Детерминированных сигналов. Схемы временной задержки импульсов

Элементы синхронизации цифровых систем

Надежная работа любой цифровой системы во многом зависит от правильного выбора и расчета синхронизации, которая является неотъемлемой частью любой управляющей системы.

Вопросы синхронизации включают в себя:

    Обеспечение задержек между определенными управляющими сигналами.

    Формирование тактовых импульсов с заданным периодом следования и длительностью.

    Обеспечение привязки тактовых импульсов к отдельным сигналам запуска и т. д.

Сначала рассмотрим формирователи.

Формирователи – устройства, преобразующие входные сигналы произвольной формы в нормализованные по амплитуде, крутизне фронтов прямоугольные импульсы для управления последующими микросхемами.

Формирование задержек

    Для формирования задержек между импульсами порядка 10-20 мкс (относительно небольших задержек), применяют формирователи разомкнутого типа.

При небольших задержках порядка сотен наносекунд используют последовательные соединения инверторов.

Среднее время задержки:

Здесь n – количество последовательно соединенных инверторов;

–задержка распространения сигнала при переходе выхода из «1» в «0» и наоборот.

Большее время задержки получают с помощью интегрирующей RC-цепи, включаемой на вход инвертора.

Для КМОП ИС получим:

Время задержки определяется по формулам:

Здесь
– напряжение источника питания

–напряжение переключения инвертора.

Учитывая, что
, то время задержки можно определить по формуле:

    При задержке более 20 мкс скорость изменения напряжения на емкости мала и форма выходного сигнала будет существенно отличаться от прямоугольной. В таких случаях целесообразно применять формирователь задержки на основе несимметричного триггера (триггера Шмитта).

Одновибраторы (ждущие мультиплексоры)

Одновибратор – устройство, предназначенное для формирования под действием входных сигналов одиночных прямоугольных импульсов заданной длительности.

Отличительной особенностью одновибраторов является наличие хронирующей (времязадающей) цепи и обратной связи, обеспечивающей регенеративные (лавинообразные) процессы переключения. Этим достигается большая крутизна фронтов выходных импульсов.

Длительность выходного импульса:

При

.

Для построения одновибраторов можно использовать триггеры различных типов:


Одновибратор работает следующим образом. При подаче на выход сигнала запуска, триггер устанавливается в единичное состояние, в котором начинается заряд емкости. При достижении на емкости напряжения переключателя
, триггер переходит в состояние 0 и начинает ускоренный разряд емкостичерез открытый диод
и низкоомные выходные сопротивления триггера.

Длительность сформированного импульса:

.

Включая последовательно два одновибратора можно создать временной сдвиг выходного импульса относительно фронта пускового.

Цепочка
создает задержку выходного импульса на время, а цепочка
обеспечивает его длительность, равную.

В сериях интегральных микросхем имеются самостоятельные изделия-одновибраторы, которые представляют собой законченный функциональный узел, за исключением времязадающей цепи.

Например:

Формирование импульсов от механических контактов

При проектировании цифровых устройств часто возникает задача формирования четкого перехода (0,1 или 1,0) или короткого прямоугольного импульса при срабатывании реле, кнопки или другого механического контакта (например, клавиатура, мышь).

Сигнал, с помощью механического переключателя формируется путем замыкания-размыкания электрической цепи.

В исходном состоянии с выхода снимается потенциальный сигнал
(логич. «1»), а в момент касания контактов уровень становится равным «0».

еханического переключателя заключается в том, что его

срабатывание сопровождается дребезгом контактов (многократным переходом в течение короткого времени от замкнутого состояния к разомкнутому и обратно). Это приводит к формированию пачки импульсов вместо желаемого одиночного импульса или перепада потенциала.

Длительность дребезга обычно составляет 8-12 мкс.

Для устранения дребезга в получаемом сигнале на выходе механического переключателя устанавливают специальные формирователи.

Пример: использование RC-триггера (К155ТМ2).

Сигнал «0», прикладываемый к одному из входов триггера опрокидывает его. Причем, при срабатывании переключателя триггер реагирует на первое замыкание и последующие импульсы дребезга не изменяют его состояния.

Пример: исследование D-триггера (К155ТМ2).


Отличие данного формирователя состоит во временной привязке момента появления выходного сигнала с внутренними процессами устройства, для которого этот сигнал формируется, т. е. к его системе тактовых импульсов.

Для работоспособности формирователя необходимо, чтобы период следования тактовых импульсов был больше времени дребезга (
).

Мультивибраторы (генераторы прямоугольных импульсов)

Для построения мультивибраторов используют усилительные свойства инверторов. Для возникновения и существования устойчивых автоколебаний исходно выводят инверторы на линейных участках придаточной характеристики (между уровнями «1» и «0»), где инвертор работает как инвертирующий усилитель. Затем вводится положительная обратная связь с помощью одного или двух конденсаторов.

Простейшая схема мультивибратора на инверторах КМОП.

Резистор обратной связи выводит в усилительный режим
, а выходное напряжение этого инвертора должно удерживать в усилительном режиме второй инвертор
. Положительная обратная связь через конденсаторвызывает мягкое самовозбуждение.

Схема имеет два динамических состояния.


Период следования импульсов:

При
получаем упрощенную формулу:

Резистор
включается для ограничения тока через охранные диоды на входе инвертора
.выбираем из условия
(ком).

Для независимой регулировки длительности импульсов и интервала следованиявводятся раздельные цепи заряда и разряда конденсаторапри помощи двух диодов и резисторов различных номиналов.

Длительность импульса определяется выражением:


при
.

Интервал следования импульсов определяется выражением:


Поскольку второй инвертор не охвачен ООС по постоянному току, то устройство оказывается критично к значению сопротивления .

для инверторов ТТЛ.

для инверторов КМОП.

Для повышения устойчивости обратной связью охватывают второй инвертор.

Большей устойчивостью обладают мультивибраторы на трех инверторах.

Стабилизация работы по постоянному току обеспечивается за счет общей обратной связи через резистор , охватывающий три инвертора. Положительная ОС реализуется за счет конденсатора.

Часто в системах управления необходимо использовать генераторы с внешним запуском, у которого независимо от положения фронтов управляющего сигнала обеспечивается неискаженное по длительности формирования первого и последнего импульсов, причем начало первого импульса должно совпадать с началом управляющего импульса.

Подача управляющего сигнала обеспечивает синхронное появление импульса на входе генератора, т. е. начало генерации привязывается к моменту спада сигнала запуска. Кроме того, последний импульс имеет полную длительность независимо от момента снятия сигнала запуска.

Стабилизация частоты мультивибраторов

Точность и стабильность частоты генерируемых колебаний зависит от точности, временной и температурной стабильности элементов и. Нестабильность частоты генерируемых колебаний оценивается коэффициентом относительной нестабильности

Где – рабочая номинальная частота

–отклонение частоты от номинальной

RC-генераторы, для которых
обеспечивают
при начальной точности 5-10 %.

Применение кварцевых резонаторов позволяет обеспечить относительное изменение частоты, не превышающее
. Их обычно применяют на повышенных частотах, когда требуется получить колебания известной и стабильной частоты.

Мультивибраторы с кварцевой стабилизацией частоты выполняют обычно путем включения кварцевого резонатора на место времязадающей емкости.

Частоту кварцевого резонатора в небольших пределах можно изменять включением последовательно с ним подстроечного конденсатора небольшой емкости
.

Пример схемы кварцевого генератора на ИС КМОП К561ЛН2.

Точное значение частоты можно получить путем подбора емкостей конденсаторов (16-18 пФ) и(16-150 пФ). Инвертор
необходим для формирования стандартных прямоугольных импульсов.

Резистор (2,7-20 МОм) определяет глубину обратной связи, а(18…510 кОм) – нагрузку элемента
.

Устройство синхронизации

Устройства синхронизации предназначены для привязки командных сигналов к моментам появления тактовых импульсов. При приходе командного сигнала такое устройство должно выделить ближайший по времени очередной импульс такой последовательности, который затем и используется как синхронизированный командный импульс.

Т. е. устройство синхронизации осуществляет привязку в приемном устройстве всех внешних управляющих импульсов (сигналов) к собственной системе таковых импульсов.

Типичная схема устройства синхронизации имеет вид:

Исходно оба триггера находятся в состоянии «0». При появлении импульса управления
переходит в состоянии «1». Поэтому ближайший тактовый импульсопрокинет второй триггер в «1», сбросив
в нуль. Второй тактовый импульс сбросит
в «0» и устройство возвратится в исходное состояние.

Схемы временной задержки импульсов обеспечивают задержку импульсных сигналов во времени и применяются для временной селек­ции, импульсных измерений, согласования работы импульсных устройся и т.д. Временная задержка может быть получена при помощи линий задержки, электронных схем задержки и фазовращателей.

Линии задержки подразделяются на электрические и ультразву­ковые.

Применение линий задержки (Л.З.) основано на использовании постоянства скорости распространения электромагнитных или акус­тических колебаний вдоль линии. Применение того или иного типа Л.З. зависит от требуемого времени задержки. Для задержки от до­лей до десятков микросекунд используют линии (кабель), искусствен­ные электрические линии с распределенными параметрами (спираль­ные)

(рис. 8.1, слайд 138, 21 ) и искусственные цепочечные линии ИЦЛ (рис. 8.2, слайды 22 ) (будут изучаться в дальнейшем).

Для задержки от единиц и сотен микросекунд до нескольких миллисекунд применяют акустические (ультразвуковые) линии задерж­ки. Их принцип работы основан на различии скорости распростране­ния электрических и механических колебаний.

Действие ультразвуковой Л.З. заключается в преобразовании электрического сигнала в звуковое колебание, распространяющееся по звукопроводу. В ультразвуковых линиях с пьезоэлектрическим преобразователями преобразование осуществляется пластиной кварца (рис. 8.3, слайды139, 23 ).

В качестве звукопровода применяется ртуть (t З = 6.7 мкс/см; затухание d = 0.083 дб/см), плавленый кварц (t З = 1.8 мкс/см; Б = 0,007 дб/см), магниевые сплавы (t З = 1.7 мкс/см; б = 0.01-0.2 дб/см).

Для увеличения задержки используется звукопроводы с многократными отражениями (рис.8.4, слайды 140, 24 ).

Электронные схемы задержки позволяют получить задержку от нескольких микросекунд до нескольких секунд. Достоинства таких схем – их простота и возможность регулирования задержки в широких пределах, недостаток – малая по сравнению с линиями стабильность. В качестве электронной схемы задержки можно использовать амплитудный компаратор с входным напряжением, изменяющимся по линейному закону. Изменением уровня сравнения регулируется время задержки. Временная нестабильность таких схем G = Dt З / t З может быть снижена до 0,1 – 0,05%.

Временная задержка может быть получена также при помощи спусковых схем (рис. 8.5, слайды 141,25 ) и фантастронов .

Для этой цели выходной импульс указанных схем дифференцируется. Импульс, полученный при дифференцировании среза, будет задержан относительно входного на величину t З = T U . Регулированием длительности импульса можно изменять время задержки. Нестабильность задержки спусковой схемы d= 1-5 %, фантастрона d = 0,1-1 %. Схемы задержки применяются для задержки запуска индикаторов с целью по­учения режима кольцевого обзора, а также для синхронизации работы ручных устройств.



Второй учебный вопрос.

Литература: [Л.1], с 77-83

[Л.2], с 22-26

[Л.3], с 39-43

Во многих радиотехнических задачах часто возникает необходимость сравнения сигнала и его копии, сдвинутой на некоторое время . В частности такая ситуация имеет место в радиолокации, где отраженный от цели импульс поступает на вход приемника с задержкой во времени. Сравнение этих сигналов между собой, т.е. установление их взаимосвязи, при обработке позволяет определять параметры движения цели.

Для количественной оценки взаимосвязи сигнала и его сдвинутой во времени копии вводится характеристика

, (2.57)

Которая называется автокорреляционной функцией (АКФ).

Для пояснения физического смысла АКФ приведем пример, где в качестве сигнала выступает прямоугольный импульс длительностью и амплитудой . На рис. 2.9 изображены импульс, его копия, сдвинутая на интервал времени и произведение . Очевидно, интегрирование произведения дает значение площади импульса, являющегося произведением . Это значение при фиксированном можно изобразить точкой в координатах . При изменении мы получим график автокорреляционной функции.

Найдем аналитическое выражение . Так как

то подставляя это выражение в (2.57), получим

. (2.58)

Если осуществлять сдвижку сигнала влево, то аналогичными вычислениями нетрудно показать, что

. (2.59)

Тогда объединяя (2.58) и (2.59), получим

. (2.60)

Из рассмотренного примера можно сделать следующие важные выводы, распространяющиеся на сигналы произвольной формы:

1. Автокорреляционная функция непериодического сигнала с ростом убывает (необязательно монотонно для других видов сигналов). Очевидно, при АКФ также стремиться к нулю.

2. Своего максимального значения АКФ достигает при . При этом, равна энергии сигнала. Таким образом, АКФ является энергетической характеристикой сигнала. Как и следовало ожидать при сигнал и его копия полностью коррелированны (взаимосвязаны).

3. Из сравнения (2.58) и (2.59) следует, что АКФ является четной функцией аргумента , т.е.

.

Важной характеристикой сигнала является интервал корреляции . Под интервалом корреляции понимают интервал времени , при сдвижке на который сигнал и его копия становятся некоррелированными.

Математически интервал корреляции определяется следующим выражением

,

или поскольку – четная функция

. (2.61)

На рис. 2.10 изображена АКФ сигнала произвольной формы. Если построить прямоугольник, по площади равный площади под кривой при положительных значениях (правая ветвь кривой), одна сторона которого равна , то вторая сторона будет соответствовать .

Найдем интервал корреляции для прямоугольного импульса. Подставляя (2.58) в (2.60) после несложных преобразований, получим:

,

что и следует из рис. 2.9.

По аналогии с автокорреляционной функцией степень взаимосвязи двух сигналов и оценивается взаимной корреляционной функцией (ВКФ)

. (2.62)

Найдем взаимную корреляционную функцию двух сигналов: прямоугольного импульса с амплитудой и длительностью

и треугольного импульса той же амплитуды и длительности

Воспользовавшись (2.61) и вычисляя интегралы отдельно для и , получим:

Графические построения, иллюстрирующие вычисления ВКФ, приведены на рис. 2.11

Здесь пунктирными линиями показано исходное (при ) положение треугольного импульса.

При выражение (2.61) преобразуется в (2.57). Отсюда следует, что АКФ является частным случаем ВКФ при полностью совпадающих сигналах.

Отметим основные свойства ВКФ.

1. Так же, как и автокорреляционная функция, ВКФ является убывающей функцией аргумента . При ВКФ стремиться к нулю.

2. Значения взаимной корреляционной функции при произвольных представляют собой значения взаимной энергии (энергии взаимодействия) сигналов и .

3. При взаимная корреляционная функция (в отличие от автокорреляционной) не всегда достигает максимума.

4. Если сигналы и описываются четными функциями времени, то ВКФ тоже четна. Если же хотя бы один из сигналов описывается нечетной функцией, то ВКФ так же нечетна. Первое утверждение легко доказать, если вычислить ВКФ двух прямоугольных импульсов противоположной полярности

и

Взаимная корреляционная функция таких сигналов

, (2.63)

является четной функцией аргумента .

Что же касается второго утверждения рассмотренный пример вычисления ВКФ прямоугольного и треугольного импульсов доказывает его.

В некоторых прикладных задачах радиотехники используют нормированную АКФ

, (2.64)

и нормированную ВКФ

, (2.65)

где и – собственные энергии сигналов и . При значение нормированной ВКФ называют коэффициентом взаимной корреляции . Если , то коэффициент взаимной корреляции

.

Очевидно, значения лежат в пределах от -1 до +1. Если сравнить (2.65) с (1.32), то можно убедиться, что коэффициент взаимной корреляции соответствует значению косинуса угла между векторами и при геометрическом представлении сигналов.

Рассчитаем коэффициент взаимной корреляции для рассмотренных выше примеров. Так как энергия сигнала прямоугольного импульса составляет

,

а треугольного импульса

,

то коэффициент взаимной корреляции в соответствии с (2.62) и (2.65) будет равен . Что же касается второго примера, то для двух прямоугольных импульсов одинаковой амплитуды и длительности, но противоположной полярности, .

Экспериментально АКФ и ВКФ могут быть получены с помощью устройства, структурная схема которого изображена на рис. 2.12

При снятии АКФ на один из входов перемножителя поступает сигнал , а на второй – этот же сигнал, но задержанный на время . Сигнал, пропорциональный произведению , подвергается операции интегрирования. На выходе интегратора формируется напряжение, пропорциональное значению АКФ при фиксированном . Изменяя время задержки, можно построить АКФ сигнала.

Для экспериментального построения ВКФ сигнал подается на один из входов перемножителя, а сигнал – на устройство задержки (входящие цепи показаны пунктиром). В остальном, устройство работает аналогичным образом. Отметим, что описанное устройство называется коррелятором и широко используется в различных радиотехнических системах для приема и обработки сигналов.

До сих пор мы проводили корреляционный анализ непериодических сигналов, обладающих конечной энергией. Вместе с тем, необходимость подобного анализа часто возникает и для периодических сигналов, которые теоретически обладают бесконечной энергией, но конечной средней мощностью. В этом случае АКФ и ВКФ вычисляются усреднением по периоду и имеют смысл средней мощности (собственной или взаимной соответственно). Таким образом, АКФ периодического сигнала:

, (2.66)

а взаимная корреляционная функция двух периодических сигналов с кратными периодами:

, (2.67)

где – наибольшее значение периода.

Найдем автокорреляционную функцию гармонического сигнала

,

где – круговая частота, – начальная фаза.

Подставляя это выражение в (2.66) и вычисляя интеграл с использованием известного тригонометрического соотношения:

.

Из рассмотренного примера можно сделать следующие выводы, справедливые для любого периодического сигнала.

1. АКФ периодического сигнала является периодической функцией с тем же периодом.

2. АКФ периодического сигнала является четной функцией аргумента .

3. При значение представляет собой среднюю мощность, которая выделяется на сопротивлении в 1 Ом и имеет размеренность .

4. АКФ периодического сигнала не содержит информации о начальной фазе сигнала.

Следует также отметить, что интервал корреляции периодического сигнала .

А теперь вычислим взаимную корреляционную функцию двух гармонических сигналов одинаковой частоты, но отличающихся амплитудами и начальными фазами

и .

Воспользовавшись (2.67) и проводя несложные вычисления, получим

,

где – разность начальных фаз сигналов и .

Таким образом, взаимная корреляционная функция двух рассматриваемых сигналов содержит информацию о разности начальных фаз. Это важное свойство широко используется при построении различных радиотехнических устройств, в частности, устройств синхронизации некоторых систем радиоавтоматики и других.

Формирование прямоугольных импульсов заданной длительности

Формирование импульсов по фронту или спаду входного сигнала осуществляется одновибраторами. Схемы таких формирователей, выполненные на ЛЭ, представлены на рис. 5.2. Импульсы одновибраторов, собранных по схемам 5.2 а и б , создаются за счет собственной задержки переключения ЛЭ.

Рисунок 5.2 – Одновибраторы с заданием длительности импульса временем задержки ЛЭ

В схеме рис. 5.2 а выходной импульс формируется в момент появления положительного перепада сигнала на входе запуска и заканчивается, когда через время n t з (n – нечетное число последовательно включенных инверторов, t з – время задержки переключения одного ЛЭ) на втором входе элемента DD1.4 появляется уровень логического нуля. Выходной импульс формируется на уровне логического нуля (отрицательный импульс) и имеет длительность n t з . Показанная на рис. 5.2 б схема с триггером улучшает форму выходного импульса. По перепаду сигнала на синхровходе из 1 в 0 JK -триггер устанавливается в единицу. С выхода логический ноль через элементы DD1 DDn поступает на инверсный вход асинхронной установки триггера в 0 и возвращает триггер в исходное состояние. Если для создания задержки используется нечетное число ЛЭ, то вход DD1 следует подключить не к выходу , а к выходу Q .

Для формирования импульсов, длительность которых существенно превышает время t з , используют времязадающие RC -цепи и пороговые свойства ЛЭ. Схемы таких формирователей на ЛЭ ТТЛ даны на рис. 5.2 в , г .

Рисунок 5.3 – Одновибраторы с времязадающими RC-цепями

Одновибратор, собранный по схеме 5.3 а , запускается перепадом сигнала на входе из 1 в 0. Пока ток заряда конденсатора С создает на резисторе R падение напряжения, превышающее пороговое напряжение единицы ЛЭ, на выходе формируется отрицательный импульс. В момент достижения U пор , при длительности выходного импульса t и , превышающей длительность запуска, ЛЭ DD1.1 и DD1.2 выходит в активную область передаточной характеристики и схема за счет положительной обратной связи переключается в исходное состояние. Аналогичным образом работает одновибратор, выполненный по схеме 5.2 б , но здесь перезаряд конденсатора происходит от нулевого напряжения до напряжения на входе DD1.2 , равного пороговому напряжению нуля U пор . Длительности выходных импульсов этих одновибраторов находятся как .

При построении формирователей длительности импульсов с использованием времязадающих RC -цепей на ЛЭ КМОПТЛ по рассмотренным схемам, между общей точкой R и C и входом ЛЭ следует включить резистор сопротивлением 1…10 кW для ограничения тока через защитные диоды ЛЭ при восстановлении заряда конденсатора по окончании импульса.

Широкими функциональными возможностями генерации одиночных прямоугольных импульсов заданной длительности обладают специальные ИС одновибраторов. Микросхема К155АГ1, условное обозначение которой при запуске спадом импульса показанo на рис. 5.4, представляет собой одноканальный одновибратор.

Рисунок 5.4 – Микросхема К155АГ1

Длительность генерируемого импульса задается RC -цепочкой. Может использоваться либо внутренний резистор R вн = 2 kW, либо навесной резистор R , сопротивление которого выбирается в пределах R . Емкость навесного конденсатора С до 10 μF, а если к стабильности выходных импульсов нет высоких требований, может достигать 1000 μF. При С 10 pF длительность выходных импульсов описывается формулой . Если навесные элементы отсутствуют, формируются импульсы t и – 30…35 ns. Для восстановления одновибратора к началу следующего импульса период входных сигналов должен отвечать условию t и 0,9 Т вх при R = 40 k Wи t и 0,67 Т вх при R = 2 kW. Запуск одновибратора производится перепадами из 1 в 0 по входам А1 и А2 или из 0 в 1 по входу В . Режимы работы ИС К155АГ1 приведены в табл. 5.1. Для уверенного запуска крутизна фронтов на входах А должна быть не менее 1 V/μs, по входу В не менее 1 V/s.

Таблица 5.1

Входы Выходы Режим
А1 А2 B
x x x Устойчивое состояние
х х Запуск

Микросхема К155АГ3 содержит два одновибратора с возможностью повторного перезапуска во время формирования выходного импульса.

Рисунок 5.5 – Микросхема К155АГ3

Длительность выходного импульса задается установкой внешних резистора и конденсатора. Максимальная емкость конденсаторане лимитирована, сопротивление берется в пределах . Если одновибратор работает в режиме с перезапуском, то t u отсчитывается от последнего запускающего импульса. Для реализации режима работы без перезапуска необходимо соединить вход А с выходом Q либо вход В с выходом Q , тогда выходные сигналы, пришедшие на входы В или А во время формирования импульса, не окажут влияния на его длительность. Во всех случаях формирование импульса может быть прервано подачей 0 на вход SR .

При необходимости получить импульсы со стабильной длительностью от долей микросекунд до сотен секунд с выходными токами до 200 mА и уровнями логических переменных, согласованными с уровнями ТТЛ и КМОПТЛ элементов, применяют одновибраторы на таймере типа 1006 ВИ1 с внешними времязадающими элементами.

Рисунок 5.6 – Сигнализатор освещенности на таймере 1006ВИ1

На рис. 5.6 рассмотрено применение таймера в качестве сигнализатора освещенности объекта. При малой освещенности сопротивление фоторезистора R 3 велико и сигнализатор работает в режиме мультивибратора, вырабатывая прямоугольные импульсы длительностью с паузой между ними . При большой освещенности на выходе сигнализатора устанавливается напряжение логического нуля при выходном сопротивлении около 10 W. Сопротивление выбирают в пределах 1 kW…10 МW с учетом того, чтобы ток через транзистор VТ1 не превосходил 100 mА. Емкость конденсатора должна на несколько порядков превосходить входную емкость, и не рекомендуется устанавливать ее меньше 100 pF при формировании точных временных интервалов.

Сопротивление R 2 рассчитывают, исходя из обеспечения на выводе 4 таймера напряжения, меньшего 0,4 V при сильно освещенном фотосопротивлении R 3 . Чтобы мультивибратор генерировал колебания при большой освещенности фоторезистора, следует поменять местами резисторы R 2 и R 3 .

Сигнализатор может быть использован и при других типах датчиков, вырабатывающих непосредственно уровни сигналов 0 и 1.

Оценку параметра задержки, не управляемую решениями, можно получить путём усреднения отношения правдоподобия с учётом ФПВ информационных символов для получения . Затем или дифференцируется по для получения условия для МП оценки .

В случае двоичного (базового) AM, где с равной вероятностью, усреднение по данным дает результат

(6.3.7)

как раз такой, как в случае оценивания фазы. Поскольку для малых , квадратичная аппроксимация

(6.3.8)

предназначается для низких отношений сигнал/шум. Для многоуровневой AM мы можем аппроксимировать статистику информационных символов гауссовской ФПВ с нулевым средним и единичной дисперсией. Когда мы усредняем по гауссовской ФПВ, то получаем идентично в (6.3.8). Следовательно, оценку можно получить дифференцированием (6.3.8). Результат является аппроксимацией для МП оценки времени задержки без управления решениями. Производная от (6.3.8) приводит к результату

(6.3.9)

где определено (6.3.5).

Реализация отслеживающей петли, основанная на вычислении производной согласно (6.3.9), показана на рис. 6.3.2.

Рис.6.3.2. МП оценивание времени задержки для базового сигнала АМ, не управляемое решениями

Альтернативно реализация отслеживающей петли, основанная на (6.3.9), иллюстрируется на рис. 6.3.3. В обоих структурах мы видим, что суммирование служит петлевым фильтром, который управляет ТУН. Интересно отметить сходство таймерной петли на рис. 6,3.3 и петли Костаса для оценивания фазы.

Рис.6.3.3. Оценивание времени сдвига без обратной связи по решению для АМ в базовой полосе частот

Синхронизаторы с окнами на задержку-опережение . Другой оцениватель времени задержки, не управляемый решениями, использует симметричные свойства сигнала на выходе согласованного фильтра или коррелятора. Чтобы описать этот метод, рассмотрим прямоугольный импульс, показанный на рис. 6.3.4 (а). Выход фильтра, согласованного с получает свое максимальное значение в точке , как показано на рис. 6.3.4 (b). Таким образом, выход согласованного фильтра является временной функцией корреляции импульса . Конечно, это положение справедливо для произвольной огибающей импульса, так что подход, который мы опишем, применим в общем к произвольному сигнальному импульсу. Ясно, что хорошая точка для взятия отсчёта на выходе согласованного фильтра для получения максимального выхода – это , т.е. точка на пике корреляционной функции.

Рис.6.3.4. Прямоугольный импульс сигнала (a) и выход согласованного с ним фильтра (b)

В присутствии шума идентификация пикового значения сигнала в общем случае затруднена. Допустим, что вместо стробирования сигнала в точке пика мы берём отсчёт раньше (в точке ) и позже (в точке ). Абсолютные значение ранних отсчётов и поздних отсчетов будут меньше (в среднем в присутствии шума), чем абсолютное значение в пике . Поскольку автокорреляционная функция четна относительно оптимального времени взятия отсчётов , абсолютные значения корреляционной функции в точке и равны. С учетом этого условия хорошая точка отсчёта - средняя точка между и . Это условие образует основу синхронизатора с окнами на задержку-опережение.

Рисунок 6.3.5 иллюстрирует блок-схему синхронизатора с окнами на задержку- опережение. На этом рисунке корреляторы используются вместо эквивалентных согласованных фильтров. Два коррелятора интегрируют по символьному интервалу , но один коррелятор начинает интегрирование на секунд раньше относительно оцениваемого оптимального времени отсчёта, а второй интегратор начинает интегрирование на секунд позже относительно оцениваемого оптимального времени отсчета. Сигнал ошибки формируется путем взятия разности между абсолютными значениями выходов двух корреляторов. Чтобы сгладить влияние шума на отсчёты сигналов, сигнал ошибки пропускается через фильтр нижних частот. Если время отсчёта отличается от оптимального времени отсчёта, усредненный сигнал ошибки на выходе фильтра нижних частот не равен нулю, и таймерная последовательность смещается в сторону отставания или опережения, в зависимости от знака ошибки. Таким образом, сглаженный сигнал ошибки используется для управления ТУН, чей выход является желательным таймерным сигналом, который используется для стробирования. Выход ТУН также используется как таймерный сигнал для генератора символьного сигнала, который выдает ту же базовую форму импульса, что на выходе фильтра передатчика. Эта форма импульса смещается во времени на в сторону опережения и отставания, и полученные образцы ожидаемого сигнала поступают на два коррелятора, как показано на рис. 6.3.5. Заметим, что, если сигнальные импульсы прямоугольные, нет надобности в генераторе сигнального импульса внутри отслеживающей петли.

Рис.6.3.5. Блок-схема синхронизатора с окнами на задержку-опережение

Мы видели, что синхронизатор с окнами на задержку-опережение имеет в своей основе систему замкнутого петлевого управления, чья полоса относительно узка по сравнению со скоростью передачи символов . Полоса петли определяет качество оценки времени задержки. Узкополосная петля обеспечивает большее усреднение по аддитивному шуму и, таким образом, улучшает качество оцениваемых отсчётных величин в предположении, что время распространения в канале неизменно и таймерный генератор на передаче не дрейфует со временем (или дрейфует очень медленно во времени). С другой стороны, если время распространения в канале меняется со временем и (или) таймер передатчика также дрейфует со временем, тогда полосу петли следует увеличить, чтобы обеспечить отслеживание быстрых изменений во времени параметров синхронизации.

В устройствах отслеживания два коррелятора эффективно взаимодействуют при соседних символах. Однако, если последовательность информационных символов имеет нулевое среднее, как в случае с AM и при других видах модуляции, вклад в выходы корреляторов от соседних импульсов усредняется до нуля в фильтре нижних частот.

Эквивалентная реализация для синхронизатора с окнами на задержку-опережение, которая несколько проще в реализации, дана на рис. 6.3.6. В этом случае таймерный сигнал от ТУН опережает и запаздывает на , и эти таймерные сигналы используются для стробирования выходов двух корреляторов.

Синхронизатор с окнами на задержку-опережение, описанный выше, является оценивателем задержки сигнала, не управляемым решениями, который аппроксимирует максимально правдоподобный оцениватель. Это утверждение можно продемонстрировать путём аппроксимации производной от логарифма функции правдоподобия конечной разностью, т.е.

(6.3.10)

Рис.6.3.6. Блок-схема синхронизатора с окнами на задержку- опережение–альтернативный вариант

Если подставим выражение до из (6.3.8) в (6.3.10), получим следующую аппроксимацию для производной:

(6.3.11)

Но математические выражения (6.3.11) принципиально описывают преобразования, выполняемые синхронизатором с окнами на задержку-опережение, иллюстрируемые на рис. 6.3.5 и 6.3.6.