Описание методики гидравлического расчета трубопроводов тепловых сетей. Гидравлический расчет тепловой сети

Трасса тепловой сети

На плане жилого района нанести трассу тепловой сети от источника теплоснабжения до каждого квартала. Рекомендуется применять радиальную схему тепловой сети. При трассировке следует стремиться к наименьшей протяженности сети и двухсторонней нагрузке магистралей. В каждый квартал следует предусматривать по одному вводу и только в отдельные крупные кварталы допускается по два ввода. Подключение противолежащих кварталов целесообразно осуществлять в одной точке.

В пределах городской застройки прокладку тепловых сетей по архитектурным условиям следует принять подземную канальную. По территории вне городской черты прокладку тепловой сети студент может выбрать по своему усмотрению подземную или надземную на низких опорах.

Задачей гидравлического расчета является определение диаметров труб и потерь давления в них.

Расчетный расход сетевой воды для определения диаметров труб в водяных тепловых сетях следует определять отдельно для отопления, вентиляции и горячего водоснабжения с последующим суммированием этих расходов .

Расчетный расход сетевой воды, кг/ч, для определения диаметров труб в водяных тепловых сетях при качественном регулировании отпуска теплоты следует определять отдельно для отопления, вентиляции и горячего водоснабжения по формулам:

а) на отопление

б) на вентиляцию

; (2.41)

в) на горячее водоснабжение в открытых системах теплоснабжения:

среднечасовой

; (2.42)

максимальный

; (2.43)

г) на горячее водоснабжение в закрытых системах теплоснабжения:

среднечасовой, при параллельной схеме присоединения водоподогревателей

; (2.44)

максимальный, при параллельной схеме присоединении водоподогревателей

; (2.45)

среднечасовой, при двухступенчатых схемах присоединения водоподогревателей

; (2.46)

максимальный, при двухступенчатых схемах присоединения водоподогревателей

; (2.47)

В формулах (2.40 - 2.47) расчетные тепловые потоки приведены в Вт,

теплоёмкость с принимается равной 4,198 кДж/(кг °С).

Суммарные расчетные расходы сетевой воды, кг/ч, в двухтрубных тепловых сетях в открытых и закрытых системах теплоснабжения при качественном регулировании отпуска теплоты следует определять по формуле

Коэффициент k 3, учитывающий долю среднечасового расхода воды на горячее водоснабжение при регулировании по нагрузке отопления, следует принимать по таблице 4. При регулировании по совмещенной нагрузке отопления и горячего водоснабжения коэффициент k 3 принимается равным нулю.



Таблица 4 – Значения коэффициента k 3

Для проведения гидравлического расчета составляется расчетная схема сети, на которой показывается источник теплоснабжения, трасса тепловой сети и подсоединяемые к ней ЦТП или узловые камеры кварталов. Трассу разбивают на расчетные участки, указывая на каждом номер, длину и расход теплоносителя.

Рис.3. Расчётная схема тепловой сети (пример).

Расход сетевой воды по жилым кварталам распределяют пропорционально их тепловой нагрузке (или площади).

В целях сокращения однотипных расчетов разрешается выполнить гидравлический расчет магистрального направления (от источника до самого удаленного квартала) и одного ответвления трассы.

Для предварительного расчета удельные потери давления (R Λ) могут быть приняты для участков магистрального направления до 80 Па/м, для участков ответвления трассы до 300 Па/м.

Расчет начинают с головного участка, т.е. от источника до первого ответвления. По расчетному расходу теплоносителя на участке и предварительно принятым удельным потерям давления по номограмме для гидравлического расчета, согласно приложения 5 данного учебного пособия, а также по таблицам и номограммам находят диаметр трубопровода. По таблицам 3.4 и 3.7 «Трубы стальные» выбирают стандартный диаметр трубы близкий к предварительно полученному по номограмме. Для стандартной трубы уточняют удельные потери давления и скорость движения теплоносителя. Для рассматриваемого участка разрабатывают монтажную схему, на которой указывают трубопроводы, арматуру, неподвижные опоры, компенсаторы, углы поворота, переходы. Выделяют виды местных сопротивлений и подсчитывают эквивалентную длину участка . Расчеты сводят в таблицу 5.

Таблица 5 – Гидравлический расчет водяной тепловой сети

Трубопроводы тепловой сети на схеме показываются двумя параллельными линиями и обозначаются Т1 и Т2. Подающий трубопровод Т1 располагается обязательно справа по ходу теплоносителя от источника. Все точки ответвлений закрепляются неподвижными опорами и обозначаются УТ – узлы трубопроводные. На ответвлениях тепловой сети устанавливается запорная арматура – стальные задвижки, для обслуживания которых предусматриваются тепловые камеры [приложение 16 данного учебного пособия].

Страница 1

Гидравлический расчёт является важнейшим элементом проектирования тепловых сетей.

В задачу гидравлического расчёта входят:

1. Определение диаметров трубопроводов,

2. Определение падения напора в сети,

3. Установление величин напоров (давлений) в различных точках сети,

4. Увязка напоров в различных точках системы при статическом и динамическом режимах её работы,

5. Установление необходимых характеристик циркуляционных, подкачивающих и подпиточных насосов, их количества и размещение.

6. Определение способов присоединения абонентских вводов к тепловой сети.

7. Выбор схем и приборов автоматического регулирования.

8. Выявление рациональных режимов работы.

Гидравлический расчёт производят в следующем порядке:

1) в графической части проекта вычерчивают генплан района города в масштабе 1:10000, в соответствии с заданием наносят место расположения источника теплоты (ИТ);

2) показывают схему тепловой сети от ИТ к каждому микрорайону;

3) для гидравлического расчёта тепловой сети на трассе трубопроводов выбирают главную расчётную магистраль, как правило, от источника тепла до наиболее удалённого теплового узла;

4) на расчётной схеме указывают номера участков, их длины, определяемые по генплану с учётом принятого масштаба, и расчётные расходы воды;

5) на основании расходов теплоносителя и, ориентируясь на удельную потерю давления до 80 Па/м, назначают диаметры трубопроводов на участках магистрали;

6) по таблицам определяют удельную потерю давления и скорость теплоносителя (предварительный гидравлический расчёт);

7) рассчитывают ответвления по располагаемому перепаду давлений; при этом удельная потеря давления не должна превышать 300 Па/м, скорость теплоносителя – 3,5 м/с;

8) вычерчивают схему трубопроводов, расставляют отключающие задвижки, неподвижные опоры, компенсаторы и другое оборудование; расстояния между неподвижными опорами для участков различного диаметра определяются на основании данных таблицы 2;

9) на основании местных сопротивлений определяют эквивалентные длины для каждого участка и вычисляют приведённую длину по формуле:

10) вычисляют потери давления на участках из выражения

,

Где α – коэффициент, учитывающий долю потерь давления на местных сопротивлениях;

∆pтр – падение давления на трение на участке тепловой сети.

Окончательный гидравлический расчет отличается от предварительного тем, что падение давления на местных сопротивлениях учитывается более точно, т.е. после расстановки компенсаторов и отключающей арматуры. Сальниковые компенсаторы применяют при d ≤ 250 мм, при меньших диаметрах – П-образные компенсаторы.

Гидравлический расчёт выполняется для подающего трубопровода; диаметр обратного трубопровода и падение давления в нём принимают такими же, как и в подающем (п. 8.5 ).

Согласно пункту 8.6 , наименьший внутренний диаметр труб должен приниматься в тепловых сетях не менее 32 мм, а для циркуляционных трубопроводов горячего водоснабжения – не менее 25 мм.

Предварительный гидравлический расчёт начинают с последнего от источника теплоты участка и сводят в таблицу 1.

Таблица 6 – Предварительный гидравлический расчёт

№ участка

lпр=lх (1+α), м

∆Р=Rхlпр, Па

МАГИСТРАЛЬ

РАСЧЕТНОЕ ОТВЕТВЛЕНИЕ

∑∆Ротв =

Гидравлический расчет производят в следующей последовательности:

    Выбирают на трассе тепловых сетей главную магистраль – наиболее протяженную и загруженную, соединяющую источник теплоснабжения с дальними потребителями.

    Разбивают тепловую сеть на расчетные участки, проставляют номера (сначала по главной магистрали, затем по ответвлениям), определяют расчетные расходы теплоносителя и измеряют длину участков.

    Задавшись удельными потерями давлений на трение, исходя из расходов теплоносителя на участках, по номограмме (приложение 10) , составленным для труб с коэффициентом эквивалентной шероховатости k e = 0,0005 мм, находят диаметр трубопроводов, действительные удельные потери на трение и скорость движения теплоносителя, которая должна быть не более 3,5 м/c.

    Определив диаметры расчетных участков тепловой сети, разрабатывают монтажную схему теплопроводов, размещая по трассе запорную арматуру, неподвижные опоры, компенсаторы.

    По монтажной схеме устанавливают местные сопротивления на расчетных участках и находят сумму коэффициентов местных сопротивлений и их эквивалентные длины, в зависимости от диаметра трубопровода.

    Определяют приведённую длину расчетного участка тепловой сети

    Находят потери давления на расчетных участках тепловой сети

4.1 Определение расходов сетевой воды

Расчетный расход сетевой воды, т/ч , в закрытых системах теплоснабжения для определения диаметров труб в водяных тепловых сетях при качественном регулировании отпуска теплоты следует определять отдельно для отопления, вентиляции и горячего водоснабжения по формулам:

На отопление :

где и – температуры в подающем и обратном трубопроводах тепловой сети при расчетной температуре наружного воздуха для проектирования систем отопления и вентиляции.

На вентиляцию :

Расчетные расходы сетевой воды на горячее водоснабжение, т/ч зависят от схемы присоединения водоподогревателей. При двухступенчатой схеме присоединения расход воды определяют по следующим формулам:

где среднечасовой расход воды на горячее водоснабжение, т/ч.

И температура в подающем и обратном теплопроводах в точке излома графиков температур воды.

Формулы для определения расчетного расхода сетевой воды при параллельной схеме присоединения подогревателей приведены в .

Суммарный расчетный расход сетевой воды, т/ч, в двухтрубных тепловых сетях при качественном регулировании по отопительной нагрузке:

где коэффициент, учитывающий долю среднего расхода воды на горячее водоснабжение, принимается в зависимости от мощности системы теплоснабжения (k=1,0 при k=1,0 при ).

Для потребителей с тепловым потоком 10 МВт и менее суммарный расчетный расход воды следует определять по формуле:

При центральном качественном регулировании отпуска теплоты по совмещённой нагрузке отопления и горячего водоснабжения расчетный расход сетевой воды определяется как сумма расходов воды на отопление и вентиляцию без учета нагрузки горячего водоснабжения:

Расчетный расход сетевой воды в неотопительный период, т/чопределяется по формуле:

где определяют по формуле (33), с учётом того, что максимальную тепловую нагрузку на горячее водоснабжение определяют с учётом повышения температуры холодной воды до 15 o C;

Коэффициент, учитывающий изменение расхода воды на горячее водоснабжение в неотопительный период по отношению к отопительному, принимаемый для жилищно-коммунального сектора равным 0,8. Для курортных и южных городов , для промышленных предприятий .

ПРИМЕР 4. Для двух кварталов района города определить расчетный суммарный расход сетевой воды. Данные по расчетным тепловым потокам взять из примера 1. Температура воды в подающем трубопроводе , в обратном Регулирование отпуска теплоты производится по совмещенной нагрузке на отопление и горячее водоснабжение.

Для проведения гидравлических расчетов трубопроводов, транспортирующих любой энергоноситель, должны быть предварительно определены и заданы:

  • схема трубопроводной системы с указанием материалов, из которых они изготовлены; состояние их внутренней поверхности (эквивалентная шероховатость);
  • предельные значения давлений и температур энергоносителя, которые они могут выдержать без разрушения;
  • местоположение энергетического источника и каждого потребителя;
  • геометрические длины каждого участка трубопроводов, а также количество и типы установленных на участке местных сопротивлений;
  • расчетные (максимальные) потребности каждого потребителя в транспортируемом энергоносителе;
  • требующиеся каждому потребителю параметры теплоносителей;
  • табличные или графические материалы для определения зависимостей физических свойств теплоносителя (плотность, вязкость и др.) от изменения его параметров при движении по трубопроводу.

В задачу гидравлических расчетов входят:

  • определение диаметров всех участков трубопровода, обеспечивающих доставку каждому потребителю необходимое ему расчетное количество теплоносителя (энергоносителя);
  • определение потерь давления энергоносителя при прохождении через соответствующий участок трубопроводной системы.
  • определение величины давления энергоносителя в каждом сечении рассчитываемого трубопровода.

Падение давления Δр у, Па, или напора Δh у = Δр у /ρg, м, энергоносителя при движении через участок трубопровода, транспортирующего энергоноситель в виде сжимаемой (пар) или несжимаемой (вода) жидкости вызывается затратой энергии на преодоление сил трения между слоями жидкости и стенками трубопровода (так называемое линейное падение давления Δр у.л. или напора Δh у.л.) и затратой энергии на вихреобразование при прохождении потоком элементов трубопроводного участка, вызывающих изменение его направления и скорости (так называемое падение давления Δр у.м. или напора Δh у.м. в местных сопротивлениях, размещенных на участке трубы). Величины полных потерь давления и напора на участке получают суммированием

Δр у = Δр у.л + Δр у.м или Δh у = Δh у.л + Δh у.м.

Линейное падение давления –

Δр у.л = R л ×l у, Па,

а напора –

Δh у.л = i l у, м,

где l у – длина участка трубопровода, м; R л – удельное падение давления на одном метре длины участка, Па/м; i – гидравлический уклон, т.е. потеря напора на одном метре длины трубопровода (величина безразмерная).

Удельное линейное падение давления R л, Па/м, так же, как и гидравлический уклон i, определяются по уравнению Дарси – Вейсбаха:

где λ– коэффициент гидравлического трения; θ – усредненная по сечению трубы скорость энергоносителя, м/с; ρ– плотность энергоносителя, кг/м 3 ; d в – внутренний диаметр трубопровода, м; G – массовый расход энергоносителя, кг/с; g – ускорение свободного падения, м/с 2 .

Из (3.76) и (3.77) следуют формулы для вычисления внутреннего диаметра труб

а также зависимости для вычисления массового расхода G, кг/с:

Величина коэффициента гидравлического трения l зависит от режима течения потока (характеризуемого значением числа Рейнольдса – Re) и от состояния внутренней поверхности стенки трубы (которое характеризуется отношением величины выступов эквивалентной шероховатости стенки D к внутреннему диаметру трубы). Данные о значениях эквивалентных абсолютных шероховатостях D труб, изготовленных из различных материалов, приведены в табл.3.8. Для вычисления l в гидравлических расчетах трубопроводов тепловых сетей целесообразно использовать формулы, приведенные в табл.3.9.

Потери давления или напора при прохождении потока через местное сопротивление, размещенное на трубопроводе, определяются по выражениям

Таблица 3.12.

Значения коэффициентов местных сопротивлений элементов тепловых сетей
Значение [] Характеристика местного сопротивления Значение []
Отводы Гнутые гладкие под углом 90° при: R гн d в = 1 R гн d в = 3 R гн d в = 4 R гн d в > 4 Гнутые со складками по углом 90° при: R гн /d в = 3 R гн /d в = 4 Сварные под углом 90°: одношовные двухшовные трехшовные Сварные одношовные под углом: 60° 40° 30° 1,0 0,5 0,3 0,1¸0,2

0,8 0,5

0,6 0,5

0,7 0,3 0,2

Тройники При разделении потоков: для прямого прохода для ответвления При слиянии потоков: для прямого прохода для встречных потоков Арматура: задвижки нормальные клапаны проходные клапаны с косым шпинделем обратные клапаны поворотные обратные клапаны подъемные водоотделитель грязевик компенсатор сальниковый компенсатор волнистый 1,0 1,5

1,2¸1,8 3,0

0,5* 4¸8

6,5¸7 8¸12 4¸10 0,2¸0,3 2,5

*Коэффициент сопротивления нормальной задвижки при ее частичном прикрытии определяется по выражению ζ={(1,17-n)/[(0,67-0,57n)n-1} 2 , где n = доля открытия задвижки.

Открытая: n = 1, ζ= 0,5; закрытая: n = 0, ζ= ∞; открыта на 50%: n = 0,5, ζ= 6,2; открыта на 10%: n = 0,1. ζ= 270.

Приведенные выше зависимости и табличные данные применимы для гидравлического расчета трубопроводных систем с разнообразными энергоносителями. Ниже излагается методика гидравлического расчета на примере разветвленной двухтрубной закрытой водяной тепловой сети (рис. 3.17, а), состоящей из 4 потребителей и 7 участков тепловой сети в двухтрубном исполнении.

При проектировании тепловой сети диаметры подающей и обратной труб на каждом участке должны быть одинаковы и рассчитаны на пропуск к каждому i-му потребителю максимального расчетного расхода сетевой воды G di , кг/с.

При качественном регулировании отпуска теплоты как в открытых, так и в закрытых системах теплоснабжения величина расхода G di , кг/с:

G в.р.i – расчетный расход воды для системы вентиляции i-го потребителя:

  • в закрытых системах теплоснабжения при параллельной схеме присоединения водоподогревателей

Значение коэффициента k з, учитывающего ту долю среднего расхода воды на горячее водоснабжение, которая проходит через участок тепловой сети, в расчете его диаметра трубы данного участка следует принимать:

а) при качественном регулировании отпуска теплоты по отопительной нагрузке:

  • в открытых системах с тепловым потоком до 100 МВт – k з = 0,8, а при тепловом потоке в 100 и более МВт – k з = 1,0
  • в закрытых системах с тепловым потоком до 100 МВт – k з = 1,2, а при тепловом потоке в 100 и более МВт – k з = 1,0;

б) при качественном регулировании отпуска теплоты по совмещенной нагрузке отопления и горячего водоснабжения – k з = 0.

Расчетное количество пара, необходимое i-му потребителю для обеспечения технологической нагрузки Q т.р.i , кВт:

G т.р.i =Q т.р.i /; (3.92)

где х – доля возвращаемого конденсата.

Значения величин τ 1ор,τ 2ор,τ 2вр,τ " 1 ,τ " 2г, t г, t х, t пр, t s приведены в разд. 2.

Используя рис.3.17, определяют количество и расположение всех потребителей, длины всех участков, типы и количества местных сопротивлений каждого участка сети.

По выражениям (3.86)¸(3.91) определяют расчетные расходы ко всем потребителям G d1 , G d2 , G d3 , G d4 . Используя табл.3.8, принимают значение эквивалентной шероховатости стальных труб D э = 0,0005 м.

Так как по сети движется несжимаемая жидкость (сетевая вода), значение температуры которой при движении воды по длине трубы фактически не меняется, а определение диаметров тепловой сети проводят при режиме, когда температура сетевой воды τ 1 " °С, то принимают для всех участков значение плотности воды ρ = 975 кг/м 3 , а значение ее кинематической вязкости ν = 0,416×10 -8 м 2 /с.

Учитывая, что скорость движения воды в трубах лежит в пределах 0,5¸3,5 м/с, а диаметры применяемых в тепловых сетях труб лежат в пределах 0,1¸1,4 м, то проведение несложных расчетов показывает, что в тепловых сетях при расчетных режимах на любом участке Re > 568d в /Δ э.

Поэтому формулы (3.76)¸(3.81) преобразуются в более удобные для расчетов виды:

Порядок гидравлического расчета двухтрубных разветвленных водяных сетей

Расчет главной магистрали

1.Так как диаметры подающей и обратной труб на каждом участке одинаковы, то проводят определение диаметров только подающей линии. 2.Выбирают за главную магистраль последовательность участков от энергетического источника до самого удаленного потребителя. На рис. 3.17 это потребитель 1 и участки l 1 +l 5 + l 6 . 3.Для всех участков главной магистрали принимают (из технико-экономических соображений) численное значение удельного линейного падения давления R л.эк. , Па/м. 4.По (3.94) определяют диаметр d в1 , м, последнего участка магистрали l 1 . Используя данные табл.2.35, округляют полученное значение в сторону ближайшего стандартного диаметра d в.1.ст, м. 5.Уточняют по (3.93) величину реального удельного линейного падения давления на участке 1 при течении потока через диаметр стандартного размера R л.1.d . Если система закрытая, то и в обратной трубе будут такой же диаметр, расход, величины R л1d и Δр л1 = R л1 ×l 1 . 6. Используя схему на рис. 3.17 и данные табл. 3.12, определяют потери в местных сопротивлениях на подающей трубе участка 1 Δр м1п по формуле (3.82) (один клапан ζ к = 6; одна задвижка ζ з = 0,5; один сальниковый компенсатор ζ ск = 0,2; один тройник раздающий на проход ζ тр = 1; один грязевик ζ гр = 7) и их долю a 1 =Δр м1п /Δр л1 . 7. Вычисляют общие потери давления на участке 1 Δр 1d =R л1d l 1 (1+a 1). 8. Аналогично проводится расчет и остальных участков главной магистрали.

Рис.3.17. Схемы разветвленной тепловой сети

а – водяная двухтрубная; б – паровая однотрубная; 1–4 – потребители теплоты; – клапан; – нормальная задвижка; – компенсатор; П – то же гибкий П-образный; I – сетевой насос; II – подпиточный насос; III – водоподогреватель; IV – регулятор подпитки; V – паровой котел

Расчет ответвлений

1. Из схемы на рис.3.17 очевидно, что общие потери давления на участке ответвления 2 совпадают с общими потерями на участке главной магистрали 1, который расположен после точек присоединения ответвления. Отсюда, так как R л2 =Δр 2 /l 1 (1+a 2), то задаются значением а 2 и подставив Δр 1д =Δр 2 , определяют R л2 =Δр 1д /l 2 (1+a 2) 2. По (3.94) определяют диаметр d в2 и округляют его в сторону ближайшего большего диаметра d в.2.ст.б. Далее расчет ведется по изложенной выше методике расчета участка главной магистрали с целью определения R p2o , Δр м2п, а 2 , Δр 2д.

При расчете открытых двухтрубных водяных сетей в данную методику вносят некоторые изменения:

1)Диаметры и подающей и обратной трубы участка открытой двухтрубной водяной сети выбирают по единому расчетному расходу

G di = √[(G o.p.i +G в.р.i) 2 +(G o.p.i +G в.р.i)G г.ср.i _0,5G г.ср.i ]

и округляют до одинаковых стандартных значений d в.сг.i . Однако в реальных условиях по ним протекают расходы, отличающиеся на величину G г.ср.i . Поэтому, начиная с пункта 6 расчета главной магистрали, возникают отличия от расчета закрытой системы теплоснабжения.

2)Уточняют по (3.93) величины удельного линейного падения давления на участке 1 раздельно для подающей

R л1д n =13,62*10 -6 (G o.p.1 +G в.р.1 +G г.ср.1) 2 /d в.ст1 5,25 ; Δp л1 n =R л1д n *l 1 ;

и обратной линий

R л1д o =13,62*10 -6 (G o.p.1 +G в.р.1 +G г.ср.1) 2 /d в.ст1 5,25 ; Δp л1 o =R л1д o *l 1 .

3)Раздельно учитывают сумму коэффициентов местных сопротивлений для подающей трубы Σζ n

И для обратной трубы Σζ o , а также величины потерь давления в их местных сопротивлениях:

Δp м.1.n =0,8106Σζ n (G o.p.1 +G в.р.1 +G г.ср.1) 2 /ρd в.ст1 4 ; a 1n =Δp м.1.n /Δp л1 n ;

Δp м.1.o =0,8106Σζ o (G o.p.1 +G в.р.1 +G г.ср.1) 2 /ρd в.ст1 4 ; a 1o =Δp м.1.o /Δp л1 o .

4)Общие потери давления на участке считают суммарно по подающей и обратной трубам

ΣΔp 1д =l 1 ; и так на всех остальных участках главной магистрали.

Расчет ответвлений в открытой системе теплоснабжения

1.Задаются величиной а 2 и вычисляют удельное линейное падение давления на ответвлениях R л2 =ΣΔp 1д /2]l 2 (1+a 2)]. 2.Определяют одинаковые диаметры подающей и обратной трубы d в2 участка 2 по G д2 и R л2 , используя (3.94), и округляют каждый из них в сторону ближайшего большего стандартного d в2.ст. Естественно, что и d в2.ст.n =d в2.ст.o . 3.Так как реальные расходы через подающую и обратную трубы участка различаются, то вычисляют по (3.93) величины удельного падения давления на участке 2 раздельно для подающей и обратной трубы.

При гидравлическом расчете разветвленных паропроводов кроме исходных данных, необходимых для расчета водяных тепловых сетей, должны быть заданы дополнительно параметры пара р и, МПа, и t и, °С, отходящего от источника теплоты, а также величины р i и t i , требующиеся каждому потребителю.

Методика гидравлического расчета паропроводов совпадает с вышеизложенной методикой гидравлического расчета подающего трубопровода закрытой системы теплоснабжения и отличается от нее лишь в следующих моментах:

4.Направление главной магистрали выбирается по направлению к тому потребителю, для которого требуется наименьшая величина удельного линейного падения давления. С этой целью по направлению к каждому потребителю вычисляют значение удельного линейного падения давления R лi =10 6 (p и -p i)/Σl и-i , Па/м; где Σl и-i – сумма длин участков сети, через которые пар поступает к i-му потребителю от источника теплоты, м. На том направлении, где R лi будет наименьшим из всех сравниваемых R лi , ему присваивается обозначение R л.эк. Например, на схеме паропровода рис.3.17 в качестве главной принята l г.м =l 6 +l 7 +l 4 . 5.Плотность пара при движении по паропроводу существенно меняется, и для каждого участка паропровода должно вычисляться значение средней плотности пара ρ ср.i кг/м 3 . С этой целью для каждого участка главной магистрали предварительно вычисляется среднее по его длине давление пара p ср.i . Применительно к схеме однотрубного паропровода, представленного на рис. 3.17,б, это производится следующим образом:

p ср.6 =p и -(R л.эк *0,5l 6)10 -6 ; p ср.7 =p и -(R л.эк *(l 6 +0,5l 7)10 -6 ;

p ср.4 =p и -(R л.эк *(l 6 +l 7 +0,5l 4)10 -6 .

Затем для этих же участков предварительно вычисляют среднее значение температуры пара на участке – t ср.i ,°С:

t ср.6 =t ср.и -δt m.n 0,5l 6 ; t ср.7 =t ср.и -δt m.n (l 6 +0,5l 7); t ср.4 =t ср.и -δt m.n (l 6 +l 7 +0,5l 4);

Где δt m.n – опытное значение падения температуры перегретого пара при движении по теплоизолированному паропроводу. Обычно δt m.n = 0,02°С/м.

При движении насыщенного пара его температура t ср.i s находится по давлению. По найденным значениям p ср.i и t ср.i определяют среднюю плотность пара ρ ср.i , кг/м 3 .

6.По данным табл.3.8 принимают величину эквивалентной шероховатости паропроводов D=0,0002 м. 7.Внеся соответствующие коррективы по значениям D и ρ ср.i в (3.93) – (3.95), гидравлический расчет паропровода проводят по методике расчета закрытых водяных тепловых сетей.

Изложенная методика гидравлического расчета позволяет определить диаметры всех участков водяных или паровых тепловых сетей и падение давления на каждом из них, но для водяных тепловых сетей не даст ответа на вопрос: какая истинная величина давления теплоносителя будет наблюдаться в каждом конкретном сечении подающей и обратной труб? Ответ может быть получен только после построения и анализа пьезометрического графика тепловой сети.

Пьезометрический график – это график, на котором в масштабе по оси абсцисс откладываются длины участков главной магистрали и ответвлений тепловой сети, а по оси ординат наносятся: рельеф местности, по которой проложена тепловая сеть, высоты зданий, присоединенных к тепловой сети, а также величины напора теплоносителя в каждом сечении подающего и обратного теплопровода.

Методика построения пьезометрического графика излагается применительно к схеме тепловой сети, представленной на рис.3.17,а, а сам график представлен на рис.3.18.

Рис.3.18. Пьезометрический график

Приняв за начало координат оси ординат (отметка 0) уровень размещения источника теплоснабжения, а оси абсцисс (отметка 0) точку выхода магистрали тепловой сети, откладывают по ней последовательно длины участков главной магистрали: l 6 , l 5 , l 1 , а из точек соответствующих ответвлений – их длины l 2 , l 7 , l 3 и l 4 . Проводят линию рельефа местности, по которой расположен каждый участок, и в конце каждого ответвления и главной магистрали высота рельефа обозначается соответственно: z 1 , z 2 , z 3 , z 4 , м. От отметок рельефа откладывают высоты зданий в метрах, обозначенные 1Н, 2Н, 3Н, 4Н, м.

Затем приступают к построению графика давлений.

Целесообразная область давлений в обратных трубах главной магистрали и ответвлений от них определяется из соображений:

  • максимальный уровень давлений (напоров) теплоносителей, движущихся через обратные трубопроводы, не должен разрушать элементы присоединенных к ним систем потребителей. При зависимом присоединении отопительных систем самым слабым элементом являются отопительные приборы, которые выдерживают напор не выше 60 м водяного столба. Следовательно, максимальный напор в обратных трубах не может быть выше 60 м;
  • минимальный уровень давлений в обратной магистрали при зависимой схеме присоединения систем отопления не может быть ниже геометрической высоты здания плюс 5 м водяного столба, чтобы обеспечить циркуляцию теплоносителя через отопительные приборы верхнего этажа.
  • максимальный уровень давлений в подающих трубах ограничен прочностью трубопроводов использованного сортамента. На практике это составляет 160 или 250 м водяного столба;
  • минимальный уровень давления (напора) теплоносителя в подающей трубе должен обеспечивать невскипание его при самой высокой температуре τ 1.o.p . Максимальное значение используемых температур τ 1.o.p = 150°С, поэтому напор в подающей трубе не должен быть ниже 55 м водяного столба.

С учетом выделенных областей выбирают значение напора в конце обратной трубы главной магистрали в точке О max (ниже верхнего предела и выше нижнего). Из напора в точке О min – h о,max , вычитают Δp 1д /ρg=Δh 1д и находят напор в обратной трубе в точке a " - h a " . Соединяя их прямой, получают графики напоров на участке l 1 " . Вычтя из напора в точке a " величину Δh 5 , находят напор в обратной трубе в точке в " - h в " и, соединив а " и b " , получают график напоров на участке l 5 " . Далее, вычитая из напора в точке b " Δh 7д, получают напоры в точке с " , а прибавляя к напору в точке b " Δh 7д, получают напор в точке d " . Продолжая аналогично, получают полную картину графика напоров в обратных трубах.

В закрытой системе теплоснабжения график напоров в подающей линии является зеркальным отображением графика в обратной, но в области, пределы которой ограничивают 160¸55 м вод. ст.

Как видно из рис.3.18, из-за отличия рельефа местности и различий в собственной высоте зданий не всегда обслуживаемые здания можно присоединить к сети по стандартной схеме, а именно:

а). У потребителя 1 напор в обратной линии (точка О max) обеспечивает циркуляцию воды через верхние этажи и одновременно не разрушает отопительные приборы. Тем не менее разница напоров h n min и h о max менее 10 м и не обеспечивает работу элеваторов. Поэтому присоединение потребителя 1 зависимое, но с насосом смешения.

б). У потребителя 2 верхняя отметка здания вместе с отметкой рельефа z 2 больше 60 м, поэтому при нарушении циркуляции в тепловой сети гидростатический напор от этого здания может разрушить приборы нижних этажей соседних зданий. Присоединение потребителя 2 по независимой схеме предотвратит возможное разрушение приборов.

в). У потребителя 3 высота здания и геодезической отметки z 3 менее 60 метров, но выше давления в обратной линии в точке присоединения. Для нормальной циркуляции через верхние этажи здания на обратном стояке устанавливают клапан подпора.

У потребителя 4 все обеспечено, и здание присоединяется по нормальной зависимой схеме с элеватором.

Из построения линий напоров в подающей и обратной магистрали тепловой сети легко определить напоры теплоносителя на входе в источник теплоснабжения – h с " и на выходе из него – h с " , однако определенная часть напора – Δh ист – необходима для преодоления сопротивлений водоподогревателей III и внутренних трубопроводов источника. Поэтому для циркуляции теплоносителя напор, развиваемый сетевым насосом, должен составлять

ΔH с.н =h с h с " +Δh ист.

При плановой или аварийной остановке циркуляции сетевой воды уровень напоров во всех участках тепловой сети выровняется. Во избежание опорожнения отопительных систем (если он будет очень низким) или разрушения отопительных приборов (если он будет чересчур велик) на обводной линии сетевого насоса между установленными на ней клапанами к 1 и к 2 , регулируя степень их открытия, создают необходимый уровень статического напора – h ст. Заданная величина этого напора подводится к регулятору расхода IV, который будет обеспечивать необходимый уровень подпитки тепловой сети водой от подпиточного насоса II для поддержания h ст постоянным. При прекращении работы сетевого насоса I этот постоянный статический напор установится и будет поддерживаться во всей сети.

Транскрипт

1 . dio.naro d.ru Программный модуль: Гидравлический расчёт теплосети (Версия 5.) Алгоритм программного модуля выполнен на основании существующей методики (СНиП): Удельная потеря напора: R 6,7 0 3 λ G Dр5 в м.вод.ст./м G - расход теплоносителя (воды): G Q g, т/ч; 000 Q расход тепловой энергии, Гкал/ч; g - расход теплоносителя на Гкал: g, т/гкал T Dр расчётный внутренний диаметр трубопровода; в плотность воды (принята 958 кг/м3); ΔT разность температур теплоносителя в подающем и обратном трубопроводе. коэффициент гидравлического трения; 0,5 К 68 λ 0, е Коэффициент гидравлического трения: Dр Re К е эквивалентная шероховатость трубы (принята 0,5 мм); Re - число Рейнольдса. V Dp Число Рейнольдса: Re V скорость теплоносителя в трубопроводе/с., Скорость теплоносителя: V 0,354 G /с Потеря напора в одной трубе: H R L пр. Dp в 000 L пр. приведенная длина участка: L пр. L K пр. K пр. коэффициент приведения (приближенно учитывает местные сопротивления, Кпр.=,4,9). Граничные условия итераций: R Rma ; V Vma ; Hкон. Hmin Hкон. располагаемый напор в конце участка..

2 Программный модуль: Расчёт растяжки сильфонного компенсатора (Версия 5.) Алгоритм программного модуля выполнен на основании существующей методики (ИЯНШ ТУ): Максимальное расстояние между неподвижными опорами участка теплосети с осевыми сильфонными компенсаторами, определяется по формуле: nλ Lma 0,9 α Tma Tмон.min n количество блоков в компенсаторе (n=,); λ амплитуда (±) осевого хода одного блока компенсатора; α коэффициент линейного расширения материала (для Ст0 α=, 0-5 С -); T ma максимальная рабочая температура трубопровода, С; T мон.min минимальная температура трубопровода при монтаже компенсатора (принята -8С); 0,9 коэффициент запаса (запас 0%). Величина растяжки сильфонного компенсатора перед установкой определяется по формуле: Δ L α L Tma Tмон.min Tмон. T максимальная рабочая температура трубопровода, С; ma T мон. температура трубопровода при монтаже компенсатора (изменяется от 8 до 30С); L длина участка (L<=L ma). 5 силф. Усилие от одного трубопровода на неподвижную опору: F P 0 c P ma максимальное давление в трубопроводе, атм.; λ амплитуда (±) осевого хода одного блока (одного сильфона)м; с жёсткость одного блока (одного сильфона), Н/мм. Усилие от одного трубопровода на противоположную неподвижную опору: F тр. суммарная сила трения в подвижных опорах, кг. Fтр. μ P z, кг ma эф. λ, кг 0 силф. эф. эффективная площадь сильфона; F F Fтр., кг коэффициент трения в подвижных опорах (принят 0,3); P z вес трубопровода длиной L.

3 Программный модуль: Расчёт настройки стартового компенсатора (Версия 9.) Алгоритм программного модуля выполнен на основании существующей методики (СП): Максимальное расстояние между неподвижными опорами (реальными или мнимыми) участка теплосети со стартовыми компенсаторами (бесканальная прокладка), определяется по формуле: σдоп. ст.тр. Lma 0,8 σ доп. предельно допустимое напряжение в трубе (σ доп. =50 Н/мм); ст.тр. площадь поперечного сечения стенки трубым; f тр. удельная сила трения оболочки трубы о грунт, Н/м. f тр. μ 0,5 sin ρ Z П D q, Н/м об. коэффициент трения оболочки о грунт (принят 0,4); φ угол естественного откоса грунта (принят 30); ρ плотность грунта, Н/м 3 ; Z глубина заложения трубопровода (расстояние от поверхности земли до оси трубопровода); П число Пи (3,); D об. наружный диаметр оболочки трубопровода; q удельный вес трубопровода, Н/м. Величина сжатия компенсатора при увеличении температуры трубопровода: L Δ L α L Tпр. Tмон. 4Eст.тр. α коэффициент линейного расширения материала (для Ст0 α=, 0-5 С -); T пр. температура прогрева (T пр. Const 70 С); T температура трубы при монтаже (изменяется от 0 до 5С); L длина участка (L<=L ma); мон. E модуль упругости материала (для стали 0 E= 0 5 Н/мм). Δ ma T мон. Формула приближённого метода: L α L T Величина сжатия компенсатора перед установкой на трубопровод: P λ L

4 Программный модуль: Раскладка матов («Г» образный компенсатор) (Версия 5.) Алгоритм программного модуля выполнен на основании существующей методики (СП): Максимальное расстояние между неподвижной опорой (реальной или мнимой) и «Г» образным компенсатором при бесканальной прокладке теплосети, определяется по формуле: доп. ст.тр. Lma σ σ доп. предельно допустимое напряжение в трубе (для стали 0 σ доп. =50 Н/мм); ст.тр. площадь поперечного сечения стенки трубым; f тр. удельная сила трения оболочки трубы о грунт, Н/м. 0,5 sin ρ Z П Dоб. μ q, Н/м коэффициент трения оболочки о грунт (принят 0,4); φ угол естественного откоса грунта (принят 30); ρ плотность грунта, Н/м 3 ; Z глубина заложения трубопровода (расстояние от поверхности земли до оси трубопровода); П число Пи (3,); D об. наружный диаметр оболочки трубопровода; q удельный вес трубопровода, Н/м. Величина температурного удлинения трубопровода при бесканальной прокладке: L Δ L α L Tma Tмон.min E ст.тр. α коэффициент линейного расширения материала (для стали 0 α=, 0-5 С -); L длина участка (L<=L ma); T ma максимальная рабочая температура трубы (принимается по Т=30С); T мон.min минимальная температура трубы при монтаже (принята 0С); E модуль упругости материала (для стали 0 E= 0 5 Н/мм).

5 . dio.naro d.ru Программный модуль:. Расчёт параметров опоры (надземная прокладка) (Версия 8.) Стандартный вариант Вариант на опорной подушке (без заглубления) Вертикальное расположение труб Вариант расчёта как неподвижной опоры Алгоритм программного модуля выполнен на основании существующей методики:. Расчёт стойки Требуемый момент сопротивления стойки: Wобщ. 00 M 0,9 σ доп., см3 M суммарный момент, действующий на стойку опоры, кгм; σ доп. предельно допустимое напряжение в сечении конструкции стойки опоры, кг/см; Суммарный момент: М Fгор. H, кгм Fгор. суммарное горизонтальное усилие, действующее на высоте H; H высота стойки. Для подвижной опоры: Fгор. μ Pz, кг коэффициент трения в подвижной опоре; Pz вертикальная нагрузка на опору. Pz n L q, кг; n количество труб на опоре; L - длина трубопровода между опорами; q удельный вес трубопровода, кг/м. Расчёт параметров опоры (надземная прокладка) Лист Листов

6 . Расчёт габаритов фундамента опоры на смятие грунта Условие устойчивости опоры: σгр. σ расч., кг/см σ гр. допустимое напряжение в грунте (сопротивление грунта), кг/см; σ расч. напряжение в грунте, создаваемое фундаментом опоры: P M M y σ расч. Σ, кг/см W W Σ P суммарная весовая нагрузка (по оси Z): ΣP P z H 0 ρбет., кг площадь подошвы опоры: a b ; a и b - габариты фундамента опоры; H высота фундамента опоры; 0 ρ бет. плотность бетона, кг/м 3 ; М момент, действующий на опору в плоскости ХZ, кгм; М y момент, действующий на опору в плоскости YZ, кгм; W момент сопротивления подошвы опоры в плоскости ХZ 3 ; W y момент сопротивления подошвы опоры в плоскости YZ 3. (осевые нагрузки вдоль оси Х, боковые вдоль оси Y, вертикальные вдоль оси Z) W M ab ba 3 Wy 6 6 F H H M F H H y 3, кгм; 0 y y 0, кгм F усилие на опору, действующее на высоте H вдоль оси X, кг; F y усилие на опору, действующее на высоте H вдоль оси Y, кг; H высота стойки; H 0 - высота фундамента опоры. 3. Проверочный расчёт габаритов фундамента опоры на опрокидывание Условие устойчивости: М М и y Мy М, кгм М момент от суммарной весовой нагрузки, действующий в плоскости ХZ, кгм; y М момент от суммарной весовой нагрузки, действующий в плоскости YZ, кгм. М Σ P a, кгм М y Σ P b, кгм Σ P суммарная весовая нагрузка (по оси Z); a и b габариты фундамента опоры. Расчёт параметров опоры (надземная прокладка) Лист Листов

7 Программный модуль: Расчёт диаметра рабочей арматуры щитовой опоры (Версия 6.) Алгоритм программного модуля выполнен на основании существующей методики: арм. 4 Расчётный диаметр рабочей арматуры: d м Π арм. площадь поперечного сечения одного стержням; П число Пи (3,). Площадь поперечного сечения одного стержня: арм. арм. общ. м арм. общ. общая требуемая площадь поперечного сечения всех рабочих стержнейм; n количество рабочих стержней. арм. Mma 00 общ. м σ доп. δ M ma максимальный момент, действующий на щит опоры, кгм; σ доп. предельно допустимые напряжения в рабочем стержне, кг/см; δ δ 0, щита δ толщина щита. щита n

8 Программный модуль: Расчёт диаметра спускного устройства (Версия 8.) Алгоритм программного модуля выполнен на основании существующей методики (СНиП): Диаметр штуцера для спуска воды из секционируемого участка трубопровода, имеющего уклон в одном направлении, определяем по формуле: L d dпр. m n 4 iпр. d пр. приведенный диаметр i пр. приведенный уклон j d jl j k dпр. L j i jl j k iпр. L k количество участков; n коэффициент, зависящий от времени спуска; m коэффициент расхода арматуры (для задвижек m=0,0). Диаметр штуцера спускного устройства обслуживающего две ветки (правую и левую) определяется по формуле: d общ. пр. лев. d d d пр. диаметр штуцера для правой ветки; d лев. диаметр штуцера для левой ветки.


03-glava_fin 17.09.03 9:50 AM Page 19 3 3. Проектирование 3.1. Основные принципы проектирования бесканальной прокладки тепловых сетей с ППУ изоляцией производства ЗАО «МосФлоулайн» Предварительно изолированные

Теоретические основы 6.0. Осевое удлинение 6.1. Допустимая длина прямого участка 6.2. Термическое предварительное натяжение 6.3. Осевое удлинение 6.1. Как известно, при изменении температуры все материалы

Занятие (часа) Расчет оптимальной толщины изоляции тепловой сети Цель теплового расчета сети - определение толщины тепловой изоляции и падения температуры на данном участке трассы. Толщину теплоизоляционного

Расчет вертикальных трубопроводов с сильфонными компенсаторами 1. Определение расчетной схемы Расчет любой конструкции начинается с выбора расчетной схемы. А) При расчете вертикального трубопровода с сильфонным

Основы проектирования 7.0. Определение диаметров рабочих труб 7.1. Тепловые потери 7.2. Состав теплотрассы 7.3. Прямые трубопроводы 7.3.1. Изгибы, ответвления 7.3.2. Определение диаметра рабочих труб 7.1.

34 Применение направляющих опор на трубопроводах с осевыми сильфонными компенсаторами Е.В. Кузин, директор ООО «АТЕКС-ИНЖИНИРИНГ», г. Иркутск; В.В. Логунов, заместитель генерального директора, В.Л. Поляков,

Лекция 5 5. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ И РЕЖИМЫ РАБОТЫ ТЕПЛОВЫХ СЕТЕЙ 5.. Основные задачи При проектировании тепловых сетей основная задача гидравлического расчета состоит в определении диаметров труб по заданным

Решения для проектирования неподвижных опор при терморасширении трубопроводов Hilti webinar, 20.05.2014 www.hilti.com Hilti Webinar 20.05.2014 1 www.hilti.com Hilti Webinar 20.05.2014 2 Программа вебинара:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Утверждено на

Некоммерческое Партнерство «Российское Теплоснабжение» Стандарт организации НП «РТ» СТО НП «РТ» 70264433-4-4-2009 ТРЕБОВАНИЯ К КАЧЕСТВУ ПРОЕКТИРОВАНИЯ ТЕПЛОВЫХ СЕТЕЙ В ППУ ИЗОЛЯЦИИ Документ системы качества

Общество с ограниченной ответственностью «Баутехнолоджи» П Р О Ч Н О С Т Н О Й Р А С Ч Е Т навесной фасадной системы с воздушным зазором АЛЬТ-ФАСАД-11 для Жилого комплекса, расположенного по адресу: Московская

Расчет монолитной наружной стены подвала нужно ввести вычисляется в этих пунктах нужно проверить выполнение условий Исходные данные 1 Коэффициенты 1.1 Коэффициент надежности по нагрузке (для железобетона

Название организации Расчёт на прочность и устойчивость обечайки резервуара от действия опорных нагрузок Название проекта Шифр: Выполнил: Сергеев В.С. 1. Расчёт на прочность. Расчёт на прочность и устойчивость

535 - Отдельный фундамент под железобетонную колонну 1 2 Программа предназначена для проектирования отдельного фундамента под железобетонную колонну согласно СП 52-101-03 или СНиП 2.03.01-84* или

ОТЧЕТ ОБЪЕКТ: РАЗДЕЛ: Станция перекачки сточных вод СТАДИЯ: Рабочая документация ЗАКАЗЧИК: ИСПОЛНИТЕЛЬ: Козлов Алексей Владимирович 201_ г. /Козлов А.В./ Содержание Пояснительная записка 2 Приложение 1.

Корпорація «Енергоресурс-інвест» Временные указания по применению осевых сильфонных компенсаторов производства корпорации «Енергоресурс-інвест» для тепловых сетей Рекомендации по проектированию и монтажу

48 Приложение 1 Таблица П 1.1. Динамические характеристики стальных водогазопроводных труб по ГОСТ 36-75* насосных систем водяного отопления при скорости воды в них 1 м/с Диаметр труб, мм Условного прохода

Методика расчёта основывается на данных, приведённых в СНиП 2.01.07-85 и СНиП 2.03.06-85. Данные, полученные в результате проведённых расчётов, должны быть проверены и утверждены специалистом по расчёту

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет Кафедра «Теплогазоснабжение и вентиляция» В. М. Копко Д. Б. Муслина ПРОЕКТИРОВАНИЕ ТЕПЛОВЫХ СЕТЕЙ С ГИБКИМИ

Осевые сильфонные компенсаторы anfo из нержавеющей стали Описание и область применения дах систем отопления многоэтажных зданий. Осевые компенсаторы состоят из сильфона (гофрированного цилиндра), выполненного

Задача 1. Определить скорость потока воды в трубопроводе. Расход воды составляет 90 м 3 /час. Диаметр трубопровода 0,01м. Скорость потока воды в трубопроводе равна: w=(4 Q) / (π d) = ((4 90) / (3,14

БАК Расчет на прочность Инв. подл. Взам. Инв. Инв. дубл. Перв. примен. Содержание 1 Исходные данные для расчета...4 1.1 Расчетные параметры...4 1.2 Допускаемые напряжения...4 1.3 Давление и температура

516 - Свайный фундамент с ленточным ростверком 1 2 Программа предназначена для проектирования свайного фундамента с ленточным ростверком согласно СП 50-102-2003 или СНиП 2.02.03-85 . Предусмотрены

536 Поле столбчатых фундаментов под железобетонные колонны 1 2 Программа предназначена для проектирования поля столбчатых фундаментов под железобетонные колонны согласно СП 52-101-03 или СНиП 2.03.01-84*

Калькулятор участка тепловой сети. Калькулятор участка тепловой сети предназначена для выполнения контрольного примера расчета потерь теплоносителя и тепла от участка тепловой сети с произвольными характеристиками.

Расчет кожухотрубного теплообменника Общие сведения Кожухотрубные теплообменники наиболее широко распространены в пищевых производствах. Это объясняется следующими их достоинствами компактностью, невысоким

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР СОСУДЫ И АППАРАТЫ. АППАРАТЫ КОЛОННОГО ТИПА НОРМЫ И МЕТОДЫ РАСЧЕТА НА ПРОЧНОСТЬ ГОСТ 2475781 (СТ СЭВ 164579) ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ Москва ГОСУДАРСТВЕННЫЙ

Монтаж системы внутреннего водопровода Полимерные и металлополимерные трубы более удобны при монтаже, чем металлические. Они более легкие (вес на порядок меньше металлических), их легче гнуть, сгибать.

Пример расчетов гидравлических потерь напора на узлах установки расходомеров фирмы "Взлет" (Расчеты выполняются на основании документа "Методика гидравлического расчета конфузорно-диффузорных переходов.

2006 г. WWW.TEPLOV.RU 1 Критерии качества тепловой изоляции. 1. Плотное и ровное сопряжение элементов покрытия с отбортовкой. Соединение через отбортовку обеспечивает пространственную прочность защитного

Изм. Кол.уч док. Подпись Дата 1.1 Общие данные Ведомость чертежей Наименование а 1 Общие данные (на 8-ми листах) 2 План дома 3 Армирование плиты фундамента. Арматура А-500С. Плита 300 мм. 4 Армирование

Расчёты. Статические расчёты. Методика расчёта основывается на данных, приведённых в СНиП 2.01.07-85 и СНиП 2.03.06-85. Данные, полученные в результате проведённых расчётов, должны быть проверены и утверждены

Контрольные тесты. Гидравлика (вариант А) ВНИМАНИЕ! При проведении вычислений рекомендуется принимать ускорение свободного падения g = 10 м/с 2, а плотность жидкости = 1000 кг/м 3. 1. Чему равняется давление

Пример расчетов гидравлических потерь напора на узлах установки расходомеров фирмы "Взлет" (Расчеты выполняются на основании документа "Методика гидравлического расчета конфузорно-диффузорных переходов.

11 РАСЧЁТ СЖАТЫХ ЭЛЕМЕНТОВ 11.1 Общие сведения К сжатым элементам относят: колонны; верхние пояса ферм, загруженные по узлам, восходящие раскосы и стойки решетки ферм; элементы оболочек; элементы фундамента;

Лекция 5 Цель: изучение потерь на трение по длине и потерь на местных сопротивлениях. Задачи: классифицировать потери и дать методику их расчета. Желаемый результат: Студенты должны знать: особенности

12.1.1 Общие сведения/многослойная система/технология прокладки...12 / 1-2 12.1.2 Обзор преимуществ и недостатков...12 / 3 12.1.3 Допустимая длина укладки Lmax одинарной трубы при традиционной укладке...12

Проверочный расчёт существующего ленточного фундамента на свайном основании (возможность надстройки 3-го этажа) по I группе предельных состояний В СЕЧЕНИИ 21-21 Основные характеристики грунтов: Нормативные

Расчет на прочность при кручении 1. При кручении стержня круглого поперечного сечения напряженное состояние материала во всех точках, за исключением точек на оси стержня, ОТВЕТ: 1) линейное (одноосное

Лекция 12 Проектирования фундаментов по предельным состояниям До 1962 г. фундаменты проектировали по допускаемым нагрузкам, а затем перешли к проектированию по предельным состояниям. Сейчас в расчете оснований

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «ПЕТРОЗАВОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ПетрГУ) Физико-технический

ОГЛАВЛЕНИЕ 1 РАСЧЕТНЫЕ ПАРАМЕТРЫ 4 КОНСТРУИРОВАНИЕ И РАСЧЕТ ВЕРХНЕЙ ЧАСТИ КОЛОННЫ 5 1 Компоновка 5 Проверка устойчивости в плоскости изгиба 8 3 Проверка устойчивости из плоскости изгиба 8 3 КОНСТРУИРОВАНИЕ

Технология Hilti REBAR решение задач. Примеры. HILTI REBAR examples of tasks 1 Задача 1 Дано: Фундаментная плита, произошло смещение арматурных выпусков под колонну, необходимо восстановить выпуска в проектное

Кузьмичев Сергей Дмитриевич 2 СОДЕРЖАНИЕ ЛЕКЦИИ 10 Элементы теории упругости и гидродинамики. 1. Деформации. Закон Гука. 2. Модуль Юнга. Коэффициент Пуассона. Модули всестороннего сжатия и одностороннего

1. Обечайка цилиндрическая 1 1.1. Исходные данные Материал: 09Г2С Внутр. диаметр, D: 800 мм Толщина стенки, s: 6 мм Прибавка для компенсации коррозии и эрозии, c 1: 2 мм Прибавка для компенсации минусового

ОПОРЫ КОЛОННЫХ АППАРАТОВ ИЗДАТЕЛЬСТВО ТГТУ УДК 66.01.001. ББК Л11-5-04я73-5 К65 Утверждено Редакционно-издательским советом университета Р е ц е н з е н т Доцент кафедры ТО и ПТ Е.В. Хабарова С о с т а

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ТЮМЕНСКАЯ ГОСУДАРСТВЕННАЯ АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ КАФЕДРА "СТРОИТЕЛЬНАЯ МЕХАНИКА" СЕКЦИЯ "СОПРОТИВЛЕНИЕ

Расчет прочности фундамента Взам.инв. Инв. дубл. Подп.и дата Разраб. Лит. ов Пров. 2 8 Т.контр. Н.контр. Утв. Нижний Новгород, 2008 г. Расчет прочности фундамента Содержание 1 Исходные данные 3 2 Расчет

U-Tubes Heat Exchanger-Russian Final Report ГОСТ Р 52857/52630 Rev.02 Uri Katanov Pressure Vessel Engineer, FEA and CFD Analyst M.Sc.-MEng P.Eng Canada 1 СОДЕРЖАНИЕ Исходные данные для расчета..3 Сводные

12 июня 2017 г. Совместный процесс конвекции и теплопроводности называется конвективным теплообменом. Естественная конвекция вызывается разностью удельных весов неравномерно нагретой среды, осуществляется

ТЕМА1. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ СИСТЕМЫ ВОДЯНОГО ОТОПЛЕНИЯ 1.1. Способы гидравлического расчета трубопроводов систем водяного отопления При расчете трубопроводов систем водяного отопления используются различные

1. Содержание 1. Введение... 4 2. Исходная информация и постановка задач... 5 3. Задачи расчетных исследований... 8 4. Нагрузки и воздействия. Основные расчетные положения... 9 4.1. Виды нагрузок на конструкцию

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Владимирский государственный университет Кафедра сопротивления материалов МЕТОДИЧЕСКИЕ

570 Шпунтовая стенка 1 2 Программа предназначена для проектирования и расчёта шпунтовой стенки свободно защемленной или заделанной в грунте с возможностью установки анкеров. В качестве нагрузок, кроме

Гидравлика 63 3.18. ПОТЕРИ НАПОРА В МЕСТНЫХ СОПРОТИВЛЕНИЯХ Как уже указывалось, помимо потерь напора по длине потока могут возникать и так называемые местные потери напора. Причиной последних, например,

Республиканская олимпиада. 9 класс. Брест. 004 г. Условия задач. Теоретический тур. Задание 1. «Автокран» Автокран массы M = 15 т с габаритами кузова = 3,0 м 6,0 м имеет легкую выдвижную телескопическую

Отчет 5855-1707-8333-0815 Расчет прочности и устойчивости стального стержня по СНиП II-3-81* Данный документ составлен на основе отчета о проведенном пользователем admin расчете металлического элемента

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» УТВЕРЖДАЮ Директор

Инструкция по проектированию подпорных стен из блоков LammiMuuri ОГЛАВЛЕНИЕ 1. КОНСТРУКЦИЯ И СВОЙСТВА БЛОКОВ «ЛАММИМУУРИ» ДЛЯ КЛАДКИ ПОДПОРНЫХ СТЕН. ПРИМЕНЕНИЕ 3. ТИПЫ СТЕН 4. РАСЧЁТЫ 4.1. Свойства материалов

2 МОНТАЖНЫЕ И СПЕЦИАЛЬНЫЕ РАБОТЫ В СТРОИТЕЛЬСТВЕ 3 "08 Наука производству éòó ÂÌÌÓÒÚË apple Ò ÂÚ ÒÚ Î Ì ı ÍÓÌÒÚappleÛ͈ËÈ ËÁ ÚÓÌÍÓÒÚÂÌÌ ı ÌÛÚ ı ÔappleÓÙËÎÂÈ Э.Л. АЙРУМЯН, канд. техн. наук (ЗАО «ЦНИИПСК

ООО «Драфт» Поверочный расчет фундаментов башни высотой Н=95м, для размещения антенного оборудования Генеральный директор Главный инженер проекта г. Санкт-Петербург 2016 г. Содержание 1. Исходные данные..

ГОСТ ИСО 7904-2-2001 Подшипники скольжения. Условные обозначения. Часть 2. Применение Принявший орган: Госстандарт России Дата введения 01.07.2002 1РАЗРАБОТАН Межгосударственным техническим комитетом по

Контрольные задания по сопротивление материалов для студентов заочной формы обучения Составитель: С.Г.Сидорин Сопротивление материалов. Контрольные работы студентов заочников: Метод. указания /С.Г.Сидорин,

10.1. Поверочный расчёт основания и фундаментов под стену по оси «Б» (шурф 4) Сбор нагрузок выполнен при помощи программы «Скад 11.5». На фундамент в уровне его обреза действуют следующие нагрузки: NX(NY)=

ЛЕКЦИЯ 8 5. Конструирование и расчет элементов ДК из нескольких материалов ЛЕКЦИЯ 8 Расчет клееных элементов из древесины с фанерой и армированных элементов из древесины следует выполнять по методу приведенного

КН 901-11-2Т Вариант 1 Вариант 2 Вариант 3 Вариант 4 Вариант 5 Вариант 6 Вариант 7 Вариант 8 Вариант 9 Вариант 10. Вариант 11 Вариант 12 Вариант 13 Вариант 14 Вариант 15 Вариант 16 Вариант 17 Вариант 18

Пассат 1.08 ООО НТП «Трубопровод» Омский Государственный Технический Университет ПРОИЗВОДСТВО ЦЕОЛИТА Сушилка распылительная РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА и дата Взам. инв. Инв. дубл. и дата Омск 2012

РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ БУРОЗАВИНЧИВАЕМЫХ СВАЙ KRINNER В СЕЙСМИЧЕСКИХ РАЙОНАХ 2.1 При проектировании свайных фундаментов в сейсмических районах кроме требований СНиП РК 5.01-03-2002 «Свайные фундаменты»,

Технико-экономическое обоснование Выполнение тепловых и гидравлических расчетов с заменой насоса по их результатам. СОДЕРЖАНИЕ. 1. Исходные данные. 2. Расчет годовой экономии электроэнергии 3. Расчет экономического

Методы моделирования и расчета свайных фундаментов в SCAD Office Виктор Сергеевич Михайлов Руководитель новосибирского центра технической поддержки SCAD Office Андрей Владимирович Теплых Руководитель самарского