История процессоров Intel Atom. Процессоры Intel Atom

Разработкой семейства процессоров Atom фирма Intel расширяет свое присутствие на активно развивающемся рынке компонентов для портативных компьютеров и мобильных интернет-планшетов (англ. MID - Mobile Internet Devices). Какие же бывают процессоры Atom? Чем они отличаются друг от друга и какие у них конкуренты? Об этом, собственно, мы сейчас и поговорим.

Отдельные модели процессоров Atom предназначены для использования в сверхэкономичных бюджетных ноутбуках и настольных компьютерах. Такие компьютеры, обладая очень малым энергопотреблением и уменьшенными размерами при оптимальной стоимости, могут использоваться для просмотра видеофильмов и фотографий, общения в интернет, работы с электронной почтой, просмотра сайтов и в процессе обучения. Чтобы отличать такие устройства от традиционных настольных ПК и ноутбуков, называет их и nettops .

Архитектура процессора Atom

Семейство процессоров Intel Atom разработано на основе архитектуры х86, используемой во всех процессорах для IBM PC совместимых компьютеров. Однако новые процессоры Intel не являются дальнейшим развитием существующих серий. Процессоры Atom разработаны на основе технологии RISC (англ. Reduced Instruction Set Command), предполагающей использование сокращенного набора исполняемых команд (инструкций), в отличие от традиционных CISC-процессоров (англ. Сomplex Instruction Set Command), работающих с полным набором команд.

Совершенствование технологий производства и оптимизация внутренней структуры процессоров в рамках существующей архитектуры х86 позволили достичь впечатляющего уровня производительности даже для систем бюджетного уровня. Одно из направлений совершенствования процессоров - усложнение внутренней структуры, для возможности выполнения сложных действий в рамках одной команды. Однако для декодирования таких команд требуются значительные аппаратные ресурсы, возрастает число тактов, необходимое для их отработки, увеличивается энергопотребление.

С другой стороны такие команды в исполняемом коде встречаются не часто и далеко не в каждой программе. Идея RISC-технологии основана на использовании ограниченного набора команд с коротким циклом исполнения (в идеале за один такт синхронизации). Аппаратная реализация такой архитектуры позволяет выполнять программный код с минимальными временными затратами, в идеальном случае одну команду - за один такт синхронизации. В конечном результате сокращается энергопотребление, появляется возможность снижать рабочие частоты, уменьшать размеры процессоров.

Вместе с тем сохранена совместимость с программами для CISC-процессоров. Отсутствующие в наборе процессоров команды исполняются после предварительного программного перекодирования их в поддерживаемые RISC команды. Что вполне оправдано при незначительном присутствии сложных команд в исполняемом программном коде.

Возможности Atom

Итак, в основе идеологии разработки Atom лежит использование сокращенного набора команд, что позволило, отказавшись от размещения на кристалле чипа ряда регистров и других узлов, существенно сократить общее количество используемых транзисторов, значительно снизить энергопотребление. Процессор Atom в настоящее время является самым компактным и экономичным процессором компании Intel, производится на основе 45-нанометровой технологии под сокеты BGA и FCBGA. А в следующем году по заявлению руководителей компании процессор Intel Atom станет первым чипом, производимым с использованием техпроцесса в 32 нанометра.

В настоящее время Intel производит две серии процессоров Atom. Первая, основанная на ядре Silverthorne , называется Z (процессоры Z500-Z540) и предназначена для использования в мобильных устройствах с возможностью подключения к интернет (MID). Для совместного использования с этими процессорами разработаны чипсеты: UL11L, US15L, US15W.

Вторая серия на ядре Diamondville включает модели: Atom N270, Atom 230 и Atom 330, используется для разработки экономичных настольных систем (так называемых Nettop) и сверх экономичных бюджетных ноутбуков (Netbook). Большая часть процессоров (за исключением модели Atom 330) пока являются одноядерными.

В таблице представлены основные характеристики процессоров Intel Atom, все Atom имеют кэш-память L1 объемом 56 кбайт, из которых 32 кбайт отведено под кэш инструкций, а 24 кбайт для данных. Все процессоры Atom исполняют 32-битный код и поддерживают дополнительные наборы инструкций MMX, SSE, SSE2, SSE3 и SSSE3, а также технологию Hyper-Threading, позволяющую исполнять два параллельных потока команд.

Номер модели Частота, МГц FSB, МГц Кэш L2, Мбайт TDP, Вт
Atom 230 1600 533 512 4
Atom 330 1600 533 1 000 8
Atom N270 1600 533 512 2,5
Atom Z500 800 400 512 0,65
Atom Z510 1100 400 512 2
Atom Z520 1333 533 512 2
Atom Z530 1600 533 512 2
Atom Z540 1866 533 512 2,4

Процессоры на ядре Diamondville , являясь 64-разрядными, поддерживают и 32-битный, и 64-битный код. Наиболее производительный на сегодня Atom 330 работает на частоте 1,6 ГГц (при частоте FSB - 533 МГц), на каждое из ядер приходится по 512 кбайт кэш-памяти L2. С целью снижения энергопотребления и увеличения времени автономной работы в процессорах использованы технологии Enhanced Deeper Sleep и Enhanced Intel SpeedStep. При отсутствии активности процессора Enhanced Deeper Sleep позволяет перемещать данные из кэш-памяти в системную.

Усовершенствованная технология Enhanced Intel SpeedStep использует несколько изменяемых значений тактовой частоты и напряжения питания ядра процессора. Таким образом, обеспечивается гибкость оптимизации энергопотребления и производительности. Процессоры Atom настолько экономичны, что большая часть общего энергопотребления компьютеров приходится на долю чипсета и прочих периферийных устройств. Поэтому оптимизация энергопотребления этих компонентов предстоящая задача для разработчиков Intel.

Intel, первой предложившая платформенный подход, предполагающий разработку полного комплекта компонентов для ноутбуков, придерживается этого принципа и для процессоров Atom. Серия процессоров для ноутбуков продвигается в рамках бренда Centrino . А существующий на сегодня набор компонентов для разработки MID и других портативных устройств объединен в платформе Menlow.

Конкуренты Atom

В настоящее время вполне успешными конкурентами для процессоров Atom могут быть чипы сразу от трех производителей. В сегменте бюджетных и энергоэкономичных ноутбуков достойным конкурентом выглядит процессор Isaya от корейской фирмы VIA . В июне 2008 года известнейший производитель графических процессоров фирма представила свой процессор для мобильных систем под названием Tegra . Процессор предназначен для использования в составе КПК, мобильных телефонов, игровых и GPS систем, заявленное энергопотребление Tegra ниже, чем у Atom.

Основной конкурент Intel - компания успешно развивает свою мобильную платформу на основе процессора Geode , оптимизированного для использования в экономичных бюджетных ноутбуках, ультрамобильных портативных компьютерах (UPMC).

Перспективы Atom

В начале следующего появится линейка процессоров Atom c улучшенными показателями. Еще более упрочить позиции Intel в соперничестве с конкурентами должна новая мобильная платформа под называнием Moorestown, в рамках которой уже в следующем году появится очередное поколение процессоров с целым рядом серьезных, усовершенствований. В состав процессора будет интегрировано графическое ядро и одноканальный контроллер памяти DDR2. На основе таких чипов можно будет создавать однокристальную компьютерную систему SOC (англ. system-on-chip).

Объединение функций сразу нескольких микросхем в одной позволит еще более снизить потребляемую мощность, которая станет на порядок меньше аналогичного параметра для платформы Intel Atom.

Очередной мой переводной материал. На этот раз героем является процессор Intel Atom C3958, тестирование которого провел интернет-ресурс servethehome. Но не спешите закрывать страницу, т. к. речь пойдет не о хилом, немощном нечто, мало пригодном для обычного использования, а о сравнительно недавно анонсированной 3000-й серии этих процессоров (а, по сути, SoC), ориентированных на применение в хранилищах данных, встраиваемых решениях, серверах. Итак, Intel Atom C3958 – обзор и результаты тестирования топового процессора в этом семействе.

Описание и характеристики

В 3-е поколение семейства процессоров Atom, имеющих кодовое имя «Denverton», входит довольно большое количество моделей. Самый младший процессор имеет всего 2 ядра, ну а старшенький (о котором сейчас и идет речь), может похвастаться аж 16-ю ядрами.

В определенной степени можно сказать, что имеется как минимум 2 топовые модели, это C3958 и ее близкий родственник — C3955. Приведу основные характеристик обеих моделей.

Процессор C3955 C3958
Количество ядер 16
Количество потоков 16
Базовая частота (Turbo Boost), ГГц 2.1 2.0
Макс. частота, ГГЦ 2.4 2.0
Макс. объем памяти, ГБ 256
Кол-во линия PCI-Express 8
Макс. кол-во SATA 16
Встроенная поддержка LAN 4×10/2.5/1 GbE
Поддержка Intel® QuickAssist +
TDP, Вт 32 31
Рекомендуемая цена, $ 434 449

Собственно, различия не сказать, чтобы сильно бросались в глаза. Причем C3955 имеет поддержку Turbo Boost, а вот старший Atom подобного «турбонаддува» лишен. Казалось бы, не ему быть топовой моделью, но все же главное его отличие от C3955 – это поддержка технологии Intel® QuickAssist.

Кратко о том, что такое QuickAssist, или сокращенно – QAT. Это набор программно-аппаратных средств для ускорения шифрования и сжатия данных. Очень помогает QuickAssist в случаях, когда необходимо производить сжатие данных «на лету», шифровать потоки данных, обеспечить работу криптографии и т. п. В общем, все, что связано с защитой данных, аутентификацией, обеспечением безопасности. QAT существенно ускоряет работу приложений, причем весьма существенно.

Надо заметить, что эта полезная функция входит в состав не каждой модели. Вот и C3955 ее лишен, хотя имеет свои достоинства. QuickAssist использовался и процессорами Atom серии C2xxx, но в новом поколении использование технологии вышло на более высокий уровень. Так, в отличие от Atom C2xxx, для C3xxx не требуется специальный драйвер. В тестировании функция QAT была активирована, хотя в представленных ниже тестах она не использовалась.

Собственно, наличие QAT – едва ли не единственный аргумент в пользу именно C3958, а не C3955, хотя повод весьма веский. Если же выполняемые задачи не подразумевают использование шифрования, сжатия данных, в общем того, для чего нужна эта технология, то смысла в выборе именно C3958 нет.

О том, что это именно серверный продукт, говорят характеристики процессора. Здесь и поддержка большого объема памяти, и наличие 16-мегабайтного кэша L2 (по 1 МБ на каждое ядро), причем ECC, 4-х 10-гигабитных интерфейсов, 16-ти SATA устройств, технологий виртуализации VT-x, VT-d и т. п. Кстати, этот процессор не поставляется покупателям как отдельный компонент, а только в составе как минимум материнской платы.

Для тех, кому интересно, приводим результат выполнения линуксовой команды lscpu, выводящей подробную информацию о процессоре и всех его особенностях.

Тестовый стенд

Для проведения испытания была собрана следующая конфигурация:

  • Материнская плата: Gigabyte MA10-ST0 с распаянным на нем процессором Intel Atom C3958.
  • Память: 4x 16GB DDR4-2400 RDIMMs (Micron).
  • SSD: Intel DC S3710 400GB.
  • Загрузочное устройство: Intel DC S3700 200GB.

Немного подробнее про системную плату. Она весьма интересна для построения хранилищ данных. «На борту» у нее 4 слота для установки памяти, флеш-память eMMC объемом 32 ГБ производства Kingston, 2 10-гигабитных порта SFP и столько же гигабитных сетевых портов. При этом имеется разъем PCIe x8, а также 4 разъема SFF8087 для подключения 16 SATA накопителей.

Подробный обзор данной материнской платы скоро будет, но сейчас можно сказать, что максимальное потребление с двумя 10Gb SFP+ подключениями и двумя подключенными гигабитными интерфейсам составило 61 Вт.

Результаты тестов

Мы использовали наши старые, проверенные Linux-Bench скрипты. У нас есть более свежая подборка скриптов, но в данном случае она показалась не столь нужной, т. к. основное предназначение данной платформы – это встроенные приложения. При использовании подобной конфигурации в хранилищах данных или в сетевых устройствах встроенные приложения не имеют высокой нагрузки, и использование расширенных наборов команд AVX2 и AVX-512 видится излишним.

В своих прошлых проверках мы убедились, что лучшими ОС для процессоров Intel Atom серии C2000 являются Linux и FreeBSD. Windows мало распространена на таких платформах, и мы не советуем использовать данную платформу в качестве обычного компьютера. Для этого найдется масса других, более выигрышных вариантов.

Python Linux 4.4.2 Kernel Compile Benchmark

Этот тест мы используем часто. Используется стандартный конфигурационный файл, ядро Linux 4.4.2, взятое с kernel.org, и стандартно генерируемая конфигурация нагружает каждый поток в системе. Результаты показывают количество компиляций в час.

Полученные результаты показали очень неплохую производительность, которая соизмерима с результатами 8-ядерного процессора Xeon D. Модель C3955 показала немного лучшие результаты. Это неудивительно, все же различия в микроархитектуре должны проявляться в работе процессоров.

c-ray 1.1

Еще один постоянно используемый нами тест трассировки лучей, весьма популярный и показывающий разницу работы в многопоточных системах.

Показанная производительность и тут хороша. Ожидаемо более «шустрый», да еще турбированный C3955 показал более высокие результаты. Что интересно, Intel Xeon E3 продемонстрировал схожую производительность, но у него нет многих функций, которые есть у Atom, да еще и потребляемая мощность у него выше.

7-zip Compression

Очень популярное и часто используемое кроссплатформенное приложение для архивации/разархивации данных.

Полученные результаты очень неплохи. Конечно, 16 ядер Atom это не 16 ядер Xeon D, и тягаться с последним не получится. В данном случае не используется QAT, а это могло бы заметно изменить результаты, и в этом мы скоро убедимся. Если же говорить о производительности, то по скорости сжатия Intel Atom C3958 можно расположить где-то между 6-ю и 8-ядерными Xeon D. Скорость разархивации находится на где-то между 8-ю и 12-ядерными Xeon D.

Sysbench CPU test

Очередной популярный тест на платформе Linux. Мы использовали именно тест CPU, а не OLTP, который применяется при проверке накопителей.

Пришлось убрать результаты процессоров C2358 и D525 из-за низких значений, что сделало бы график сложночитаемым. Тест хорошо масштабируется и отлично нагружает все имеющиеся ядра процессора. Неудивительно, что 16 ядер пришлись очень «ко двору».

OpenSSL

Криптографический пакет, используемый для шифрования обмена между серверами. Мы получили следующий результат.

При повторной проверке получилось следующее (мы отсортировали результаты в том же порядке, что и в первом прогоне тестов, чтобы было удобнее).

Как мы видим, Intel Atom C3958 соперничает со сходным по цене Xeon Silver 4108, который предназначен для более мощных серверов. Но более интересным в данном случае является сравнение с предыдущим 2000-м поколением процессоров Atom. Топовый C2758 с включенным QAT оказался в 4 раза медленнее C3958, в котором не использовалась данная функция. Это важно, т. к. OpenSSL часто используется именно в сетевых устройствах и системах хранения данных.

UnixBench Dhrystone 2 и Whetstone Benchmarks

Тесты старые, но пока мы продолжаем использовать их по многочисленным просьбам. Результаты UnixBench Dhrystone 2.

Результаты Whetstone Benchmarks.

В данном случае видим явную пользу от многоядерности, т. к. в данном случае это компенсирует те компромиссы в микроархитектуре, на которые пришлось пойти для снижения энергопотребления. В данном случае вариант, когда «числом, а не уменьем».

Заключение

Это совсем не тот «Атом», который сразу приходит на ум при упоминании этого семейства процессоров. Базовая частота Atom C3958 не так велика по нашим временам, нет поддержки технологии «Turbo Boost», нет кэш-памяти третьего уровня, нет поддержки набора команд AVX2/ AVX-512, но 16 ядер, по 1 МБ кэша L2 на каждое ядро, существенные улучшения в IPC (Inter Process Communications) позволяют ему соперничать в производительности с Xeon D и Xeon Bronze/Silver.

Естественно, последние более подходят для виртуализации и обычного применения, но в сетевых устройствах и устройствах хранения данных «атомные» процессоры весьма хороши.

Сейчас много говорят об AMD EPYC, но у AMD нет своих решений, способных конкурировать в данном сегменте по совокупности характеристик. Так, EPYC 7251 имеет TDP в 120 Вт (сравните с Atom), имея 8 ядер, 16 потоков, правда, поддерживая увеличение частоты до 2.9 ГГц. Правда, и целей занять свою нишу именно в этом сегменте у AMD нет, по крайней мере, с EPYC.

Активность проявляла компания ARM, но сочетание производительности и использование технологий ускорения функций криптографии и компрессии данных, которое есть в 3000-й серии процессоров Atom, позволяют Intel уверенно чувствовать себя в ближайшем будущем.

Если рассматривать топовые решения с поддержкой QAT, то можно увидеть существенный прогресс, по сравнению с предыдущим поколением (Atom C2758). Единственное, что снизилось — это тактовая частота (примерно на 17 %). В остальном – сплошные улучшения. Судите сами, количество ядер удвоилось (с 8 до 16), объем кэша и максимального объема памяти увеличился вчетверо (до 16 МБ и 256 ГБ соответственно), PCIe обновила поколение, появилась поддержка 10-гигабитной сети. Вот только за существенно возросшую производительность пришлось заплатить возросшим TDP.

К сожалению, увеличились, и существенно, цены. Правда, широкая линейка моделей позволяет подобрать вариант (например, Atom C3758), который дешевле, и может с успехом заменить предыдущий топовый процессор в соответствующих областях применения.

Благостную картину существенно возросшей производительности только портит цена, т. к. при стоимости в 449 $ Atom C3958 конкурирует с Intel Xeon Silver 4108 и Xeon D lines, а это, как ни крути, птицы несколько другого полета.

31 июля 2012 в 12:41

Когда Atom быстрее чем Core?

  • Блог компании Intel

Наглухо застряв в пробке за рулем машины, теоретически способной развивать скорость более 200 км\ч, и глядя, как меня обгоняют велосипедисты на трехколесных велосипедах, я задумалась… нет, не о том, как пересадить всех на велосипеды, и не о решении транспортных проблем человечества с помощью телепортации, а… о процессорах Intel Core и Intel Atom. А именно - Atom по сравнению с Core - это, фактически, мотороллер по сравнению с автомобилем. Он потребляет меньше топлива и стоит заметно дешевле. Но зато и скорость скутера столь же заметно уступает авто (несмотря даже на способы «разогнать» мотороллер выше заводских установок). Но, все же, в пробках или на узких улочках скутер оказывается быстрее. Недаром скутер получил свое название от английского «to scoot » - удирать, так как успешно использовался английскими подростками для спасения от полиции.
Теперь вернемся к CPU. Заменим «топливо» на «электричество», а «скорость» на «производительность», и получим полную аналогию поведения Inel Atom и Intel Core. Но тогда разумно предположить, что существуют такие «пробки»и «закоулки», в которых Atom обгонит Core. Давайте их поищем.


Итак, по всем общепринятым замерам производительности Intel Core существенно обгоняет Atom. В разделе «Производительность» статьи про Intel Atom в wikipedia читается суровый приговор: "примерно половина производительности процессора Pentium M той же частоты "
Если же сравнивать Atom именно с Core, то по данным тестов tomshardware Intel Core i3-530 побеждает Intel Atom D510 с разгромным счетом:


При этом, надо отметить, что tomshardware к Atom относится явно предвзято. Так, например, если время работы какой-то задачи на Core-i3 - 1:38, то именно так об этом и сообщается - «одна минута, 38 секунд». А если Atom исполняет что-то за 7:26, то это, по мнению авторов «около восьми минут». Но главное - сравнивать процессоры с разной тактовой частотой (2.93 GHz Core i3 и 1.66 GHz Atom) и не делать поправку на ветер непоказательно. То есть, результат Core надо поделить на 2.93/1.66~1.76, что дает итоговый результат проигрыша Atom от 2.15 до 2.6 раз.

Почему Atom медленнее?
Быстрый ответ: потому что дешевле и энергоэкономичнее, что несовместимо с высокой производительностью.
Правильный ответ: Во-первых, потому, что у Atom сохранилась шина FSB, в то время как Core i3 имеет интегрированный в CPU контроллер памяти, что ускоряет доступ к данным. Кроме того, у Atom в четыре раза меньше размер кэш-памяти, а если данные не умещаются в кэш, то более медленный доступ к памяти сказывается на производительности по полной программе.
А во-вторых, микроархитектура Atom - это не Core2, использованная в Core i3, а Bonnell. Вкратце, Bonnell -продолжатель идей Pentium, в нем имеется только 2 целочисленных ALU (против трех в Core), а главное, отсутствуют присущие Core изменение порядка инструкций (instruction reordering), переименование регистров (register renaming), а также спекулятивное исполнение (speculative execution).
Откуда понятно, что чтобы помочь Atom обогнать Core, надо:
  1. Взять нанонабор небольшой набор данных, так, чтобы он помещался в кэш.
  2. Попробовать использовать float данные, чтобы загружать не ALU, a FPU
  3. По возможности, лишить Core преимуществ неупорядоченного исполнения.
Поскольку с первыми двумя пунктами все ясно, можно запустить первые тесты.
Они проводились на имеющемся у меня Intel Core i5 2.53 GHz и уже упомянутом Atom D510, и представляли собой набор вызовов математических функций для float данных со встроенной оценкой производительности «количество функций в секунду», т.е. чем больше - тем лучше.
Тесты включали расчет тригонометрических функций как напрямую (C runtime, тест «x87»), так и разложением в ряд; с использованием кода мат.библиотеки Cephes; а также векторную реализацию через SSE intrinsic функции (тесты с окончанием _ps). При этом, учитывая разницу тактовых частот, результаты масштабировались на 2.53/1.66~1.524
Тесты компилировались Microsoft Visual Studio 2008 с оптимизацией в release по умолчанию.


Полученные данные полностью подтверждают первое место Intel Atom с конца. То есть, цель не достигнута, переходим к следующему пункту - осложним работу Out-of-order CPU.
Усложняем задачу
Создадим искусственный тест, который будет содержать непредсказуемые ветвления, содержащие вычислительно тяжелые функции, так, чтобы результат спекулятивных вычислений Core постоянно отбрасывался, т.е. оказывался ненужной работой.
Примерно так:
int rnd= rand()/(RAND_MAX + 1.) * 3; if (rnd%3==0) fn0(); if (rnd%3==1) fn1(); if (rnd%3==2) fn2();

Более того, функции будут состоять из цепочечных вычислений, так чтобы Core не мог путем переупорядочивания инструкций и переименования регистров посчитать что-то из таких выражений заранее, «вне очереди». Вот простейший пример подобного кода
for (i=0; i < N; ++i) { y+=((x[i]*x[i]+ A)/B[i]*x[i]+C[i])*D[i]; }
Кстати, подобные функции и использованы в вышепоказанных тестах cephes_logf и cephes_expf, где преимущество Core минимально.
Но, несмотря на все препятствия, Core все равно оказался быстрее. Минимальный отрыв Core от Atom, который мне удалось получить различными комбинациями вычислений и случайностей - в целых два раза! То есть, Atom по-прежнему отстает.

Но если бы я на этом остановилась, то вы бы про это просто не узнали - пост бы не состоялся.
Следующим шагом была компиляция тестов с помощью Intel Compiler. Использовалась версия Composer XE 2011 update 9 (12.1) c настройками оптимизации Release по умолчанию - аналогично компилятору Microsoft.

На графике ниже приведены результаты работы вышеупомянутых тестов, включая добавленный мной rand, скомпилированные как VS2008, так и Intel Compiler.


Смотрите внимательно. Это - не обман зрения. Для четырех тестов точки зеленой линии, показывающие результат Atom для тестов, скомпилированных Intel Compiler, находится выше, чем точки бордовой - результат i5 для тестов, скомпилированных VS2008. То есть, Atom оказывается реально, более чем в два раза, быстрее на _том же коде_, что и Core i5.

Думаете, что это реклама компилятора Intel?
Абсолютно нет. Я не работаю ни в отделе рекламы, ни в компиляторной группе.
Это просто констатация того, что ваш оптимизированный код может выполняться на Atom гораздо быстрее, чем неоптимизированный на Core. Или - неоптимизированный на Core будет медленнее, чем оптимизированный на Atom.
Это - как раз те самые кочки и закоулки, которые мешают машине разогнаться.
Выводы можете сделать сами.

За последний год во вселенной процессоров Intel Atom произошел ряд буквально галактических катаклизмов, как разрушительного, так и созидательного порядка. В их результате она была, можно сказать, полностью перестроена. В этом посте мы вспомним историю Intel Atom, поговорим о последних событиях, с ними связанными, а в заключении познакомимся с новыми моделями из этого семейства, похожими скорее на Intel Xeon.


Intel Atom были задуманы компанией Intel как бюджетное решение с минимальным энергопотреблением для различного рода мобильных устройств. Первый Atom появился в 2008 году, он был выполнен по технологии 45 нм, со временем техпроцесс сократился до 14 нм. Успех процессоров Atom сильно отличался в зависимости от области их применения. Так, некоторая их часть определенно появилась в нужное время и получила широкое распространение в новомодных тогда «нетбуках» («ноутбуках для работы в сети»). Работали такие нетбуки по сравнению с ноутбуками на процессорах Core небыстро, зато были дешевы, компактны, не имели кулера (и сопутствующих ему проблем), и хорошо продавались. Вспомним хотя бы суперпопулярный ASUS Eee PC 901 , и отметим, что нетбуки выпускали такие солидные производители как HP, Lenovo, Dell и Sony.


ASUS Eee PC 901

Гораздо менее успешно сложилась судьба Intel Atom как x86-конкурента ARM-процессоров для смартфонов и планшетов. Хотя и тут есть очень заметный результат - выход в 2015 году Microsoft Surface 3 с процессором Intel Atom x7-Z8700.

Надо отметить, что сделано Intel в этом ключевом направлении было очень много - мобильные Атомы последнего поколения, появившегося в 2013-2014 году, по производительности далеко ушли от своих первых прародителей, а по возможностям приблизились к Intel Core: в них было полностью обновлено графическое ядро - Intel HD Graphics, микроархитектура изменена на неупорядоченное (out of order) исполнение, добавлены векторные инструкции SSE4. Тем не менее, интерес к Атомам со стороны производителей был умеренным: несмотря на приличные показатели энергоэффективности (что констатировали весьма уважаемые ресурсы), эксплуатационные преимущества не были столь весомыми, чтобы затевать масштабную движуху по смене платформы. Не последнюю роль тут сыграл и финансовый вопрос: Intel Atom были все-таки дороже своих ARM-соперников.

К 2013 году было анонсировано около десятка моделей смартфонов на Atom , часть из которых так и не вышла в серию. В нашей стране продавался брендированный Мегафоном смартфон Orange San Diego под маркой Mint .


Мегафон Mint

Intel активно продвигала платформу Android x86 среди разработчиков: создавала средства разработки, публиковала обучающие материалы, проводила мероприятия. Более того, был создан уникальный бинарный транслятор, работавший на всех мобильных устройствах c Android на базе Atom, и на лету переводивший ARM код в x86 инструкции почти без потери производительности.

Однако, как уже было сказано выше, устройств на основе Atom было выпущено немного (по сравнению с количеством ARM-устройств на рынке), что приводило к порочному кругу - независимые разработчики не спешили выпускать новые эксклюзивные x86 приложения для данных малочисленных устройств, а производители устройств, в свою очередь, не спешили выпускать новые модели из за отсутствия уникальных приложений. Кроме того, не сработало теоретическое конкуретное преимущество Atom - возможность запуска десктопных приложений на мобильных устройствах одной архитектуры. Во-первых, портировать приложения все равно приходилось просто из за несовпадения настольных и мобильных ОС (Windows или MacOS -> Android) и форм-факторов, причем, обычно это оказывалось даже труднее, чем возможный переход от x86 к ARM; а во-вторых, за время безраздельного господства ARM на мобильном рынке, все компании, желавшие создать мобильные версии своих настольных продуктов, уже сделали это для ARM-устройств, так что появление x86 только добавило им хлопот - необходимость создавать и поддерживать версии приложения для разных CPU.
Как бы то ни было, при глобальной реорганизации 2016 года направление Atom для мобильных устройств было срублено под корень.

Однако труд создателей процессоров даром не пропал. В Intel появилось новое направление, которое постепенно стало одним из ключевых: «интернет вещей». Именно совокупность компонентов «интернета вещей» является оптимальным потребителем процессоров семейства Atom с их низким энергопотреблением и широким диапазоном характеристик. Так мы незаметно приблизились к нашему времени.

К настоящему моменту Intel выпустил огромное количество моделей Intel Atom, однако актуальных из них не так и много. Это прежде всего свежеанонсированная серия Е3900 (ее сравнительную таблицу вы видите выше). Серия призвана закрыть потребность в высокопроизводительных хабах «интернета вещей» (запросы поскромнее призваны удовлетворять платформы Intel Galileo, Edison и Curie).

Однако это еще не предел «прокачки» Атома. Тут мы подходим к новому анонсу. На смену «серверной» линейки Atom C2000 образца далекого 2013 года приходит серия С3000 , которая призвана поднять производительность Intel Atom на новую высоту. Флагманом серии станет 16-ядерная модель - столько ядер в Atom еще не было никогда. При этом все «фирменные» особенности - энергоэффективность и доступная для серверных моделей цена - остаются неизменными. Пока что доступна информация об одном из младших моделей серии - процессоре C3338 . Анонсы остальных ждем во втором полугодии 2017 года.

Любое современное устройство, способное производить различные вычисления, оснащается процессором. Их ассортимент на рынке настолько велик, что неподготовленному пользователю очень легко заблудиться среди множества характеристик производительности, сокетов и дополнительных инструкций. Как же из них выбрать надёжный процессор, который мог бы оперативно справляться с поставленными задачами и при этом гарантировал долгую и стабильную работу? Эта статья посвящена процессору Intel Atom CPU N450.

Процессоры

В английском IT-сегменте имеется определение CPU, что означает центральное обрабатывающее устройство. Оно отвечает за выполнение машинных инструкций и является самой главной частью персонального компьютера. От производительности процессора зависит мощность системы в целом.

Основные характеристики процессоров включают в себя:

  • тактовую частоту;
  • производительность;
  • энергопотребление;
  • тип технического процесса;
  • архитектуру.
  • Тактовая частота характеризует количество операций, которые способен выполнить процессор за один такт. Этот параметр используют наиболее часто при описании данного вида вычислительных устройств.
  • Параметр производительности довольно спорный и иногда может отражать совокупность всех возможностей продукта, а иногда показывать конкретное значение, выраженное во флоп/с.
  • Энергопотребление - один из ключевых параметров. Именно он как никто другой влияет на автономность работы. Чем меньше ноутбук или нетбук будет потреблять энергии, тем дольше сможет проработать. А это напрямую зависит от показателей процессора.
  • Технический процесс. Никак напрямую не влияет на характеристики. Однако отражает то, каким образом произведён процессор. Уже на основе этого можно судить о том, как давно он был изготовлен. Фактически показывает, что на меньшей площади можно разместить большее количество электронных компонентов.
  • Архитектура процессора. Для персональных компьютеров, в основном используется два вида - 32 и 64-битная. Большого прироста при переходе от меньшего значения к большему ожидать не стоит. Действительно что-то заметить можно только при работе с базами данных или средствами моделирования.

Линейка процессоров Atom

Семейство процессоров Atom, выпускаемое компанией Intel, создано с учётом эффективного энергопотребления. Данные модели ориентированы на портативные устройства, для которых затраты на энергию очень критичны. Яркий пример - новомодные нетбуки. Их удобно носить с собой, они имеют маленький размер экрана и оптимизированную систему энергоэффективности. На них можно производить простые работы, например набор текста или сёрфинг в Интернете.

С 2012 года компания Intel начала производство "Атомов" по однокристальной системе. То есть теперь контроллеры памяти и графические адаптеры размещаются на одном чипе. Это позволило значительно сократить расходы на установку отдельных компонентов. В результате произошло удешевление конечного продукта.

Процессор Atom N450: краткий обзор

Данный CPU стал продолжением серии N450 был выпущен в 2010 году. На одном чипе расположены контроллер DDR2 и встроенная видеокарта GMA 3150. Его мощности вполне достаточно, чтобы вести оптимальную вычислительную деятельность на неттопах и нетбуках. Имеющийся графический процессор неплохо справляется с просмотром видео в обычном формате, посещением веб-страниц и офисной работой. А вот с HD, редактированием графики и одновременным запуском нескольких программ могут возникнуть сложности. Одним из весомых преимуществ устройства N450 является очень низкое энергопотребление.

Характеристики Atom N450

Внутреннее кодовое название процессора - PineView. Его технология предполагает использование одного ядра с частотой в 1,66 ГГц. Зато это происходит с распределением задач на два потока. Atom N450 обладает кэшем второго уровня объёмом в 512 Кб. А расчётная мощность энергопотребления не превышает 5,5 Вт.

Процессор не может похвастать наличием технологии Turbo Boost, хотя она не так уж и необходима на портативных устройствах. Также отсутствует способность работать с виртуализацией по типу VT-x. Технология Hyper-Threading, как уже говорилось выше, реализует поддержку работы ядра с двумя потоками. Это будет актуально в приложениях, оптимизированных под многопоточность, количество которых с каждым годом все растёт. Возможна поддержка объема памяти больше 4 Гб за счёт реализации 64-битной архитектуры. Используемый при производстве техпроцесс составляет 45 Нм.

Тесты и сравнение с ближайшими аналогами

Наиболее близким по родству и характеристикам можно считать предшественника - Atom N270. При такой же частоте Atom N450 показывает себя более выгодно, но при этом он дороже и потребляет в два раза больше энергии. Но, как говорят тесты, у этого устройства соотношение ватт на производительность гораздо выше.

Интересно, что сравнение производительности с N2600, у которого для работы задействованы два ядра, показало значительный проигрыш у Atom N450. N2600 производится по 32 Нм технологии, а это значит, что на чипе можно расположить гораздо больше транзисторов. При этом количество потоков у него вообще 4, и кэш второго уровня в два раза больше Atom CPU N450. Но тесты есть тесты, и они отражают действительное положение вещей, в отрыве от заявленных характеристик.

Сравнение с продуктами от AMD

AMD и Intel постоянно ведут незримую войну за лояльность пользователей. Это выражается в соревновании по выпуску производительных изделий. Ближайшими по духу являются процессоры от AMD C60, C50 и A4 1200.

AMD C60

С60 имеет два ядра, в отличие от процессора N450. Его контроллер памяти способен действовать на частоте 1066 и имеет тип DDR3. Уровень кэша второго уровня в два раза выше. При этом частота немного ниже - от 1000 до 1333 Мгц в режиме "Турбо". При этом у Atom N450 - 1,66.

В итоге потенциальная частота, получаемая при разгоне Atom N450, выше, чем у С60, и может составлять 1,9 ГГц. В скорости же чтения данных Atom уступает аналогу от AMD - 38550 против 25700 МБ/с. N450 также не способен поддерживать виртуализацию, тогда как конкурент прекрасно с ней справляется. Технологический процесс С60 меньше на 5 НМ и является более продвинутым. Как итог - в большинстве тестов Atom N450 показывает худший результат.

AMD C50

C50 - тоже двухъядерный процессор, который имеет такой же контроллер памяти, как у своего собрата. Частота на 0,6 ГГц у него меньше, чем у N450. При этом общая производительность на ватт выше. С50 имеет 2 Мб кэша второго уровня, в то время как у 450 всего 512 Кб. Это в значительной степени ускоряет доступ к часто используемым данным. Кстати, и в скорости их передачи 450 также проигрывает - 32500 вместо 25700 МБ/с. Виртуализация опять же имеется и на этой модели. В общем, и здесь Atom N450 немного проигрывает.

AMD A4 1200

Данный процессор не представляет особого интереса для разгона, так как его штатная частота в 1 ГГц таковой и останется. У Atom N450 же потенциал для этого имеется. Однако на этом преимущества 450 перед А4 заканчиваются.

Начать стоит с того, что ядер в А4 1200 два. Каждое способно работать в двухпоточном режиме. Размер памяти кэша второго уровня выше и составляет 1 Мб. Максимальное энергопотребление равняется 4 Вт, тогда как у 450 - 5,5. Контроллер памяти имеет тип DDR3, а это значит, что данная модель технологичнее и способна работать с частотой 1066 МГц. Также производственный процесс у 1200 в 1,5 раза меньше. В данном сравнении AMD А4 1200 является явным фаворитом, что и подтверждают тесты на популярные вычисления.