Аккумуляторы не для всех! NiZn. Никель-цинковый аккумулятор, характеристики и конструкция

Сплав никель - цинк. Цинковые покрытия, легированные никелем (50% Ni и 50% Zn), имеют более высокую коррозионную стойкость, чем цинковые, и способны обеспечить анодную защиту стальным деталям от коррозии. Наиболее оптимальным для этой цели является электролит (в г/л):

Хлористый аммоний 200-250

Окись цинка 15-17

Хлористый никель 25 — 40

Кислота борная 20—25

Декстрин 5 — 10

Режим электролиза: температура электролита 15-20 °С, i к = 1 ÷ 2 А/дм 2 , аноды — раздельные Zn:Ni = 1:1, рН =6,3 ÷ 6,7.

Покрытия получаются блестящими и хорошо сцепленными с основой. Продолжительность действия добавки декстрина (блескообразователь) составляет 5 г/л на 10 А.ч/л.

Наряду с этим составом применяют электролит, содержащий (в г/л):

Сернокислый цинк 75-125

Сернокислый никель 25 — 75

Сернокислый аммоний 35 — 40

Аммиак, мл/л 250

Режим электролиза : температура электролита 15 — 20°С, i к = 1 ÷ 2 А/дм 2 , (i к в начале электролиза 2 — 3 А/дм 2 в течение 1 мин), аноды — из сплава, который осаждается на катоде.

Декоративные и светопоглощающие покрытия из черного никеля в оптической промышленности осаждают из электролита (в г/л):

Сернокислый никель 65 — 75

Сернокислый цинк 30 — 40

Никель — аммоний сернокислый 45 — 50

Натрий роданистый 15

Кислота борная 25

Режим электролиза: температура электролита 45 —55°С, i к = 1,0 ÷1,5 А/дм 2 , аноды раздельные Ni: Zn = 1:1 или из сплава, который осаждается на катоде.

Сначала при 0,02 — 0,05 А/дм 2 рекомендуется осадить определенный слой обычного никеля в качестве подслоя, а потом повысить i к до 1,3 А/дм 2 и нанести черный никель. Благодаря этому повышается адгезия покрытия с основой. Для работы в условиях умеренного климата (помимо подслоя меди и никеля по стали) черные никелевые покрытия дополнительно обрабатывают в горячем растворе дву-хромовокислого калия.

В покрытия, получаемые из роданистого электролита, помимо никеля и цинка входит роданистый натрий и двойная никель-аммонийная соль.

При малых i к = 0,2 ÷ 0,4 А/дм 2 на катоде осаждается серый никель, прочно сцепленный с основой. Увеличение i к от 0,4 до 1,0 А/дм 2 приводит к получению черных осадков. Одновременно изменяется качество — покрытия становятся хрупкими. При понижении температуры электролита до 20°С покрытия становятся грубыми, с подгарами. Переход от серого никеля к черному происходит скачкообразно. На рис. 43, участок 1 кривой соответствует выделению никеля, а участок 2 — выделению цинка. На переходном участке происходит восстановление Ni — Zn на катоде. При 50°С этот момент соответствует i к = 0,35 ÷ 0,4 А/дм 2 . В составе серых покрытий содержатся следы цинка, 14 — 15% черного сульфида никеля, 74% гидроокиси цинка, 9% обычного сульфида никеля.

Рис. 43.

1 — выделение никеля; 2 — выделение цинка

Катодное восстановление сплава Ni — Zn сводится к тому, что при значении i к, отвечающем скачку потенциала на поверхности катода, начинается выделение пузырьков водорода. С повышением рН прикатодного слоя в нем образуется гидроокись цинка, которая, адсорбируясь поверхностью катода, пассивирует грани растущих кристаллов и прекращает их рост.

В результате восстановления роданидов образуются сульфиды металлов, при осаждении которых на пассивированных гранях катода последние становятся электропроводными. Это обеспечивает возникновение новых центров кристаллизации металла, дальнейший рост которых тормозится пассивированием граней кристаллов гидроокисью цинка.

Микротвердость покрытий сплавом Ni — Zn составляет 400 — 500 кгс/мм 2 и возрастает с увеличением содержания никеля в сплаве. Сплав Ni — Zn может быть использован в качестве самостоятельного покрытия или подслоя перед нанесением на сталь хромо-никелевых покрытий.

Петр Степанович Мельников . Справочник по гальванопокрытиям в машиностроении , 1979 .

Простое зарядное устройство для никель-цинковых аккумуляторов на TP4056

Эксперимент по эксплуатации никель-цинковых аккумуляторов , начатый в прошлом году, привёл к поиску зарядного устройства. Первая зарядка была произведена вообще от блока питания. Соединив элементы последовательно в готовом китайском держателе , на них было подано напряжение 3,8 вольт согласно рекомендациям заряжать напряжением 1,9 вольт каждый. Окончание заряда отслеживалось по падению зарядного тока.

В дальнейшем мы придумали универсальное зарядное устройство на микроконтроллере, прототип которого описан . Им можно заряжать любые аккумуляторы, от привычных никель-кадмиевых и никель-металл-гидридных до литиевых и даже свинцовых. Параллельно при этом ведётся подсчёт залитых миллиампер-часов, а для тестирования и восстановления есть режим разряда с аналогичным подсчётом. Это заметно упростило процесс, но как-то понадобилось заряжать ещё один комплект Ni-Zn, а собирать ещё одно универсальное зарядное устройство было лень, тем более, что требовался просто заряд без особого контроля и мониторнига.

Сразу закрались мысли, нельзя ли как-то переделать популярный китайский модуль зарядки лития на микросхеме TP4056 ? Разница в напряжении - 0,4 вольта. Но у TP4056 нет отдельного входа для слежения за напряжением, всё это находится внутри микросхемы. Поэтому подумалось, нельзя ли лишние доли вольта как-то погасить? Для подобных вещей часто используют диоды с их падением напряжения. Этот параметр также называется прямым напряжением диода и приводится в даташите в виде графика вольтамперной характеристики. Изучив эти графики, стало понятно, что нужным падением напряжения обладают лишь диоды Шоттки: на малых токах оно как раз находится в районе 0,4 вольт.


Для проверки мы выбрали диод 1N5818, подключив его последовательно с заряжаемыми аккумуляторами. В китайском модуле был заменён токозадающий резистор с 1,2 кОм на 2,55 кОм для тока в районе 500 мА. Идея частично сработала, но на малом токе - 50мА в конце зарядки - аккумулятор стоял слишком долго - более 2 часов, а до полного заряда не хватало всего 0,5В. Если ещё подержать, то, вероятно, через некоторое время аккумуляторы зарядятся полностью, и такой режим дозаряда даже скорее всего правильный. Напряжение на двух последовательно соединённых никель-цинковых аккумуляторах должно составлять 3,8 вольт, что соответствует 1,9 вольт на аккумулятор. После этого им следует дать "отлежаться", пока напряжение не опустится до 1,6 вольт, и можно пользоваться.


Полученное таким образом зарядное устройство является, по-видимому, самым простым и наиболее дешёвым вариантом с приличной функциональностью. Готовые зарядки для NiZn на Али, например, стоят соответственно самим аккумуляторам. А если применённый здесь модуль дополнить популярным USB-тестером, то получится ещё более функциональное зарядное устройство.


На модуле с

Обзор специфических аккумуляторов NiZn.
забегая вперед - пользоваться можно, но осторожно =)

Что же это за чудо такое:
Никель-цинковый аккумулятор - это химический источник тока, в котором анодом является цинк, электролитом - гидроксид калия с добавкой гидроксида лития, а катодом - оксид никеля. Часто сокращается аббревиатурой NiZn. Во общем это новое - хорошо забытое старое изобретенное когда то Эдисоном.
Достоинства: большое рабочее напряжение (1,6 В; наибольшее из щёлочных аккумуляторов)
Недостатки: небольшой ресурс (250-370 циклов заряд-разряд).

Внешний вид и заявленные характеристики:
Размеры:
Диаметр максимальный:14.5mm.
Высота максимальная:50.5mm.
Вес:25 грамм.








Проблем с установкой вместо батареек АА не обнаружено.
Емкость:
Типовая:2500мВтч. Примерно соответствует 1600-1700мАч (реальных).
Минимальная:2250мВтч.
Почему указывают емкость мВтч а не мАч? Единственное объяснение, которое я нашел: из-за более низких параметров мАч при той же энергоёмкости (напряжение-то выше) на этих элементах отказались от измерения в мАч и пишут ёмкость в мВтч, что в принципе не противоречит.
Номинальное напряжение:1.6 В.
В интернете встречалось упоминание о хорошей работе при низких температурах, но мной не проверялось...
Зарядка:
Поддерживается быстрая зарядка: током от 0.5C до 1C до достижения напряжения 1.9 В на элемент.
Внутреннее сопротивление при напряжении 1 В ≦20мОм (это круто).

Производитель купленных мной элементов имеет свой сайт, о котором я к своему стыду узнал только тогда, когда начал писать обзор и прочитал надпись на элементе =)

Где я применял:
Выгодны для использования в цифровых фотоаппаратах (на NiMh фотоаппарат отключается при не до конца разряженных батарейках - фотоаппарат рассчитан на щелочные батарейки с напряжением 1,5 В, а NiZn имеет высокое напряжение и в конце разряда.) Как раз история из википедии про мой случай. Мой фотоаппарат canon powershot sx150 is ругался на низкое напряжение питания буквально после 5-6 десятков фотографий, хотя вспышка заряжалась по прежнему очень быстро. Проверка аккумуляторов на зарядном устройстве показывала что емкость остаточная была не меньше 50%! Так же на мой взгляд хорошо зарекомендовали себя в электрифицированных игрушках. Разница с другими типами аккумуляторов очевидна, игрушки более подвижны за счет большего напряжения. А в случае когда элементов всего два, то и вообще говорить не приходится, у р/у машинок дальность связи и подвижность отличается очень существенно! Положительный опыт использования в автоматическом тонометре (омрон М3). Накачка шины происходит оперативнее. Так же замечено успешное применение в фонариках.
Во общем сфера применения достаточно разнообразна.

Отличие от NiCd и NiMh более менее достоверный график:


Где синим указана кривая для цинковых аккумуляторов.
Смысл графика в более высоком рабочем напряжении. Разряд производится до напряжения 1.3 В.
Ах да, любители природы будут в восторге, NiZn аккумуляторы безвредны относительно NiCd, за это им плюс в «репу».

Год пользования:
Покупал в июне 2014 года на пробу. У продавца разные варианты, но я выбрал 4 штуки целенаправленно - по 2 комплекта для фотоаппарата. С аккумуляторами идет бокс на 4 штуки АА элементов, он же подходит и для ААА элементов, просто их надо располагать поперек. Удобная коробочка.
Использовал парами, заряженный комплект всегда был в сумке для оперативной замены. Элементы тупо помечены маркером 1 и 2 полоски соответственно, дабы не перепутать при замене.
Как заряжал в первое время:
Зарядное устройство Imax B6 в режиме NiCd, выставлял ограничение по току 1800мА и использовал (не всегда) датчик температуры. При быстрой зарядке датчик температуры очень хорошо фиксирует окончание заряда. Впрочем и дельта пик ловится неплохо.
Поскольку позже фотоаппарат начала усиленно эксплуатировать старшая дочь, то пришлось покупать отдельную зарядку, заряжать имаксом я не стал доверять, а заряжать самому не всегда было возможно, да и пусть в конце концов самостоятельная будет =).
Для этого была куплена
Зарядка позиционируется для NiMh с напряжением до 1.4 В , но мне повезло - замеры показали ток 190мА и напряжение макс 2В на элемент - то, что нужно. Ставили на зарядку примерно на 10-11 часов. Используя вместо таймера обычный будильник, либо программу будильник на компьютере.

За год с лишним аккумуляторы отработали не менее 150 циклов. Остаточная емкость была примерно 1100 мАч (1700мВтч). Дальнейшая судьба печальна, аккумуляторы отправились в мир иной. То, что не сделала старшая дочь, довершила младшая =(
Причина банальна: фотоаппарат был разбит и аккумуляторы оказались не у дел. Позже при отъезде на несколько дней аккумуляторы были упакованы в этого колобка - убийцу аккумуляторов:


Просто напросто забыли выключить питание. В таком состоянии аккумуляторы пробыли около 2х недель и разрядились в ноль.

Попытка реанимировать оказалась неудачной:


Заряжается с отсечкой по дельа пик (я сначала обрадовался, но не тут то было)

После колобка напряжение было 0 В на всех элементах. Попытка прокачки на интеллектуальном зарядном устройстве положительного эффекта не дала. Высокое внутреннее сопротивление и малая емкость - это все что мне осталось констатировать. Аккумуляторы пойдут на утилизацию.

Заключение:

Высокое напряжение - конек NiZn аккумуляторов , но это не всегда хорошо, вы должны быть уверены что ваше устройство (как правило электроника) будет адекватно функционировать. Опять же требуется отдельное зарядное устройство для NiZn элементов, либо универсальное, поддерживающее NiZn. В противном случае вы разочаруетесь в этих аккумуляторах, которые не смогут раскрыть свой потенциал полностью. На данный момент для меня никелевые аккумуляторы скорее всего пройденный этап, переходим на литий.

Планирую купить +20 Добавить в избранное Обзор понравился +43 +98

Высокие требования, предъявляемые к химическим источникам тока, привели к разработке и внедрению в практику некоторых новых типов аккумуляторов. Среди них прежде всего нужно отметить серебряно-цинковые (СЦ), а также безламельные кадмий-никелевые (КН) аккумуляторы.

При относительно малых габаритах и весе эти аккумуляторы имеют большую емкость и значительный ток разряда. Но этим типам аккумуляторов присущ и ряд недостатков, которые ограничивают область их применения. К основному недостатку безламельных кадмий-никелевых и особенно серебряно-цинковых аккумуляторов относится их высокая стоимость, обусловленная применением в них таких дорогих материалов, как кадмий и серебро.

Новый тип никель-цинковый (НЦ) аккумулятор, обладая высокими удельными характеристиками, требует для своего производства гораздо более дешевых и доступных материалов; поперечный разрез его показан на рис. 1. Рабочее напряжение ни-кель-цинковых аккумуляторов лежит в пределах 1,60— 1,70 в, то есть выше чем у серебряно-цинковых аккумуляторов на 7— 9% и кадмий-никелевых аккумуляторов — на 30— 33%.

В качестве положительного электрода никель-цинковых аккумуляторов используется высокопористая метал-локер амическая (никелевая) основа, пропитанная активным веществом — гидратом закиси никеля. Никелевая пластина изготовляется спеканием при высокой температуре порошка карбонильного никеля.

Рис 1.1. 1 — полистироловый сосуд, 2 — отрицательный электрод, 3 — положительный электрод, 4 — капроновый чехол, 5 — целлофановая оболочка, 6 — изоляционная трубка отрицательного токовода, 7 — борн, 8 — пробка.

Капроновый чехол на положительном электроде выполняет роль сепаратора. Отрицательным электродом является брикет, спрессованный из смеси просеянной окиси цинка и цинковой пыли в отношении 7:3 со связующим 2,5% раствором крахмала. Отрицательный электрод завертывается в три слоя полупроницаемой пленки из специально обработанного целлофана. Электроды подобного типа используются в настоящее время в серебряно-цинковых (отрицательный электрод) и в безламельных кадмий-никелевых аккумуляторах (положительный электрод). Токоотводом служит медная кадмированная проволока. Электролит в аккумуляторе — раствор едкого калия КОН с добавкой едкого лития LiOH 15 г/л.

Таблица 1. Удельные характеристики некоторых систем аккумуляторов.

Реакции, происходящие в аккумуляторе, можно изобразить следующим образом:

При шестичасовом режиме заряда никель-цинковых аккумуляторов напряжение их не должно превышать величины 2,05—2,1 в. При необходимости аккумуляторы могут быть заряжены и при одночасовом режиме.

Аккумуляторы этого типа работоспособны в интервале температур от — 30° до +40°С. При —30°С и трехчасовом режиме разряда до напряжения 1,3 в аккумуляторы отдают 18— 22% и до 1 в — 28 — 34% своей номинальной емкости.

При комнатной температуре никель-цинковые аккумуляторы теряют до 20— 30% своей емкости за месяц, как и кадмий-никелевые аккумуляторы. Срок службы никель-цинковых аккумуляторов такой же, как у серебряноцинковых аккумуляторов. Никель-цинковые аккумуляторы выдерживают не менее 50 циклов заряд-разряд; при залитом электролите они могут храниться не менее шести месяцев.

По удельным характеристикам ннкель-цинковые аккумуляторы значительно превосходят безламельные кадмий-никелевые и приближаются к серебряно-цинковым аккумуляторам (таблица).

По ориентировочным расчетам стоимость никель-цинковых аккумуляторов не превышает 1—1,5 руб. за 1 ет-час (в расчете на номинальную емкость). Для сравнения укажем, что себестоимость безламельных кадмий-никелевых аккумуляторов составляет 2— 2,5 руб., а серебряно-цинковых— 4— 5 руб. за 1 вт-час.

Исследования свойств покрытия, полученного с помощью кислого электролита. Покрытие цинк-никель можно получить как с помощью щелочного, так и с помощью кислого электролита.

Щелочные процессы для нанесения сплава цинк-никель придают поверхности блеск, отличаются высокой рассеивающей и кроющей способностью даже при обработке деталей сложной конфигурации. Эти свойства делают щелочные электролиты цинкования экономически выгодными и удобными в использовании.

Катодный выход по току щелочных процессов обычно варьируется в пределах 40-60% для свежих растворов, по мере использования электролита этот показатель снижается в силу скопления в ванне продуктов органического распада, а также образования углекислого натрия. Как правило, никель вводится в раствор посредством запатентованных добавок, что удорожает стоимость процесса получения покрытия.

Катодный выход по тока кислотных процессов для осаждения сплава цинк-никель составляет около 95%. Никель, входящий в состав раствора для обработки, содержится в солях, широко доступных на отраслевом рынке. Корректировка электролита (с целью увеличения концентрация никеля) выполняется с помощью растворимых никелевых анодов либо никелевых солей. В связи с этим стоимость кислотного процесса оказывается гораздо более низкой, чем стоимость щелочного, с учетом потребления химикатов. Кроме того, кислотный электролит обеспечивает большую производительность благодаря более высокому выходу по току. И, как известно, кислые растворы для нанесения сплава цинк-никель идеально подходят для осаждения покрытия на изделия из чугунного литья под действием постоянного тока, например, для осаждения гальванического покрытия на тормозные скобы.

Процесс получения покрытия цинк-никель из кислого электролита отличается определенными сложностями, что делает его менее удобным для применения в промышленных условиях. Цинковые аноды растворяются в кислых хлористых электролитах, вызывая трудности с контролированием концентрации цинка в растворе.

Чтобы сделать возможным использование растворимых никелевых анодов, применяется двойное выпрямление тока. В последнее время появились запатентованные нерастворимые аноды, позволяющие избежать двойного выпрямления. При обеднении электролита цинком или никелем используются специальные соли. Применение этих мер увеличит стоимость процесса (по сравнению с методом, использующим растворимые аноды), однако в первом случае значительно упрощается процедура получения покрытия в целом, а общая ее общая стоимость составит половину стоимости щелочного процесса.

Распределение сплава при заданной плотности тока в кислом электролите зависит от типа проводящей соли и наличия в растворе комплексообразователя. Чтобы добиться состава сплава, необходимого в соответствии с требованиями автомобильной отрасли в отношении коррозионной стойкости, на обрабатываемые изделия необходимо нанести слой, на 12-15% состоящий из никеля, равномерно распределенного по поверхности детали. По мнению Болдвина и его коллег, сплав, в котором содержание никеля превышает 21%, не способен обеспечить катодную защиту стальной поверхности. Что касается внешнего вида, сплав цинк-никель с содержанием никеля более 21% образует при электрохимическом осаждении слой черного цвета.

ОПЫТЫ И ВЫВОДЫ

В ходе экспериментов были исследованы три различных щелочных процесса нанесения сплава цинк-никель, описанных в Таблице I. Все они широко используются на современных производственных предприятиях. Раствор I был приготовлен на основе хлористого аммония, раствор II, не содержащий комплексообразователя, - на основе хлористого калия. В основе раствора III также использовался хлористый калий, однако в электролит был также добавлен мягкий комплексообразователь.

Таблица I.

Результаты исследования кислых электролитов для осаждения сплава цинк-никель

Электролит 1 Электролит 2 Электролит 3
Zn, г/л 32 55 36
Ni, г/л 25 29 30
NH4Cl , г/л 253 - -
KCl, г/л - 245 232
Гидроксид аммония, мл/л 60 - -
Борная кислота, г/л - 20 20
рН 5,7 5,4 5,5
Запатентованные добавки 60 мл/л 180 мл/л 25 мл/л
Комплексообразователь - - 200-350 мл/л

Катоды из малоуглеродистой стали, размерами 20 на 8 см, подвергли электрохимической обработке в 500-миллилитровой ячейке Тосея (также известной, как длинная ячейка Хула) при магнитном перемешивании. Продолжительность обработки составила 10 минут, плотность тока - 10 А. Содержание сплава было исследовано посредством рентгенографии с помощью спектрометра Seiko, модель SE 5120. Замеры делались в нескольких точках, расположенных на расстоянии 2 см друг от друга на участке высокой плотности тока.

Результаты исследований образца, обработанного в электролите 1 на основе хлористого аммония, приведены на рисунке 1. Как видно из таблицы, образец демонстрирует отклонение от нормы, типичное при осаждении цинка с элементами группы железа. При снижении плотности тока отмечается сокращение содержания никеля в осажденном слое. Повышение температуры раствора увеличивает содержание никеля в покрытии, но не изменяет характеристик покрытия.

Рисунок 1.
Электролит 1. Отношение распределения сплава к плотности тока.

С практической точки зрения, участки на катоде, начинающиеся от края высокой плотности и заканчивающиеся на расстоянии 10 см от него, являются индикатором плотности тока обрабатываемой поверхности. Это свойство позволяет наносить сплав с содержанием от 10 до 15 %, который обеспечивает необходимый уровень коррозионной стойкости и так называемую протекторную защиту стали.


Результаты исследований образца, обработанного в электролите 2, приведены в рисунке 2. Поведение раствора 2 при осаждении сплава отличается от поведения раствора 1. Электролит 2 характеризуется отклонением от нормы при любых плотностях тока, однако при минимальной плотности тока ему свойственно поведение, близкое к нормальному осаждению. При повышении температуры это свойство усиливается.

Таблица II. Зависимость состава сплава от плотности тока

4,0 ASD 2,0 ASD 1,0 ASD 0,2 ASD
Электролит 1 % Ni 12,0 12,3 4,3 1,2
(хлористый аммоний) Толщина
слоя, µм
13,8 7,0 4,3 1,2
Электролит 2 % Ni 12,1 12,2 13,4 15,5

(хлорид калия с/без комплексообразователя)

Толщина слоя, µм14,38,23,81,1

Что касается практического применения, электролит 2 экономически не выгоден. Содержание никеля в слое, полученном при стандартной плотности тока, варьируется от 6 до 15%.

Несмотря на то, что этот раствор обеспечивает высокую коррозионную стойкость и протекторную защиту стали, он представляет собой определенные сложности с точки зрения соответствия требованиям к осажденным сплавам согласно стандартам автомобилестроения. Кроме того, при выполнении процесса необходимо поддерживать рабочую температуру раствора на уровне 33 ±2°C во избежание превышения 20%-ной концентрации никеля, которое негативно сказывается на внешнем виде осажденного слоя, равно как на его способности обеспечивать протекторную защиту стали.

На рисунке 3 отображены результаты испытаний образцов, обработанных в растворе 3. Характеристики полученного покрытия схожи с результатами испытаний покрытий, полученных с помощью электролита 2, однако склонность к стандартному поведению подавляется путем увеличения концентрации комплексообразователя. Чтобы получить покрытие, соответствующее требованием автопроизводителей, следует тщательно контролировать концентрацию никеля и комплексообразователя в растворе. Как показывает практический опыт, электролит 3 позволяет осадить в подвесочной линии слой с содержанием никеля, варьирующимся от 12 до 14%. Способность раствора осаждать сплавы с содержанием никеля от 12 до 14% без добавления черных высоколегированных сплавов при низких плотностях тока в барабанах зависит от конфигурации изделия, силы тока и перемешивания.


Рисунок 2. Электролит 2. Распределение сплава.

Для проведения рентгенографии образцы из малоуглеродистой стали были обработаны электрохимическим способом в стандартной ячейке Хула с перемешиванием «пропеллером» при 2 А в течение 10 минут. Составы сплавов в зависимости от плотности тока приведены в Таблице II. Химический состав и толщина осажденного сплава были определены с помощью рентгенографии с помощью дифрактомера D8 Discover, оснащенного детектором GADDS, производства компании «Bruker Analytical X-Ray Systems, Inc.».



Рисунок 4.

На Рис. 4 представлен результат рентгенографии образца, обработанного в электролите 1. Вне зависимости от плотности тока в сплаве зафиксированы фазы Ni 5 Zn 21. Изменения плотности тока никак не отражаются на фазах сплава, лишь незначительно меняя текстуру образуемого сплава. Качественный анализ рентгеновского снимка выявил единственно просматриваемую при 4 ASD ориентацию - ориентацию (330). При увеличении плотности тока появляется ориентация (600), которая продолжает рост даже при снижении плотности тока.


Рисунок 5.

Рис. 5 представляет собой результат рентгенографии сплава цинк-никель, осажденного из электролита 2. При любой плотности тока присутствует единственная фаза Ni 5 Zn 21. Изменения плотности тока значительно сказываются на текстуре поверхности. Качественный анализ снимка показал, что ориентация (600) является доминирующей, среди тех, которые удалось зафиксировать при 4 ASD. При снижении плотности тока усиливается ориентация (330). При 0,2 ASD ориентация 330 преобладает над ориентацией (600).

Слой, осажденный из раствора на основе калия, обладает характеристиками, противоположными характеристикам покрытия, полученного с помощью электролита на основе хлористого аммония.

ЗАКЛЮЧЕНИЕ

Слой, полученный путем осаждения сплава цинк-никель из кислого электролита, имеет фазу Ni 5 Zn 21 при массовой доле никеля от 12 до 15%. Покрытия, осажденные из хлористого аммония, обладают кристаллической ориентацией по отношению к плотности тока, противоположной ориентации, зафиксированной у покрытий, полученных с помощью раствора на основе хлорида калия. Влияние этого фактора на такие свойства покрытия, как внутреннее напряжение и пластичность, а также возможность последующего осаждения, нуждается в дополнительном исследовании.

Растворы хлористого аммония для осаждения сплава цинк-никель позволяют получить покрытия, содержание никеля в которых при заданной плотности тока являются более предпочтительными для предприятия с экономической точки зрения. Кроме того, электролиты на основе хлористого аммония, подходят как для обработки в барабанах, так и для применения на подвесочной линии. В случаях, когда в силу каких-либо причин использование хлористого аммония запрещено, предприятие может эффективно заменить его раствором на основе хлорида калия, предлагаемого многими поставщиками.

Чтобы контролировать состав сплава на участках минимальной плотности тока, рекомендуется использовать мягкий комплексообразователь. Несмотря на то, что на отраслевом рынке имеется большое количество технологий на основе хлорида калия, не требующих использования комплексообразователя, они не нашли широкого применения на промышленных предприятиях в силу повышенного содержания никеля под воздействием минимальной плотности тока и необходимости поддерживать строго определенную температуру.