Где применяется генератор переменного. Как работает автомобильный генератор, схемы

После открытия явления электромагнитной индукции М. Фарадеем в 1831 году были изобретены разнообразные электрические машины. Электрогенераторы среди них являются основой всех современных электросетей. Они являются источниками электроэнергии и первыми определяют её количество и качество. Прежде чем появляется возможность использования электричества потребителями необходимо не один раз выполнить преобразование напряжения для уменьшения потерь определяемых передачей электроэнергии.

По этой причине наиболее эффективными уже долгое время являются электросети с переменным напряжением и током. Их частота в разных странах выбирается либо 50, либо 60 Герц, потому что эти значения опять-таки наиболее экономически оправданы на нынешнем этапе развития науки и техники. В самом начале любой электрической сети находится один или несколько синхронных генераторов переменного тока.

Принцип работы

Чтобы в проводнике появился электроток, силовые линии магнитного поля должны быть подвижными относительно этого проводника. С этой целью в генераторе переменного тока подвижный вращающийся магнит, который своим магнитным полем пересекает неподвижные проводники. Он расположен на вале, вращаемом внешним источником механической энергии.

Вал с магнитом называется ротором или индуктором. Конструктивно ротор может быть выполнен как с постоянным магнитом из специального магнитного материала, так и с электромагнитом. Такая электрическая машина называется синхронной, поскольку магнитное поле в ней вращается вместе с ротором.

Для получения наиболее эффективного магнитного поля наибольшее распространение получила конструкция с ротором, изготовленным из специальных сплавов в виде сердечника охваченного витками обмотки, по которой течёт постоянный ток. Обмотка называется как «обмотка возбуждения». Источник тока возбуждения может быть как внешним, так и встроенным в ротор. Внешний источник подключается к двум неподвижным щёткам.

Последние расположены на основании, относительно которого вращается ротор, и образуют скользящие контакты с двумя соответствующими кольцами, расположенными на роторе. Встроенный источник является отдельной обмоткой с выпрямителем переменного тока. Его преимущество состоит в том, что скользящие контакты исключены из такой конструкции. Роторы могут конструктивно отличаться. Они делаются явнополюсными, неявнополюсными, снабжаются демпферными обмотками.

Для того чтобы получить необходимое значение частоты тока и напряжение надо за единицу времени получить определённое число пересечений силовых линий магнитного поля с проводником. С целью наиболее эффективного взаимодействия магнитного поля и проводника он выполнен в виде витков обмотки расположенных на сердечнике из специального сплава. Таких сердечников делается столько, сколько потребуется в соответствии с решаемой технической задачей.

Они располагаются вокруг ротора и называются статором. Каждый сердечник статора состоит из двух частей, между которыми с некоторым зазором расположен ротор. Эти две части образуют так называемую пару полюсов электрогенератора. При вращении противоположные магнитные полюсы ротора перемещаются мимо противоположных частей сердечника статора.

Пары полюсов располагаются на основании относительно которого перемещается ротор. Конструктивно это основание выполнено в виде корпуса генератора переменного тока. Статор, щётки, кольца и ротор скрыты внутри корпуса. Из него выступает вал и клеммы щёток. При вращении вала внешней силой например турбиной статор является источником Э.Д.С. Частота напряжения и тока в статоре зависят от того сколько раз за единицу времени магнитный полюс ротора перемещается мимо сердечников статора.

Конструктивные разновидности

Поэтому влиять на частоту напряжения и тока можно либо скоростью вращения ротора, либо числом пар полюсов, либо и тем и другим вместе. При замедлении скорости вращения ротора для сохранения частоты напряжения и тока следует увеличивать число пар полюсов. Этим отличаются генераторы тепловых электростанций от генераторов гидроэлектростанций и ветряков.

Паровая турбина вращается быстро, а гидротурбина – медленно. Но при этом частота напряжения и тока, которые вырабатывают оба этих генератора одинаковые. Однако у генератора гидроэлектростанции число пар полюсов в несколько раз больше, и они чаще всего делаются с явнополюсными роторами. Генераторы на тепловых электростанциях по причине больших скоростей вращения в 1500 и 3000 об/мин делаются с неявнополюсными роторами. Число пар полюсов зависит и от количества фаз. Одной фазе соответствует одна пара полюсов статора. Поэтому трёхфазные варианты содержат три пары полюсов, как минимум.

  • Пространственное расположение пар полюсов в многофазных генераторах определяет фазовый сдвиг напряжений и токов в фазных обмотках.

Пространственное расположение генераторов в рабочем состоянии по положению оси вращения ротора может быть как горизонтальным, так и вертикальным. Работа с паровой или газовой турбиной по причине больших центробежных нагрузок предусматривает только горизонтальное расположение, минимально возможный диаметр и максимально возможную длину генератора. Пример такой электрической машины показан на изображении ниже:

На гидроэлектростанциях в зависимости от напора воды могут использоваться как горизонтальные, так и вертикальные конструкции этих электрических машин. Существуют специальные конструкции явнополюсных генераторов относительно небольших мощностей порядка десяти киловатт. В них индуктор (которым обычно является ротор) неподвижен, а якорь (которым обычно является статор) вращается. Вырабатываемая электроэнергия через кольца и щётки поступает в нагрузку.

Ещё одной разновидностью источника электрической энергии является асинхронный генератор переменного тока. Он имеет наиболее простую конструкцию и высокую надёжность. Но его энергетические характеристики, стабильность частоты напряжения и тока невелики по сравнению с синхронными машинами. Это ограничивает область использования асинхронных генераторов. Они применяются лишь там, где необходима простота, надёжность и наименьшие расходы.

Диагностирование генераторной установки переменного тока при помощи USB Autoscope III (осциллограф Посталовского).

ЦЕЛЬ РАБОТЫ : Проверка работоспособности генераторной установки.

1.Изучение принципиальной схемы работы генератора;

2.Изучение этапов подготовки прибора к работе;

3.Изучение порядка работы диагностирования:

4.Проверка работоспособности генераторной установки.

Назначение, устройство и принцип работы генератора.

Генераторная установка предназначена для обеспечения питанием потребителей, входящих в систему электрооборудования, и зарядки аккумуляторной батареи при работающем двигателе автомобиля. Выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля не происходил прогрессивный разряд аккумуляторной батареи. Кроме того, напряжение в бортовой сети автомобиля, питаемой генераторной установкой, должно быть стабильно в широком диапазоне изменения частоты вращения и нагрузок.
Генераторная установка - достаточно надежное устройство, способное выдержать повышенные вибрации двигателя, высокую подкапотную температуру, воздействие влажной среды, грязи и других факторов.

На современных автомобилях устанавливают генераторы переменного тока. Для нормальной работы имеющихся на автомобиле потребителей тока должно быть стабильное напряжение питания, поэтому независимо от частоты вращения ротора генератора и числа подключенных потребителей напряжение генератора должно быть постоянным. Поддержание постоянства напряжения и защита генератора от перегрузки обеспечиваются прибором, называемым регуляторам напряжения или реле-регулятором.

В зависимости от дорожно-климатических условий и режимов эксплуатации автомобилей напряжение генератора, питающее потребителей, рассчитанных на номинальное напряжение 12 В, должно быть в пределах 13,2 . 15,5 В.

Генератор переменного тока трехфазный, синхронный, с электромагнитным возбуждением, по сравнению с генератором постоянного тока он имеет меньшие металлоемкость и габаритные размеры. При той же мощности он проще по конструкции и отличается большим сроком службы. Синхронным генератор называется потому, что частота вырабатываемого им тока пропорциональна частоте вращения ротора генератора. Удельная мощность генератора переменного тока, т.е. мощность генератора, приходящаяся на единицу его массы, примерно в 2 раза больше, чем у генератора постоянного тока. Это позволяет в 2-3 раза увеличить передаточное число привода генератора, вследствие чего при частоте вращения на режиме холостого хода двигателя генераторы переменного тока развивают до 40 % номинальной мощности, что обеспечивает лучшие условия заряда аккумуляторных батарей и, как следствие, повышение их срока службы. Наряду с этим генераторы переменного тока, несмотря на их различие в номерах серий, по многим моделям легковых и грузовых автомобилей соответственно унифицированы и имеют ряд взаимозаменяемых деталей (приводные шкивы, крыльчатки, подшипники и др.), а по устройству не имеют принципиальных различий.

Принцип действия генератора.

В основе работы генератора лежит эффект электромагнитной индукции. Если катушку например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. И наоборот, для образования магнитного потока достаточно пропустить через катушку электрический ток.

Таким образом, для получения переменного электрического тока требуются катушка, по которой протекает постоянный электрический ток, образуя магнитный поток, называемая обмоткой возбуждения и стальная полюсная система, назначение которой - подвести магнитный поток к катушкам, называемым обмоткой статора, в которых наводится переменное напряжение.

Эти катушки помещены в пазы стальной конструкции, магнитопровода (пакета железа) статора. Обмотка статора с его магнитопроводом образует собственно статор генератора, его важнейшую неподвижную часть, в которой образуется электрический ток, а обмотка возбуждения с полюсной системой и некоторыми другими деталями (валом, контактными кольцами) - ротор, его важнейшую вращающуюся часть.

При вращении ротора напротив катушек обмотки статора появляются попеременно "северный", и "южный" полюсы ротора, т. е. направление магнитного потока, пронизывающего катушку, меняется, что и вызывает появление в ней переменного напряжения.

Обмотка статора генераторов зарубежных фирм, как и отечественных - трехфазная. Она состоит из трех частей, называемых обмотками фаз или просто фазами, напряжение и токи в которых смещены друг относительно друга на треть периода, т. е. на 120 электрических градусов. Фазы могут соединяться в "звезду" или "треугольник".

Устройство генератора.

По своему конструктивному исполнению генераторные установки можно разделить на две группы - генераторы традиционной конструкции с вентилятором у приводного шкива и генераторы так называемой компактной конструкции с двумя вентиляторами во внутренней полости генератора. Обычно "компактные" генераторы оснащаются приводом с повышенным передаточным отношением через поликлиновый ремень и поэтому по принятой у некоторых фирм терминологии, называются высокоскоростными генераторами. При этом внутри этих групп можно выделить генераторы, у которых щеточный узел расположен во внутренней полости генератора между полюсной системой ротора и задней крышкой и генераторы, где контактные кольца и щетки расположены вне внутренней полости. В этом случае генератор имеет кожух, под которым располагается щеточный узел, выпрямитель и, как правило, регулятор напряжения.

Устройство генератора показано на фото. Корпус (5) и передняя крышка генератора (2) служат опорами для подшипников (9 и 10), в которых вращается якорь (4). На обмотку возбуждения якоря напряжение от аккумулятора подается через щетки (7) и контактные кольца (11). Якорь приводится в движение посредством клинового ремня через шкив (1). При запуске двигателя, как только якорь начинает вращаться, создаваемое им электромагнитное поле индуцирует переменный электрический ток в обмотке статора (3). В выпрямительном блоке (6) этот ток становится постоянным. Далее ток через совмещенный с выпрямительным блоком регулятор напряжения поступает в электросеть автомобиля для питания системы зажигания, освещения и сигнализации, контрольно-измерительных приборов и др. Аккумуляторная батарея подключится к числу этих приборов и начнет подзаряжаться чуть позднее, как только электроэнергии, вырабатываемой генераторной установкой, станет достаточно, чтобы обеспечить бесперебойное функционирование всех потребителей.

Меры предосторожности

Эксплуатация генераторной установки требует соблюдения некоторых правил, связанных, главным образом, с наличием в них электронных элементов.

1. Не допускается работа генераторной установки с отключенной аккумуляторной батареей. Даже кратковременное отсоединение аккумуляторной батареи при работающем генераторе может привести к выходу элементов регулятора напряжения из строя.
При полностью разряженной аккумуляторной батарее машину невозможно завести, даже если катать ее на буксире: АКБ не дает тока возбуждения, и напряжение в бортовой сети остается близким к нулю. Помогает установка исправной заряженной батареи, которая затем при работающем двигателе меняется на прежнюю, разряженную. Чтобы избежать выхода из строя элементов регулятора напряжения (и подключенных потребителей) из-за повышения напряжения, на время перестановки батарей необходимо включить мощные потребители электроэнергии, таких, как обогрев заднего стекла или фары. В дальнейшем за полчаса-час работы двигателя на 1500-2000 об/мин разряженная батарея (если она исправна) зарядится достаточно для того, чтобы завести двигатель.

2. Не допускается подсоединение к бортовой сети источников электроэнергии обратной полярности (плюс на "массе"), что может произойти, например, при запуске двигателя от посторонней аккумуляторной батареи.


Похожая информация.


Генератор тока преобразует механическую (кинетическую) энергию в электроэнергию. В энергетике пользуются только вращающимися электромашинными генераторами, основанными на возникновении электродвижущей силы (ЭДС) в проводнике, на который каким-либо образом действует изменяющееся магнитное поле. Ту часть генератора, которая предназначена для создания магнитного поля, называют индуктором, а часть, в которой индуцируется ЭДС – якорем.

Вращающуюся часть машины называют ротором , а неподвижную часть – статором . В синхронных машинах переменного тока индуктором обычно является ротор, а в машинах постоянного тока – статор. В обоих случаях индуктор представляет собой обычно двух- или многополюсную электромагнитную систему, снабженную обмоткой возбуждения, питаемой постоянным током (током возбуждения), но встречаются и индукторы, состоящие из системы постоянных магнитов. В индукционных (асинхронных) генераторах переменного тока индуктор и якорь не могут четко (конструктивно) различаться друг от друга (можно сказать, что статор и ротор одновременно являются и индуктором и якорем).

Более 95 % электроэнергии на электростанциях мира производится при помощи синхронных генераторов переменного тока . При помощи вращающегося индуктора в этих генераторах создается вращающееся магнитное поле, наводящее в статорной (обычно трехфазной) обмотке переменную ЭДС, частота которой точно соответствует частоте вращения ротора (находится в синхронизме с частотой вращения индуктора). Если индуктор, например, имеет два полюса и вращается с частотой 3000 r/min (50 r/s), то в каждой фазе статорной обмотки индуцируется переменная ЭДС частотой 50 Hz. Конструктивное исполнение такого генератора упрощенно изображено на рис. 1.

Рис. 1. Принцип устройства двухполюсного синхронного генератора. 1 статор (якорь), 2 ротор (индуктор), 3 вал, 4 корпус. U-X, V-Y, W-Z – размещенные в пазах статора части обмоток трех фаз

Магнитная система статора представляет собой спрессованный пакет тонких стальных листов, в пазах которого располагается статорная обмотка. Обмотка состоит из трех фаз, сдвинутых в случае двухполюсной машины друг относительно друга на 1/3 периметра статора; в фазных обмотках индуцируются, следовательно, ЭДС, сдвинутые друг относительно друга на 120o. Обмотка каждой фазы, в свою очередь, состоит из многовитковых катушек, соединенных между собой последовательно или параллельно. Один из наиболее простых вариантов конструктивного исполнения такой трехфазной обмотки двухполюсного генератора упрощенно представлен на рис. 2 (обычно число катушек в каждой фазе больше, чем показано на этом рисунке). Те части катушек, которые находятся вне пазов, на лобовой поверхности статора, называются лобовыми соединениями.

Рис. 2. Простейший принцип устройства статорной обмотки трехфазного двухполюсного синхронного генератора в случае двух катушек в каждой фазе. 1 развертка поверхности магнитной системы статора, 2 катушки обмотки, U, V, W начала фазных обмоток, X, Y, Z концы фазных обмоток

Полюсов индуктора и, в соответствии с этим, полюсных делений статора, может быть и больше двух. Чем медленнее вращается ротор, тем больше должно быть при заданной частоте тока число полюсов. Если, например, ротор вращается с частотой 300 r/min, то число полюсов генератора, для получения частоты переменного тока 50 Hz, должно быть 20. Например, на одной из крупнейших гидроэлектростанций мира, ГЭС Итайпу (Itaipu, см. рис. 4) генераторы, работающие на частоте 50 Hz, исполнены 66-полюсными, а генераторы, работающие на частоте 60 Hz – 78-полюсными.

Обмотка возбуждения двух- или четырехполюсного генератора размещается, как показано на рис. 1, в пазах массивного стального сердечника ротора. Такая конструкция ротора необходима в случае быстроходных генераторов, работающих при частоте вращения в 3000 или 1500 r/min (особенно для турбогенераторов, предназначенных для соединения с паровыми турбинами), так как при такой скорости на обмотку ротора действуют большие центробежные силы. При большем числе полюсов каждый полюс имеет отдельную обмотку возбуждения (рис. 3.12.3). Такой явнополюсный принцип устройства применяется, в частности, в случае тихоходных генераторов, предназначенных для соединения с гидротурбинами (гидрогенераторов), работающих обычно при частоте вращения от 60 r/min до 600 r/min.

Очень часто такие генераторы, в соответствии с конструктивным исполнением мощных гидротурбин, выполняются с вертикальным валом.

Рис. 3. Принцип устройства ротора тихоходного синхронного генератора. 1 полюс, 2 обмотка возбуждения, 3 колесо крепления, 4 вал

Обмотку возбуждения синхронного генератора обычно питают постоянным током от внешнего источника через контактные кольца на валу ротора. Раньше для этого предусматривался специальный генератор постоянного тока (возбудитель), жестко связанный с валом генератора, а в настоящее время используются более простые и дешевые полупроводниковые выпрямители. Встречаются и системы возбуждения, встроенные в ротор, в которых ЭДС индуцируется статорной обмоткой. Если для создания магнитного поля вместо электромагнитной системы использовать постоянные магниты, то источник тока возбуждения отпадает и генератор становится значительно проще и надежнее, но в то же время и дороже. Поэтому постоянные магниты применяются обычно в относительно маломощных генераторах (мощностью до нескольких сотен киловатт).

Конструкция турбогенераторов, благодаря цилиндрическому ротору относительно малого диаметра, очень компактна. Их удельная масса составляет обычно 0,5…1 kg/kW, и их номинальная мощность можеь достигать 1600 MW. Устройство гидрогенераторов несколько сложнее, диаметр ротора велик и удельная масса их поэтому обычно 3,5…6 kg/kW. До настоящего времени они изготовлялись номинальной мощностью до 800 MW.

При работе генератора в нем возникают потери энергии, вызванные активным сопротивлением обмоток (потери в меди), вихревыми токами и гистерезисом в активных частях магнитной системы (потери в стали) и трением в подшипниках вращающихся частей (потери на трение). Несмотря на то, что суммарные потери обычно не превышают 1…2 % мощности генератора, отвод тепла, освобождающегося в результате потерь, может оказаться затруднительным. Если упрощенно считать, что масса генератора пропорциональна его мощности, то его линейные размеры пропорциональны кубическому корню мощности, а поверхностные размеры – мощности в степени 2/3. С увеличением мощности, следовательно, поверхность теплоотвода растет медленнее, чем номинальная мощность генератора. Если при мощностях порядка нескольких сотен киловатт достаточно применять естественное охлаждение, то при бoльших мощностях необходимо перейти на принудительную вентиляцию и, начиная приблизительно со 100 MW, использовать вместо воздуха водород. При еще больших мощностях (например, более 500 MW) необходимо дополнить водородное охлаждение водным. У крупных генераторах надо специально охлаждать и подшипники, обычно используя для этого циркуляцию масла.

Тепловыделение генератора можно значительно уменьшить путем применения сверхпроводящих обмоток возбуждения. Первый такой генератор (мощностью 4 MVA), предназначенный для применения на судах, изготовила в 2005 году немецкая электротехническая фирма Сименс (Siemens AG) . Номинальное напряжение синхронных генераторов, в зависимости от мощности, находится обычно в пределах от 400 V до 24 kV. Использовались и более высокие номинальные напряжения (до 150 kV), но чрезвычайно редко. Кроме синхронных генераторов сетевой частоты (50 Hz или 60 Hz) выпускаются и высокочастотные генераторы (до 30 kHz) и генераторы пониженной частоты (16,67 Hz или 25 Hz), используемые на электрифицированных железных дорогах некоторых европейских стран. К синхронным генераторам относится, в принципе, и синхронный компенсатор, представляющий собой синхронный двигатель, работающий на холостом ходу и отдающий в высоковольтную распределительную сеть реактивную мощность. При помощи такой машины можно покрыть потребление реактивной мощности местных промышленных электропотребителей и освободить основную сеть энергосистемы от передачи реактивной мощности.

Кроме синхронных генераторов относительно редко и при относительно малых мощностях (до нескольких мегаватт) могут использоваться и асинхронные генераторы . В обмотке ротора такого генератора ток индуцируется магнитным полем статора, если ротор вращается быстрее, чем статорное вращающееся магнитное поле сетевой частоты. Необходимость в таких генераторах возникает обычно тогда, когда невозможно обеспечить неизменную скорость вращения первичного двигателя (например, ветряной турбины, некоторых малых гидротурбин и т. п.).

У генератора постоянного тока магнитные полюсы вместе с обмоткой возбуждения располагаются обычно в статоре, а обмотка якоря – в роторе. Так как в обмотке ротора при его вращении индуцируется переменная ЭДС, то якорь необходимо снабжать коллектором (коммутатором), при помощи которого на выходе генератора (на щетках коллектора) получают постоянную ЭДС. В настоящее время генераторы постоянного тока применяются редко, так как постоянный ток проще получать при помощи полупроводниковых выпрямителей.

К электромашинным генераторам относятся и электростатические генераторы , на вращающейся части которых путем трения (трибоэлектрически) создается электрический заряд высокого напряжения. Первый такой генератор (вращаемый вручную серный шар, который электризовался при трении об руку человека) изготовил в 1663 году мэр города Магдебурга (Magdeburg, Германия) Отто фон Гюрике (Otto von Guericke, 1602–1686). В ходе своего развития такие генераторы позволяли открывать многие электрические явления и закономерности. Они и сейчас не потеряли своего значения как средств проведения экспериментальных исследований по физике.

Первый изготовил 4 ноября 1831 года профессор Лондонского Королевского института (Royal Institution) Майкл Фарадей (Michael Faraday, 1791–1867). Генератор состоял из подковообразного постоянного магнита и медного диска, вращающегося между магнитными полюсами (рис. 3.12.4). При вращении диска между его осью и краем индуцировалась постоянная ЭДС. По такому же принципу устроены более совершенные униполярные генераторы, находящие применение (хотя относительно редко) и в настоящее время.

Рис. 4. Принцип устройства униполярного генератора Майкла Фарадея. 1 магнит, 2 вращающийся медный диск, 3 щетки. Рукоятка диска не показана

Майкл Фарадей родился в бедной семье и после начальной школы, в возрасте 13 лет, поступил учеником переплетчика книг. По книгам он самостоятельно продолжал свое образование, а по Британской энциклопедии ознакомился с электричеством, изготовил электростатический генератор и лейденскую банку. Для расширения своих знаний он начал посещать публичные лекции по химии директора Королевского института Гемфри Дэви (Humphrey Davy, 1778–1829), а в 1813 году получил должность его ассистента. В 1821 году он стал главным инспектором этого института, в 1824 году – членом Королевского общества (Royal Society) и в 1827 году – профессором химии Королевского института. В 1821 году он начал свои знаменитые опыты по электричеству, в ходе которых предложил принцип действия электродвигателя, открыл явление электромагнитной индукции, принцип устройства магнитоэлектрического генератора, закономерности электролиза и много других основополагающих физических явлений. Спустя год после вышеописанного опыта Фарадея, 3 сентября 1832 года, парижский механик Ипполит Пикси (Hippolyte Pixii, 1808–1835) изготовил по заказу и под руководством основоположника электродинамики Андре Мари Ампера (Andre Marie Ampere, 1775–1836) генератор с вращаемым вручную, как у Фарадея, магнитом (рис. 5). В якорной обмотке генератора Пикси индуцируется переменная ЭДС. Для выпрямления получаемого тока к генератору вначале пристроили открытый ртутный коммутатор, переключающий полярность ЭДС при каждом полуобороте ротора, но вскоре он был заменен более простым и безопасным цилиндрическим щеточным коллектором, изображенным на рис. 5.

Рис. 5. Принцип устройства магнитоэлектрического генератора Ипполита Пикси (a), график индуцируемой ЭДС (b) и график получаемой при помощи коллектора пульсирующей постоянной ЭДС (c). Рукоятка и конусная зубчатая передача не показаны

Генератор, построенный по принципу Пикси, впервые применил в 1842 году на своем заводе в Бирмингеме (Birmingham) для электропитания гальванических ванн английский промышленник Джон Стивен Вульрич (John Stephen Woolrich, 1790–1843), использовав в качестве приводного двигателя паровую машину мощностью 1 л. с. Напряжение его генератора составляло 3 V, номинальный ток – 25 A и кпд – около 10 %. Такие же, но более мощные генераторы быстро начали внедряться и на других гальванических предприятиях Европы. В 1851 году немецкий военный врач Вильгельм Йозеф Зинштеден (Wilhelm Josef Sinsteden, 1803–1891) предложил использовать в индукторе вместо постоянных магнитов электромагниты и питать их током от меньшего вспомогательного генератора; он же обнаружил, что кпд генератора увеличится, если стальной сердечник электромагнита изготовить не массивным, а из параллельных проволок. Однако идеи Зинштедена стал реально использовать только в 1863 году английский электротехник-самоучка Генри Уайльд (Henry Wilde, 1833–1919), который предложил, среди прочих нововведении, насадить машину-возбудитель (англ. exitatrice) на вал генератора. В 1865 году он изготовил генератор невиданной доселе мощности в 1 kW, при помощи которого он мог демонстрировать даже плавку и сварку металлов.

Важнейшим усовершенствованием генераторов постоянного тока стало их самовозбуждение , принцип которого запатентовал в 1854 году главный инженер государственных железных дорог Дании Сёрен Хьёрт (Soren Hjorth, 1801–1870), но не нашедшее в то время практического применения. В 1866 году этот принцип снова открыли независимо друг от друга несколько электротехников, в том числе уже упомянутый Г. Уайльд, но широко известным он стал в декабре 1866 года, когда немецкий промышленник Эрнст Вернер фон Сименс (Ernst Werner von Siemens, 1816–1892) применил его в своем компактном и высокоэффективном генераторе. 17 января 1867 года в Берлинской академии наук был прочитан его знаменитый доклад о динамоэлектрическом принципе (о самовозбуждении). Самовозбуждение позволило отказатьса от вспомогательных генераторов возбуждения (от возбудителей), что обусловило возможность выработки намного более дешевой электроэнергии в больших количествах. По этой причине год 1866 часто считают годом зарождения электротехники сильного тока. В первых самовозбуждающихся генераторах обмотку возбуждения включали, как у Сименса, последовательно (сериесно) с якорной обмоткой, но в феврале 1867 года английский электротехник Чарлз Уитстон (Charles Wheatstone, 1802–1875) предложил параллельное возбуждение, позволяющее лучше регулировать ЭДС генератора, к которому он пришел еще до сообщений о последовательном возбуждении, открытом Сименсом (рис. 6).

Рис. 6. Развитие систем возбуждения генераторов постоянного тока. a возбуждение при помощи постоянных магнитов (1831), b внешнее возбуждение (1851), c последовательное самовозбуждение (1866), d параллельное самовозбуждение (1867). 1 якорь, 2 обмотка возбуждения. Регулировочные реостаты тока возбуждения не показаны

Необходимость в генераторах переменного тока возникла в 1876 году, когда работающий в Париже русский электротехник Павел Яблочков (1847–1894) стал освещать городские улицы при помощи изготовляемых им дуговых ламп переменного тока (свечей Яблочкова). Первые необходимые для этого генераторы создал парижский изобретатель и промышленник Зеноб Теофиль Грамм (Zenobe Theophile Gramme, 1826–1901). С началом массового производства ламп накаливания в 1879 году переменный ток на некоторое время потерял свое значение, но снова обрел актуальность в связи с ростом дальности передачи электроэнергии в середине 1880-х годов. В 1888–1890 годах владелец собственной научно-исследовательской лаборатории Тесла-Электрик (Tesla-Electric Co., Нью-Йорк, США) эмигрировавший в США сербский электротехник Никола Тесла (Nikola Tesla, 1856–1943) и главный инженер фирмы АЭГ (AEG, Allgemeine Elektricitats-Gesellschaft) эмигрировавший в Германию русский электротехник Михаил Доливо-Добровольский (1862–1919) разработали трехфазную систему переменного тока. В результате началось производство все более мощных синхронных генераторов для сооружаемых тепло- и гидроэлектростанций.

Важным этапом в развитии турбогенераторов может считаться разработка в 1898 году цилиндрического ротора совладельцем швейцарского электротехнического завода Браун, Бовери и компания (Brown, Boveri & Cie., BBC) Чарлзом Эженом Ланселотом Брауном (Charles Eugen Lancelot Brown, 1863–1924). Первый генератор с водородным охлаждением (мощностью 25 MW) выпустила в 1937 году американская фирма Дженерал Электрик (General Electric), а с внутрипроводным водяным охлаждением – в 1956 году английская фирма Метрополитен Виккерс (Metropolitan Vickers).

Генератор тока — это электрическая машина, которая преобразует механическую энергию в электрическую. Они могут генерировать как постоянный, так и переменный ток.

До второй половины XX века на автотранспорте применялись генераторы постоянного тока. Затем широкое распространение получили полупроводниковые диоды, которые позволяли выпрямить переменный ток или сделать его постоянным. Поэтому и в этой сферы генераторы постоянного тока заменили более надежные и компактные трехфазные генераторы переменного тока.

В Я подробно рассмотрел вопросы работы электродвигателя, сейчас будут изложены общие принципы работы и устройства генератора тока. Я не буду подробно останавливаться на машинах постоянного тока, потому что в быту, гаражах и на автотранспорте они сегодня не применяются. Они лишь широко используются в городском электротранспорте: троллейбусах и трамваях.

Принцип действия генератора тока

Генератор работает на основе закона электромагнитной индукции Фарадея- электродвижущая сила (ЭДС) индуцируется в прямоугольном контуре (проволочной рамке), вращающимся в однородном вращающемся магнитном поле.

ЭДС также возникает в неподвижной прямоугольной рамке, если в ней вращать магнит.

Простейший генератор представляет собой прямоугольную рамку, размешенную между 2 магнитами с разными полюсами. Для того что бы снять с вращающейся рамки напряжение используются токосъемные кольца.На практике же используются электромагниты, которые представляют собой катушки индуктивности или обмотки из медного провода в электроизоляционном лаке. При прохождении электрического тока по обмоткам, они начинают обладать электромагнитными свойствами. Для их возбуждения необходим дополнительный источник тока- в автомобилях это аккумуляторная батарея. В бытовых электростанциях возбуждение при заводке происходит в результате самовозбуждения или от дополнительного маломощного генератора постоянного тока, который приводится в движение валом генератора.

По принципу работы генераторы могут быть синхронными или асинхронными.

  1. Асинхронные генераторы конструктивно просто устроены и недороги в изготовлении, более устойчивы к токам короткого замыкания и перегрузок. Асинхронный электрогенератор идеально подходит для питания активной нагрузки: ламп накаливания, электронагревателей, электроники, электрических конфорок и т. д. Но даже кратковременная перегрузка для них недопустима, поэтому при подключении электродвигателей, не электронного типа сварочного аппарата, электроинструмента и других индуктивных нагрузок- запас по мощности должен быть минимум трехкратным, а лучше четырехкратным.
  2. Синхронный генератор прекрасно подойдет для индуктивных потребителей с высокими значениями пусковых токов. Они способны в течении одной секунды выдерживать пятикратную токовую перегрузку.

Устройство генератора переменного тока

Для примера рассмотрения устройства возьмем автомобильный трехфазный генератор.

Автомобильный генератор состоит из корпуса и двух крышек с отверстиями для вентиляции. Ротор вращается в 2 подшипниках и приводится в движение при помощи шкива. По своей сути ротор является электромагнитом, состоящий из одной обмотки. Ток на нее подается при помощи двух медных колец и графитовых щеток, которые соединены с электронным реле-регулятором. Оно отвечает за то, что бы выдаваемое напряжение генератором всегда было в допустимыми пределах 12 Вольт с допустимыми отклонениями и не зависело от частоты вращения шкива. Реле-регулятор может быть как встроено в корпус генератора, так и находится за его пределами.

Статор состоит из трех медных обмоток, соединенных между собой в треугольник. К точкам их соединения подключен выпрямительный мост из 6 полупроводниковых диодов, которые преобразуют напряжение из переменного в постоянное.

Бензиновый электрогенератор состоит из двигателя и приводящего им в движение на прямую- генератора тока, который может быть как синхронного, так и асинхронного типа.

Двигатель оснащен системами: запуска, впрыска топлива, охлаждения, смазки, стабилизации оборотов. Вибрацию и шум поглощают глушитель, виброгасители и амортизаторы.

Преобразование механической энергии в электрическую происходит при помощи генератора тока. В основном, практикуется использование вращающихся электромашинных генераторов. При вращении, в проводнике возникает электродвижущая сила под действием изменяющегося магнитного поля. Часть генератора, создающая магнитное поле, называется индуктором, а та часть, где образуется электродвижущая сила, носит название якоря.

Принцип действия

Вращающаяся часть генератора называется ротором, а его неподвижная часть является статором. Генератор переменного тока имеет статор и ротор, которые по своей конструкции могут быть одновременно якорем и индуктором.

Практически, всю электроэнергию на мировых электростанциях производят электрогенераторы переменного тока. При вращении индуктора, создается магнитное поле, которое вращается и наводит в обмотке статора переменную электродвижущую силу. Ее частота полностью совпадает с частотой вращения ротора.

Элементы генератора

В состав магнитной системы статора входят тонкие стальные листы, спрессованные в пакет. В пазах этого пакета размещается обмотка статора. Она включает в себя три фазы, сдвинутые относительно друг друга на одну третью часть периметра статора. Электродвижущие силы, индуцированные в обмотках фаз, так же сдвинуты между собой на 1200. Каждая фаза имеет обмотку, состоящую из катушек с множеством витков, соединяемых между собой параллельно или последовательно. Части катушек, выступающие из пазов, носят название лобовых соединений статора.

В индукторе и статоре, количество полюсов может быть и более двух. Количество полюсов полностью зависит от частоты вращения ротора. При замедлении вращения ротора может иметь возрастающее число полюсов.

Массивный стальной сердечник ротора содержит в себе обмотку возбуждения генератора. Данная конструкция применяется для электрогенераторов переменного тока, работающих с высокой частотой вращения. Это вызвано тем, что при высоких скоростях вращения, обмотка ротора подвержена действию больших центробежных сил. Большое количество полюсов предполагает наличие отдельной обмотки возбуждения у каждого полюса, что характерно для электрогенераторов, работающих на малых скоростях.

В гидротурбинах генераторы переменного тока могут иметь конструкцию с вертикальным расположением вала. При работе в зависимости от мощности, может применяться воздушное, водородное, водяное или масляное охлаждение.