон, или лейкоцитарный интерферон, который продуцируется лейкоцитами, обработанными вирусами и другими агентами; β-интерферон, или фибробластный интерферон, который продуцируется фибробластами, обработанными вирусами и другими агентами. Оба эти интерферона принадлежат к типу 1. Более сильный γ-интерферон, или иммунный интерферон, принадлежит к типу 2. Имеется несколько подтипов ά-интерферона, и общее число их у человека доходит до 25. Сравнительная характеристика интерферонов человека приведена в табл. 14. Активность интерферонов измеряется в междуна­родных единицах (ME). Одна единица соответствует количеству интерферона, которое ингибирует репродукцию вируса на 50%.

При индукции интерферонов синтезируется два и более его типов. Так, при индукции интерферона на лимфобластах образуется 87% лейкоцитарного и 13% фибробластного интерферона, при индукции интерферона на фибробластах имеют место обратные соотношения. Между тремя типами интерферонов могут существовать синергические взаимодействия.

Свойства интерферонов. Интерфероны обладают видотканевой специфичностью. Это означает, что интерфе­рон человека действует только в организме человека, но неактивен в организме других биологических видов. Конечно, барьеры видовой специфичности не абсолютны: интерферон человека проявляет некоторую активность в тканях человекообразных обезьян, а куриный интерфе­рон в организме близких видов семейства куриных. Однако активность интерферона в гетерогенных организмах резко

снижается. Поэтому можно заключить, что интерфероны, появившиеся у позвоночных, эволюционировали вместе с хозяевами. Интерферон является относительно устой­чивым белком и хорошо переносит кислую среду (рН 2,2), что используется для выделения его и очистки. Антигенные свойства интерферонов мало выражены, в связи с чем антитела к нему удается получить лишь после многократных иммунизации.

Интерфероны не обладают специфичностью в отноше­нии вирусов и действуют угнетающе на репродукцию различных вирусов, хотя разные вирусы обладают неоди­наковой чувствительностью к интерферону. Чувствитель­ность к нему обычно совпадает с индуцирующей актив­ностью к интерферону. Наиболее часто применяемыми индукторами интерферона и тест-вирусами для его титрования являются рабдовирусы (вирус везикулярного стоматита), парамиксовирусы, тогавирусы. Продукция интерферона зависит также от характера применяемых клеток. Существуют клетки, дефектные по нескольким генам интерферона.

Интерфероны оказывают антивирусное, противоопухо­левое, иммуномодулирующее и многие другие действия. Наиболее изучено их антивирусное действие, и именно на вирусных моделях выяснены биологические и другие свойства интерферонов.

Интерферон оказывает противоопухолевое действие при парентеральном введении в больших дозах, связанное с подавлением им цитопролиферативной активности. Добавление интерферона к культуре нормальных клеток сопровождается уже через 2 ч угнетением в них синтеза ДНК. При вирусиндуцированных опухолях интерферон угнетает репродукцию онковирусов и одновременно подав­ляет цитопролиферативную активность.

Интерферон является регулятором различных меха­низмов иммунного ответа, оказывая стимулирующее или угнетающее действие на иммунные реакции.

Механизм действия интерферона. Интерферон связы­вается с клеточными рецепторами, находящимися на плазматической мембране, что служит сигналом для дерепрессии соответствующих генов. В результате индуци­руется синтез особой протеинкиназы, которая при­сутствует в следовых количествах во всех клетках млекопитающих и активируется низкими концентрациями двунитчатой РНК, а в зараженных вирусами клетках - вирусными репликативными комплексами.

Протеинкиназа фосфорилирует ά-субъединицу иниции­рующего фактора трансляции eIF-2, и фосфорилирование блокирует активность инициирующего фактора. В результате иРНК, связанная с инициирующим комплек­сом, не может связаться с большой рибосомальной субъ­единицей, и поэтому ее трансляция блокируется. Ини­циирующий фактор eIF-2 в одинаковой степени необ­ходим для трансляции как клеточных, так и вирусных иРНК, однако преимущественно блокируется трансляция вирусных иРНК, связанных с вирусными двунитчатыми РНК-структурами, в результате локальной активации протеинкиназы.

В обработанных интерфероном клетках индуцируется синтез фермента - синтетазы, которая катализирует 2,5-олигоадениловую кислоту, переключающую действие клеточных нуклеаз на разрушение вирусных иРНК. Таким образом, вирусные иРНК подвергаются разруше­нию нуклеазами. Блокирование интерфероном стадии инициации трансляции и разрушение иРНК обусловливают его универсальный механизм действия при

инфекциях, вызванных вирусами с разным генетическим материалом.

Применение интерферонов. Интерфероны применяются для профилактики и лечения ряда вирусных инфекций. Их эффект определяется дозой препарата, однако высокие дозы интерферона оказывают токсическое действие. Интерфероны широко применяются при гриппе и других острых респираторных заболеваниях. Препарат эф­фективен на ранних стадиях заболевания, применяется местно, например путем закапывания или введения с помощью ингалятора в верхние дыхательные пути в кон­центрациях до 3-10 4 - 5-10 4 ед. 2-3 раза в день. При конъюнктивитах интерферон применяют в виде глазных капель. Интерфероны оказывают терапевтическое действие при гепатите В, герпесе, а также при злокачественных ново­образованиях. При этих заболеваниях назначают более высокие концентрации. Препарат применяется парентераль­но - внутривенно и внутримышечно в дозе 10 5 ед. на 1 кг массы тела. Более высокие дозы оказывают побочное дей­ствие (повышение температуры, головная боль, выпадение волос, ослабление зрения и т. д.). Интерферон может вызвать также лимфопению, задержку созревания макро­фагов, у детей - тяжелые шоковые состояния, у больных с сердечно-сосудистыми заболеваниями - инфаркт мио­карда. Очистка интерферона значительно снижает его ток­сичность и позволяет применять высокие концентрации. Очист­ка осуществляется с помощью аффинной хроматографии с использованием моноклональных антител к интерферону.

Генноинженерный интерферон. Генноинженерный лейкоцитарный интерферон получают в прокариотических системах (кишечной палочке). Биотехнология получения интерферона включает следующие этапы: 1) обработка лейкоцитарной массы индукторами интерферона; 2) вы­деление из обработанных клеток смеси иРНК; 3) получение суммарных комплементарных ДНК (кДНК) с помощью обратной транскриптазы; 4) встраивание кДНК в плазмиду кишечной палочки и ее клонирование; 5) отбор клонов, содержащих гены интерферона; 6) вклю­чение в плазмиду сильного промотора для успешной транскрипции гена; 7) экспрессия гена интерферона, т. е. синтез соответствующего белка; 8) разрушение прокарио-тических клеток и очистка интерферона с помощью аффин­ной хроматографии. Получены высокоочищенные и концентрированые препараты интерферона, которые испытываются в клинике.

Микробиология: конспект лекций Ткаченко Ксения Викторовна

4. Особенности противовирусного иммунитета

Противовирусный иммунитет начинается со стадии презентации вирусного антигена Т-хелперами.

Сильными антигенпрезентирующими свойствами при вирусных инфекциях обладают дендритные клетки, а при простом герпесе и ретровирусных инфекциях – клетки Лангерганса.

Иммунитет направлен на нейтрализацию и удаление из организма вируса, его антигенов и зараженных вирусом клеток. Антитела, образующиеся при вирусных инфекциях, действуют непосредственно на вирус или на клетки, инфицированные им. В этой связи выделяют две основные формы участия антител в развитии противовирусного иммунитета:

1) нейтрализацию вируса антителами; это препятствует рецепции вируса клеткой и проникновению его внутрь. Опсонизация вируса с помощью антител способствует его фагоцитозу;

2) иммунный лизис инфицированных вирусом клеток с участием антител. При действии антител на антигены, экспрессированные на поверхности инфицированной клетки, к этому комплексу присоединяется комплемент с последующей его активацией, что и обуславливает индукцию комплементзависимой цитотоксичности и гибель инфицированной вирусом клетки.

Недостаточная концентрация антител может усиливать репродукцию вируса. Иногда антитела могут защищать вирус от действия протеолитических ферментов клетки, что при сохранении жизнеспособности вируса приводит к усилению его репликации.

Вируснейтрализующие антитела действуют непосредственно на вирус лишь в том случае, когда он, разрушив одну клетку, распространяется на другую.

Когда вирусы переходят из клетки в клетку по цитоплазматическим мостикам, не контактируя с циркулирующими антителами, то основную роль в становлении иммунитета играют клеточные механизмы, связанные прежде всего с действием специфических цитотоксических Т-лимфоцитов, Т-эффекторов и макрофагов. Цитотоксические Т-лимфоциты непосредственно контактируют с клеткой-мишенью, повышая ее проницаемость и вызывая осмотическое набухание, разрыв мембраны и выход содержимого в окружающую среду.

Механизм цитотоксического эффекта связан с активацией мембранных ферментных систем в зоне прилипания клеток, образованием цитоплазматических мостиков между клетками и действием лимфотоксина. Специфические Т-киллеры появляются уже через 1–3 дня после заражения организма вирусом, их активность достигает максимума через неделю, а затем медленно понижается.

Одним из факторов противовирусного иммунитета является интерферон. Он образуется в местах размножения вируса и вызывает специфическое торможение транскрипции вирусного генома и подавление трансляции вирусной мРНК, что препятствует накоплению вируса в клетке-мишени.

Стойкость противовирусного иммунитета вариабельна. При ряде инфекций (ветряной оспе, паротите, кори, краснухе) иммунитет достаточно стойкий, а повторные заболевания встречаются крайне редко. Менее стойкий иммунитет развивается при инфекциях дыхательных путей (гриппе) и кишечного тракта.

Из книги Разведение собак автора Хармар Хиллери

Течка. Особенности. Поведение. Самки домашней собаки обычно регулярно «текут» дважды в год, в то время как самки некоторых диких собачьих и примитивные породы собак часто имеют течки только один раз в год. Время наступления половой зрелости различно для разных пород, но у

Из книги Основы зоопсихологии автора Фабри Курт Эрнестович

Сенсорные особенности В полном соответствии с высокоразвитыми эффекторными системами высших позвоночных находится и высокий уровень их сенсорных способностей. Наибольшее значение имеют органы слуха и равновесия (внутреннее ухо, начиная с земноводных - дополнительно

Из книги Микробиология: конспект лекций автора Ткаченко Ксения Викторовна

1. Понятие об иммунитете. Виды иммунитета Иммунология – это наука, предметом изучения которой является иммунитет.Инфекционная иммунология изучает закономерности иммунной системы по отношению к микробным агентам, специфические механизмы противомикробной защиты.Под

Из книги Микробиология автора Ткаченко Ксения Викторовна

18. Предмет иммунологии. Виды иммунитета Иммунология – это наука, предметом изучения которой является иммунитет.Инфекционная иммунология изучает закономерности иммунной системы по отношению к микробным агентам, специфические механизмы противомикробной защиты.Под

Из книги Общая экология автора Чернова Нина Михайловна

4.3.1. Особенности почвы Почва представляет собой рыхлый тонкий поверхностный слой суши, контактирующий с воздушной средой. Несмотря на незначительную толщину, эта оболочка Земли играет важнейшую роль в распространении жизни. Почва представляет собой не просто твердое

Из книги Беседы о новой иммунологии автора Петров Рэм Викторович

Какие дефекты иммунитета известны науке? - Какие же формы иммунодефицитов известны науке? - Чтобы ответить на этот вопрос, необходимо вспомнить устройство и работу иммунной системы. Иммунный ответ организма на любое чужеродное вторжение складывается из двух

Из книги Сфинксы XX века автора Петров Рэм Викторович

Рак, аллергия и другие промахи иммунитета Раковые клетки возникают из клеток собственного тела. Значит, они свои, а не чужие. Значит, иммунная система не может их «увидеть». - Иммунная система организма направлена на то, чтобы уничтожать любые клетки, которые были или

Из книги Экология [Конспект лекций] автора Горелов Анатолий Алексеевич

Что делают для стимуляции противоракового иммунитета. - Наверное, это еще не умеют? - Да, в отношении раковых антигенов не умеют. - А что же делают, чтобы стимулировать противораковый иммунитет? Когда произносишь слово «история», возникают представления

Из книги Основы психофизиологии автора Александров Юрий

Аллергия - еще один промах иммунитета. - По–моему, опасность преувеличена. Если повторное введение чужеродных белков может принести вред, не надо их вводить. - Повышенная чувствительность к чужеродным белковым веществам не была бы серьезной медицинской

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

Иммунная система состоит из тысячи лимфоцитных клонов. Теория иммунитета. - Что такое клон и обязательно ли он вреден? - Нет, иммунная система состоит из тысячи лимфоцитарных клонов. - Из тысячи? - Может быть, и больше. Кажется, уже все привыкли, что

Из книги Гены и развитие организма автора Нейфах Александр Александрович

Армия иммунитета Пришла пора выяснить, какое оружие и кто солдаты непобедимой армии иммунитета. Именно непобедимой, не возражайте. Не приводите в качестве примеров ужасающие и опустошительные эпидемии «черной смерти» (чумы) в Западной Европе XIV века. Помнит автор и про

Из книги автора

5.2. Особенности эволюции Понятие хаоса в противоположность понятию космоса было известно древним грекам. Синергетики называют хаотическими все системы, которые приводят к несводимому представлению в терминах вероятностей. Другими словами, такие системы нельзя описать

Из книги автора

2.7. Особенности метода ССП В последние десятилетия разработаны методы регистрации активности мозга, обладающие значительными исследовательскими возможностями (см. также гл. 2). Однако и при разработке новых методов исследований активности мозга, и при верификации

Из книги автора

Индивидуальные особенности Следует помнить, что описанная схема поведения является только схемой. Реальный организм всегда обладает индивидуальностью, т. е. конкретный человек отличается от всех остальных удельным весом отдельных компонентов поведенческого акта. Мы

Из книги автора

1. Клональная теория иммунитета Принципиальные отличия клональной теории Барнетта от всех предыдущих становятся понятнее, если антиген сравнить с замком, а антитело к нему - с ключом, которое отпирает именно этот замок, выбирая его из множества других. Трудность решения

Из книги автора

2. Клеточные механизмы иммунитета Иммунитет осуществляется лимфоцитами, которые, как и все клетки крови, образуются из одного источника - стволовых клеток крови в костном мозге и селезенке. Начальным этапом образования лимфоцитов являются полустволовые клетки -

В макроорганизме вирус может находиться в различных состояниях:

    внеклеточно (вирион);

    внутриклеточно, на разных стадиях быстрого или медленного продуктивного взаимодействия с чувствительной клеткой (вирус);

    быть интегрированным в геном клетки-мишени (непродуктивное взаимодействие, провирус).

Соответственно этим основным состояниям вируса формирующийся противовирусный иммунитет направлен на нейтрализацию и удаление вируса и его антигенов из организма, что достигается с помощью антител, а также на уничтожение собственных инфицированных вирусом клеток-мишеней цитотоксическими Т-лимфоцитами (Тс).

Образующиеся при вирусных инфекциях антитела IgG могут участвовать в разных биологических реакциях.

1. Нейтрализация инвазивных свойств вирионов. Образовавшийся комплекс связывается с поверхностью макрофага за счет его Fc-рецепторов. Поглощение комплекса обычно ведет к гибели возбудителя (рис. 58), непоглощенные иммунные комплексы могут диссоциировать, а освободившиеся вирионы заражают чувствительные клетки. Длительная циркуляция непоглощенных и недиссоциированных иммунных комплексов по всему организму может приводить к депонированию их в различных тканях организма и индуцировать развитие местных воспалительных реакций через активацию системы комплемента или интерлейкинов после фиксации комплекса клетками, имеющими рецептор к Fc-фрагменту антител (гепатит В, инфекционный мононуклеоз, подострый склерозирующий панэнцефалит и др.).

2. Антителоопосредованный комплемент-зависимый цитолиз зараженных вирусом клеток-мишеней представлен на рис. 58. Лизис мембраны зараженной клетки происходит за счет мембраноатакующего комплекса (МАК) комплемента. Освободившиеся вирионы подвергаются воздействию антител.

3. Антителоопосредованный цитолиз клеток-мишеней макрофагами и гранулоцитами при выделении ими в момент контакта с пораженной клеткой гранзимов и цитолизинов (рис. 58). Такие макрофаги и гранулоциты должны иметь Fc-рецепторы. Специфичностью по отношению к вирусному антигену они не обладают. Цитотоксические Т-лимфоциты в этой реакции не участвуют. Их активность от наличия антител не зависит. Разрушение пораженных вирусом клеток осуществляется также цитотоксическими Т-лимфоцитами Тс (рис. 59). Тс способны лизировать инфицированные вирусом клетки, реагируя на вирусный антиген представленный клеткой на ГКГС-I.

Рис. 58. Участие АТ в противовирусном иммунитете

а) Нейтрализация антителами свободных вирионов.

б) Антителопосредованный комплиментзависимый цитоз клетки – мишени.

в) Антителопосредованный цитоз гранулоцитами.

Для цитотоксического действия Тс-лимфоцитам необходим непосредственный контакт с клеткой-мишенью. После этого происходит выделение Тс-лимфоцитом гранзимов или цитолизинов, вызывающих изменение мембранной проницаемости клетки-мишени. Ее осмотическое набухание, разрыв мембраны и выход содержимого цитоплазмы в микроокружающую среду.

Рис. 59. Взаимодействие цитотоксического

Т-лимфоцита с клеткой – мишенью.

Способностью к интеграции вирусной нуклеиновой кислоты в геном клетки-мишени обладают ДНК-содержащие вирусы и ретровирусы. Потомство зараженной клетки наследует провирус. Вирусные антигены (белки) в клетке не синтезируются, они не представлены на ГКГС-I. Иммунному надзору такая клетка не поддается.

ОСНОВНАЯ ЛИТЕРАТУРА

    Авакян А.А., Быковский А.Ф. Атлас анатомии и онтогенеза вирусов человека и животных. М., 1970.

    Бережная Н.М., Бобкова Л.П., Петровская И.А., Ялкут С.И. Аллергология. – Киев. – 1986. – 445с.

    Вирусология. Под ред. Б. Филдса и Д. Найпа. – т. 1. – М. «Мир», 1989. – 494с.

    Гусев М.В., Минеева Л.А. Микробиология. М., МГУ. – 1994. – 294с.

    Джавец Э., Мелькик Дж. Л., Эйдельберт Э.А. Руководство по медицинской микробиологии. М., 1982, Т.1. – 264с.

    Западнюк И.П., Западнюк В.И., Захарня Е.А. Лабораторные животные. – Киев. – 1983. – 292с.

    Кашкин П.Н., Лисин В.В. Практическое руководство по медицинской микологии. М., 1983. – 185с.

    Коротяев А.И., Бабичев С.А. Медицинская микробиология с иммунологией и вирусологией. С.-Петербург, 1998. -–592с.

    Льюин Б. Гены. – Мир, 1987. – 544с.

    Маянский А.Н. Микробиология для врачей. Издательство НГМА, Нижний Новгород, 1999. – 450с.

    Медицинская микробиология. Под ред. В.И. Покровского и О.Е. Поздеева. М.- «Геотар медицина» - 1998. – 1184с.

    Микробиология и иммунология. Под ред. А.А. Воробьева. М. – «Медицина» - 1999. – 464с.

    Плейфер Дж. Наглядная иммунология. М. – ГЭОТАР Медицина. – 1999. – 96с.

    Шлегель Г. Общая микробиология. – М., Мир. – 1987. – 566с.