Методы отсечения. Метод Гомори. Составление дополнительного ограничения (сечения Гомори)

Сущность методов отсечения состоит в том, что сначала задача решается без условия целочисленности. Если полученный план целочисленный, задача решена. В противном случае к ограничениям задачи добавляется новое ограничение, обладающее следующими свойствами:

· оно должно быть линейным;

· должно отсекать найденный оптимальный нецелочисленный план;

· не должно отсекать ни одного целочисленного плана.

Дополнительное ограничение, обладающее указанными свойствами, называется правильным отсечением .

Геометрически добавление каждого линейного ограничения отвечает проведению прямой (гиперплоскости), которая отсекает от многоугольника (многогранника) решений некоторую его часть вместе с нецелыми координатами, но не затрагивает ни одной из целых точек этого многогранника. В результате новый многогранник решений содержит все целые точки, заключавшиеся в первоначальном многограннике решений и соответственно полученное при этом многограннике оптимальное решение будет целочисленным (рис. 6.24).

Один из алгоритмов решения задачи линейного целочисленного программирования (6.59)…(6.62), предложенный Гомори, основан на симплексном методе и использует достаточно простой способ построения правильного отсечения.

Рис. 6.18. Графическая иллюстрация целочисленного решения

Пусть задача линейного программирования (6.52)…(6.55) имеет конечный оптимум и на последнем шаге ее решения симплексным методом получены следующие уравнения, выражающие основные переменные через неосновные переменные оптимального решения

(6.56)

так, что оптимальным решением задачи (6.52)…(6.55) является , в котором, например β i − нецелая компонента. В этом случае можно доказать, что неравенство

сформированное по i -му уравнению системы (6.56), обладает всеми свойствами правильного отсечения.

В неравенстве (6.57) присутствует символ , означающий дробную часть числа. Число а называется конгруэнтным числу в (обозначается ) тогда и только тогда, когда разность а - в − целое число.

Целой частью числа а называется наибольшее целое число , не превосходящее а . Дробная часть числа определяется как разность между этим числом и его целой частью, т.е. . Например, для = 2, ; для = -3 и .

Для решения задачи целочисленного линейного программирования (6.52)…(6.55) методом Гомори используется следующий алгоритм:

1. Симплексным методом решить задачу (6.52)…(6.55) без учета условия целочисленности. Если все компоненты оптимального плана целые, то он является оптимальным и для задачи целочисленного программирования (6.52)…(6.55). Если первая задача (6.52)…(6.54) неразрешима (т.е. не имеет конечного оптимума или условия ее противоречивы), то вторая задача (6.52)…(6.55) также неразрешима.


2. Если среди компонент оптимального решения есть нецелые, то выбрать компоненту с наибольшей целой частью и по соответствующему уравнению системы (6.56) сформировать правильное отсечение (6.57).

3. Неравенство (6.57) введением дополнительной неотрицательной целочисленной переменной преобразовать в равносильное уравнение

и включить его в систему ограничений (6.53).

4. Полученную расширенную задачу решить симплексным методом. Если найденный оптимальный план будет целочисленным, то задача целочисленного программирования (6.52)…(6.55) решена. В противном случае вернуться к п. 2 алгоритма.

Если задача разрешима в целых числах, то после конечного числа шагов (итераций) оптимальный целочисленный план будет найден.

Если в процессе решения появится уравнение (выражающее основную переменную через неосновные) с нецелым свободным членом и целыми остальными коэффициентами, то соответствующее уравнение не имеет решения в целых числах. В этом случае и данная задача не имеет целочисленного оптимального решения.

Недостатком метода Гомори является требование целочисленности для всех переменных − как основных (выражающих, например, в задаче об использовании ресурсов единицы продукции), так и дополнительных переменных (выражающих величину неиспользованных ресурсов, которые могут быть и дробными).

Отметим, что переход к каноническому виду в полностью целочисленной задаче линейного программирования, содержащей ограничения − неравенства

не приводит, вообще говоря, к полностью целочисленной задаче в каноническом виде, так как в преобразованных ограничениях (6.59)

вспомогательные переменные x n + i не подчинены требованию целочисленности.

Однако если все коэффициенты a ij , b i в (6.59) − целые числа, то условие целочисленности можно распространить и на x n + i , как это сделано при решении примера 6.10.

Полностью целочисленную задачу в каноническом виде можно получить также, если в (6.59) a ij , b i − рациональные числа. Для этого следует умножить (6.59) на общее кратное знаменателей коэффициентов − a ij , b i (т.е. перейти к целым коэффициентам в (6.59)) и лишь после этого ввести вспомогательные переменные .

Пример 6.20. Решить задачу полностью целочисленного программирования

при ограничениях

Решение. Приведем задачу к каноническому виду, введя дополнительные неотрицательные переменные . Получим систему ограничений:

Решаем задачу симплексным методом. Для наглядности решение иллюстрируем графически (рис. 6.19).

Рис. 6.19. Графическая иллюстрация решения задачи

На рис. 6.19 0KLM – область допустимых решений задачи ограниченная прямыми (1), (2), (3) и осями координат; L (2/3;8) – точка оптимального, но нецелочисленного решения задачи ; (4) – прямая, отсекающая это нецелочисленное решение; 0KNM – область допустимых решений расширенной задачи (6.64") N (2; 7) – точка оптимального целочисленного решения.

I шаг

х 1 х 2
х 3
х 4
х 5

Первое базисное решение Х 1 = (0;0;60;34;8) – допустимое. Соответствующее значение линейной функции f 1 = 0.

Переводим в основные переменные переменную х 2 , которая входит в выражение линейной функции с наибольшим положительным коэффициентом. Находим максимально возможное значение переменной х 2 , которое позволяет принять система ограничений, из условия минимума соответствующих отношений:

,

т.е. разрешающим (выделенным) является третье уравнение. При х 2 = 8 в этом уравнении х 5 = 0, и в неосновные переменные переходит х 5 .

II шаг . Основные переменные ; неосновные переменные .

х 1 х 5
х 3 -5
х 4 -4
х 2
-3 -24

Х 2 = (0;8;20;2;0); f = 24. Переводим в основные переменные х 1 , , а в неосновные х 4 .

Ш шаг . Основные переменные ; неосновные переменные . После преобразований получим:

х 4 х 5 х 4 х 5
х 3 -3 -3 х 3 -1 -1
х 1 -4 х 1 1/3 -4/3 2/3
х 2 х 2
-2 -1 -76 -2/3 -1/3 -76/3

Базисное решение Х 3 оптимально для задачи , так как в выражении линейной функции отсутствуют неосновные переменные с положительными коэффициентами.

Однако решение Х 3 не удовлетворяет условию целочисленности (6.55"). По первому уравнению с переменной х 1 , получившей нецелочисленное значение в оптимальном решении (2/3), составляем дополнительное ограничение (6.57):

Обращаем внимание на то, что согласно (6.56) и (6.57) берем дробную часть свободного члена с тем же знаком, который он имеет в уравнении, а дробные части коэффициентов при неосновных переменных х 4 и х 5 − с противоположными знаками.

Так как дробные части

то последнее неравенство запишем в виде

Введя дополнительную целочисленную переменную х 6 ≥ 0, получим равносильное неравенству (6.57") уравнение

Уравнение (6.58) необходимо включить в систему ограничений (6.56") исходной канонической задачи, после чего повторить процесс решения задачи симплексным методом применительно к расширенной задаче. При этом для сокращения числа шагов (итераций) рекомендуется вводить дополнительное уравнение (6.58") в систему, полученную на последнем шаге решения задачи (без условия целочисленности).

IV шаг . Основные переменные ; неосновные переменные .

х 4 х 5
х 1 1/3 -4/3 2/3
х 2
х 3 -1 -1
х 6 -1/3 -2/3 -2/3
-2/3 -1/3 -76/3

Базисное решение − недопустимое. Заметим, что после включения в систему ограничений дополнительного уравнения, соответствующего правильному отсечению, всегда будет получаться недопустимое базисное решение.

Для получения допустимого базисного решения необходимо перевести в основные переменную, входящую с положительным коэффициентом в уравнение, в котором свободный член отрицательный, т.е. х 4 или х 5 (на этом этапе линейную функцию не рассматриваем). Переводим в основные, например, переменную х 5 .

V шаг . Основные переменные ; неосновные переменные . Получим после преобразований:

х 4 х 6 х 4 х 6
х 1 -6/9 4/3 -12/9 х 1 -2
х 2 1/3 -1 -14/3 х 2 -1/2 3/2
х 3 1/3 38/3 х 3 -1/2 -3/2
х 5 -1/3 -2/3 х 5 1/2 -3/2
3/9 1/3 150/9 -1/2 -1/2 -25

Х 5 = (2;7;19;0;1;0); f 5 = 25.

Так как в выражении линейной функции нет основных переменных с положительными коэффициентами, то Х 5 − оптимальное решение.

Итак, f max = 25 при оптимальном целочисленном решении Шестая компонента содержательного смысла не имеет.

Для геометрической интерпретации на плоскости 0х 1 х 2 (см. рис. 6.19) отсечения (6.57") необходимо входящие в него переменные х 4 и х 5 выразить через переменные х 1 и х 2 . Получим (см. 2-е и 3-е уравнения системы ограничений (6.56"):

(см. отсечение прямой (4) на рис. 6.19).

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

КУЗБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра вычислительной техники и информационных технологий

РЕШЕНИЕ ЗАДАЧ ЛИНЕЙНОГО ЦЕЛОЧИСЛЕННОГО ПРОГРАММИРОВАНИЯ МЕТОДОМ ГОМОРИ

Методические указания и задания к практическим занятиям по курсу

«Экономико-математические методы» для студентов экономических специальностей

Составитель Н.Ю.Коломарова

Утверждены на заседании кафедры Протокол № 5 от 30.11.99

Электронная копия находится в библиотеке главного корпуса КузГТУ

Кемерово 2000

1. ПОСТАНОВКА ЗАДАЧИ

Существует ряд задач оптимального планирования, в которых переменные могут принимать лишь целочисленные значения. Такие задачи связаны с определением количества единиц неделимой продукции, числа станков при загрузке оборудования, численности работников в структурных подразделениях предприятия и т.д. Достаточно часто возникают задачи с так называемыми булевыми переменными, решениями которых являются суждения типа «да-нет». Если функция и ограничения в таких задачах линейны, то мы говорим о задаче линейного целочисленного программирования.

Задача линейного целочисленного программирования формулиру-

ется следующим образом: найти такое решение (план)

Х = (x1 , x2 , ..., xn ),

принимает максимальное или минимальное значение при ограничениях

2. МЕТОД ГОМОРИ

Одним из методов решения задач линейного целочисленного программирования является метод Гомори. Сущность метода заключается в построении ограничений, отсекающих нецелочисленные решения задачи линейного программирования, но не отсекающих ни одного целочисленного плана.

Рассмотрим алгоритм решения задачи линейного целочисленного программирования этим методом.

1. Решаем задачу симплексным методом без учета условия целочисленности. Если все компоненты оптимального плана целые, то он является оптимальным и для задачи целочисленного программирования. Если обнаруживается неразрешимость задачи, то и неразрешима задача целочисленного программирования.

2. Если среди компонент оптимального решения есть нецелые, то к ограничениям задачи добавляем новое ограничение, обладающее следующими свойствами:

Оно должно быть линейным; - должно отсекать найденный оптимальный нецелочисленный

план; - не должно отсекать ни одного целочисленного плана.

Для построения ограничения выбираем компоненту оптимального плана с наибольшей дробной частью и по соответствующей этой компоненте k -й строке симплексной таблицы записываем ограничение Гомори.

f k = ∑

f kj x j − S * ,S * ≥ 0 ,

где f k

Xj - ;

Zkj - ;

Новая переменная;

Ближайшее целое, не превосходящееx j иz kj соответст-

Составленное ограничение добавляем к имеющимся в сим-

плексной таблице, тем самым получаем расширенную задачу. Чтобы получить опорный план этой задачи, необходимо ввести в базис тот

вектор, для которого величина

∆ j

минимальна. И если для этого век-

f kj

тора величина θ = min

получается по дополнительной строке, то в

z ij> 0

следующей симплексной таблице будет получен опорный план. Если же величина θ не соответствует дополнительной строке, то необходимо

переходить к М-задаче (вводить искусственную переменную в ограничение Гомори).

4. Решаем при помощи обычных симплексных преобразований полученную задачу. Если решение этой задачи приводит к целочисленному оптимальному плану, то искомая задача решена. Если мы получили нецелочисленное решение, то снова добавляем одно дополнительное ограничение, и процесс вычислений повторяется. Проделав конечное число итераций, либо получаем оптимальный план задачи целочисленного программирования, либо устанавливаем ее неразрешимость.

Замечания:

1. Если дополнительная переменная S * вошла в базис, то после пересчета какого-либо последующего плана соответствующие ей строку и столбец можно удалить (тем самым сокращается размерность задачи).

2. Если для дробного x j обнаружится целочисленность всех коэффициентов соответствующего уравнения (строки), то задача не имеет целочисленного решения.

3. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ МЕТОДОМ ГОМОРИ

Задача: Для приобретения нового оборудования предприятие выделяет 19 ден.ед. Оборудование должно быть размещено на площади, не превышающей 16 кв.м. Предприятие может заказать оборудование двух видов: машины типа «А» стоимостью 2 ден.ед., требующие производственную площадь 4 кв.м и обеспечивающие производительность за смену 8 т продукции, и машины типа «В» стоимостью 5 ден.ед., занимающие площадь 1 кв.м и обеспечивающие производительность за смену 6 т продукции.

Требуется составить оптимальный план приобретения оборудования, обеспечивающий максимальную общую производительность.

Решение: Обозначим черезx 1 ,x 2 количество машин соответственно типа «А» и «В», черезL - их общую производительность. Тогда математическая модель задачи:

max L = 8 x1 +6 x2

при ограничениях:

2x 1

5x 2

4x 1

x 1≥

0, x2 ≥ 0

x1 , x2 - целые числа

Решаем задачу симплексным методом без учета целочисленности.

∆ j

∆ j

∆ j

Получен оптимальный нецелочисленный план Х опт = (61/18;22/9).

L max = 376/9.

Т.к. у компоненты плана х 2 максимальная дробная часть: max(4/9;7/18) = 4/9, то дополнительное ограничение записываем по первой строке.

22/9 - = (2/9 - )x 3 + (-1/9 - [-1/9])x 4 -S 1 , S 1 ≥0 22/9 - 2 = (2/9 - 0)x 3 + (-1/9 - (-1))x 4 -S 1 , S 1 ≥0

4/9 = 2/9x3 + 8/9x4 - S1 , S1 ≥ 0 - первое ограничение Гомори

Составленное ограничение дописываем к имеющимся в симплексной таблице.

После построения дополнительного ограничения имеем новую задачу линейного программирования, в которой 3 ограничения. Для получения опорного плана этой задачи необходимо найти третий базис-

ный вектор. Для этого определяем: min

f kj

базис вводим вектор х 4 .

4 / 9

Рассчитываем величину θ =

z ij> 0

8 / 9

Минимальное значение θ получено по дополнительной строке, значит, не прибегая к искусственной переменной, получаем опорный план расширенной задачи.

∆ j

Найденный план оптимален, но нецелочисленный. Строим новое ограничение Гомори.

Т.к. максимальная дробная часть среди компонент плана равна 1/2, записываем дополнительное ограничение по первой строке (можно и по третьей).

5/2 - = (1/4 - )x 3 + (-1/8 - [-1/8])S 1 -S 2 , S 2 ≥0

1/2 = 1/4x3 + 7/8S1 - S2 , S2 ≥ 0 - второе ограничение Гомори

Это ограничение добавляем в последнюю симплексную таблицу.

Получили задачу, в которой 4 ограничения, следовательно, в базисе должно быть 4 единичных вектора.

2 . Можно

ввести либо x 3 , либоS 1 . Введем векторS 1 .

1/ 2

4 / 7

соответствует дополнительному

7 / 8

ограничению.

∆ j

Получаем новый оптимальный нецелочисленный план. Учитывая замечание 1, вычеркиваем строку и столбец, соответствующие пере-

менной S 1 .

В полученном плане максимальную дробную часть имеет компонента х 2 , поэтому записываем дополнительное ограничение по первой строке.

4/7 = 2/7x3 + 6/7S2 - S3 , S3 ≥ 0

Третье ограничение Гомори.

Определяем вектор, вводимый в базис:

вектор х 3 . Минимальное значениеθ = 2, что соответствует дополнительной строке.

После проведения очередных симплексных преобразований получили:

∆ j

План Х 5 - оптимальный нецелочисленный. Дополнительное ограничение запишем по второй строке:

1/2 = 1/4S3 - S4 , S4 ≥ 0

Четвертое ограничение Гомори.

Т.к. базисной компонентой может быть S 3 , определяем величину

0. Минимальное значение θ получилось по 3

строке, а не по строке Гомори, следовательно, переходим к М-задаче:

введем дополнительную переменную х 5

в ограничение Гомори.

С5 ’

Б5 ’

Х5 ’

∆ j

∆ j

∆ j

Дробная часть = max(1/3; 2/3) = 2/3

дополнительное ограниче-

ние записываем по второй строке.

2/3 = 1/3х4 + 2/3S4 - S5

S5 ≥

Пятое ограничение Гомори.

16 / 3

2 вводим х 4 .

Вектор, вводимый в базис: min

2 / 3

θ =

соответствует строке Гомори.

∆ j

План Х 8 = (3; 2; 3; 2) - оптимальный целочисленный.L max = 36.

Экономическая интерпретация: согласно полученному решению предприятию необходимо закупить 3 машины типа «А» и 2 машины типа «В». При этом будет достигнута максимальная производительность работы оборудования, равная 36 т продукции за смену. Полученную экономию денежных средств в размере 3 ден.ед. можно будет направить на какие-либо иные цели, например, на премирование рабочих, которые будут заниматься отладкой полученного оборудования. На излишнюю площадь в 2 кв.м можно поставить ящик с цветами.

Геометрическая интерпретация метода Гомори: строим множе-

ство планов (см. рисунок). В точке 1 - оптимальный нецелочисленный план.

Метод основан на симплекс методе, используя который находиться оптимальное решение без учета условий целочисленности. Если полученный план содержит хотя бы одну дробную компоненту, то накладывается дополнительное ограничение и вычисления снова продолжаются по симплекс методу.

Процесс продолжается до тех пор пока все компоненты плана не будут целочисленные, либо будет показано, что задача не имеет целочисленного решения.

Пусть Х* = (х1, х2, …,хm, …, хn) – оптимальный план найденный по симплекс методу, где базисом являются векторы А1, А2,…,Аm. Пусть хi дробное число (число в столбце В в iой строке). Тогда возможно, что в iой строке:

1. все хij целые, это означает, что задача не имеет целочисленного решения

2. некоторые хij дробные

Пусть [хi] и [хij] целые части чисел хi и хij, а {хi } и { хij } – дробные части.

Обозначим qi = {хi} и qij = { хij } и составим разности.

(qi1Х1+ qi1Х2+…+ qi1Хn)- qi ≥0

Преобразуем неравенство в уравнение умножив его на (-1) и добавив новую переменную Хn+1 и добавив новую строку в симплекс таблице (а значит и столбец). Решаем далее двойственным симплекс методом, если найденный план не является целочисленным, то процесс добавления новой переменной, строки и столбца в симплекс таблице повторяем.

Если в оптимальном плане несколько нецелочисленных компанент, то дополнительное ограничение составляем для максимального qi.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 47 Метод Гомори: основные идеи и краткое описание алгоритма. Экономический смысл введения дополнительного ограничения.:

  1. 25.Экономические методы управления, их целевое назначение. Виды и основное содержание методов экономического воздействия. Краткая характеристика и особенности применения экономических методов

Сущность методов отсечения состоит в том, что сначала задача решается без условия целочисленности. Если полученный план целочисленный, задача решена. В противном случае к ограниче­ниям задачи добавляется новое ограничение, обладающее сле­дующими свойствами:

Оно должно быть линейным;

Должно отсекать найденный оптимальный нецелочислен­ный план;

Не должно отсекать ни одного целочисленного плана.

Дополнительное ограничение, обладающее указанными свой­ствами, называется правильным отсечением.

Геометрически добавление ка­ждого линейного ограничения отвечает проведению прямой (ги­перплоскости), которая отсекает от многоугольника (многогран­ника) решений некоторую его часть вместе с оптимальной точ­кой с нецелыми координатами, но не затрагивает ни одной из целых точек этого многогранни­ка. В результате новый много­гранник решений содержит все целые точки, заключавшиеся в первоначальном многограннике решений и соответственно полу­ченное при этом многограннике оптимальное решение будет целочисленным (рис. 8.1).

жающие основные переменные *1, *2, новные переменные Хт+1, Хт+2, ..., Хт+1, решения

Хт через неос- х„ оптимального

(8.5)

нецелая компонента. В этом случае можно доказать, что неравен­ство

{Р, } - {а," т+\}хт+1 ■ -~{ат }Хп ^ 0, (* )

сформированное по /-му уравнению системы (8.5), обладает всеми свойствами правильного отсечения.

Для решения задачи целочисленного линейного программиро­вания (8.1)-(8.4) методом Гомори используется следующий ал­горитм:

1. Симплексным методом решить задачу (8.1)-(8.3) без учета условия целочисленности. Если все компоненты оптимального плана целые, то он является оптимальным и для задачи целочис­ленного программирования (8.1)-(8.4). Если первая задача (8.1)-

(8.3) неразрешима (т.е. не имеет конечного оптимума или условия ее противоречивы), то и вторая задача (8.1)-(8.4) также неразре­шима.

2. Если среди компонент оптимального решения есть неце­лые, то выбрать компоненту с наибольшей целой частью и по соответствующему уравнению системы (8.5) сформировать пра­вильное отсечение (8.6).

3. Неравенство (8.6) введением дополнительной неотрицатель­ной целочисленной переменной преобразовать в равносильное уравнение

{Р(} - |а/ т+1 }*т+1- ■-{а|"л }хп + хп+1 > (®*^)

и включить его в систему ограничений (8.2).

4. Полученную расширенную задачу решить симплексным ме­тодом. Если найденный оптимальный план будет целочисленным,

то задача целочисленного программирования (8.1)-(8.4) решена. В противном случае вернуться к п. 2 алгоритма.

Если задача разрешима в целых числах, то после конечного числа шагов (итераций) оптимальный целочисленный план будет найден.

Если в процессе решения появится уравнение (выражающее основную переменную через неосновные) с нецелым свободным членом и целыми остальными коэффициентами, то соответст­вующее уравнение не имеет решения в целых числах. В этом слу­чае и данная задача не имеет целочисленного оптимального ре­шения.

^ 8.1. Для приобретения оборудования по сортировке зерна фермер выделяет 34 ден. ед. Оборудование должно быть размещено на площади, не превышающей 60 кв. м. Фермер может заказать обо­рудование двух видов: менее мощные машины типа А стоимостью 3 ден. ед., требующие производственную площадь 3 кв. м (с уче­том проходов) и обеспечивающие производительность за смену 2 т зерна, и более мощные машины типа В стоимостью 4 ден. ед., занимающие площадь 5 кв. м и обеспечивающие производитель­ность за смену 3 т сортового зерна.

Требуется составить оптимальный план приобретения оборудо­вания, обеспечивающий максимальную общую производитель­ность при условии, что фермер может приобрести не более 8 ма­шин типа В.

Решение. Обозначим через х\, х2 количество машин соот­ветственно типа А и В, через Z - общую производительность. Тогда математическая модель задачи примет вид:


На рис. 8.2 ОКЬМ - область допустимых решений задачи (8.1") - (8.3"), ограниченная прямыми (1), (2), (3) и осями координат; />(2/3; 8) - точка оптимального, но нецелочисленного решения зада­чи (8.1") - (8.3"); (4) - прямая, отсекающая это нецелочисленное решение; 0№М - область допустимых решений расширенной зада­чи (8.1’) - (8.3’), (8.61); М2; 7) - точка оптимального целочисленно­го решения.

I шаг. Основные переменные х3, х4, *5; неосновные перемен­ные Х\, Х2.

х3 = 60 - Зх! - 5х2,
х4 = 34 - Зх) - 4х2,
х5 = 8 - *2>
Z = 2х) + Зх2.

Первое базисное решение Х\ = (0; 0; 60; 34; 8) - допустимое. Соответствующее значение линейной функции = 0.

Переводим В основные переменные переменную XI, которая входит в выражение линейной функции с наибольшим поло­жительным коэффициентом. Находим максимально возможное значение переменной хі, которое “позволяет” принять система ограничений, из условия минимума соответствующих отноше­ний:

Хг = 1ШП|т;т;Т| = 8,

т.е. разрешающим (выделенным) является третье уравнение. При *2 = 8 в этом уравнении Х5 = 0, и в неосновные переходит пере­менная Х5.

II шаг. Основные переменные х2, х3, х*; неосновные пере­менные Хь Х5.




{

(8.6)

Введя дополнительную целочисленную переменную х6 > О, получим равносильное неравенству (8.6") уравнение

~1*5 + Хб = °" ^8"7 ^

Уравнение (8.7") необходимо включить в систему ограничений (8.5") исходной канонической задачи, после чего повторить про­цесс решения задачи симплексным методом применительно к расширенной задаче. При этом для сокращения числа шагов (итераций) рекомендуется вводить дополнительное уравнение (8.7") в систему, полученную на последнем шаге решения задачи (без условия целочисленности).

IV шаг. Основные переменные Х), *2, хз> *б‘> неосновные пе­ременные *1, *2-

Х1 = з - 3*4 +

х3 = 18 + х4 +___ х5,

х6 - + ^х4 + з"х5-

Базисное решение Х4 = (у; 8; 18; 0; 0; -у) - недопусти­мое. (Заметим, что после включения в систему ограничений дополнительного уравнения, соответствующего правильному отсечению, всегда будет получаться недопустимое базисное решение).

Для получения допустимого базисного решения необходи­мо перевести в основные переменную, входящую с положи­тельным коэффициентом в уравнение, в котором свободней член отрицательный, т.е. *1 или х$ (на этом этапе линейную функцию не рассматриваем). Переводим в основные, напри­мер, переменную Х5.

V шаг. Основные переменные Х\, Х2, Х3, Х5; неосновные пере­менные Я], Х£

Получим после преобразований:

ЛГ| = 2 - х4 + 2х6,

*2 = 7 + 2х* ~ 2Х("

х3 = 19 + -х4 + -х6,

*5 = 1 - 2х* + 2Х6’

2 = 25-|х4--|х6.

^5 =(2; 7; 19; 0; 1;0);^ = 25.

Так как в выражении линейной функции нет основных пере­менных с положительными коэффициентами, то Х5 - оптималь­ное решение.

Итак, 2тах = 25 при оптимальном целочисленном решении X* - Х$ =(2; 7; 19; 0; 1; 0), т.е. максимальную производительность 25 т сортового зерна за смену можно получить приобретением 2 машин типа А и 7 машин типа В\ при этом незанятая площадь помещения составит 19 кв. м, остатки денежных средств из выде­ленных равны 0, в резерве для покупки - 1 машина типа В (шестая компонента содержательного смысла не имеет).

Замечание. Для геометрической интерпретации на плос­кости Ох\Хг (см. рис.8.2) отсечения (8.6") необходимо вхо­дящие в него переменные х4 и х$ выразить через перемен­ные XI и х2. Получим (см. 2-е и 3-е уравнения системы ог­раничений (8.5")):

у - у (34 - Зх, - 4х2) - у (8 - х2) £ 0 или х, + 2х2 £ 16.

(см. отсечение прямой (4) на рис 8.2)>

^ 8.2. Имеется достаточно большое количество бревен длиной 3 м. Бревна следует распилить на заготовки двух видов: длиной 1,2 м и длиной 0,9 м, причем заготовок каждого вида должно быть полу­чено не менее 50 шт. и 81 шт. соответственно. Каждое бревно можно распилить на указанные заготовки несколькими способа­ми: 1) на 2 заготовки по 1,2 м; 2) на 1 заготовку по 1,2 м и 2 заго­товки по 0,9 м; 3) на 3 заготовки по 0,9 м. Найти число бревен,

распиливаемых каждым способом, с тем чтобы заготовок любого вида было получено из наименьшего числа бревен.

Решение. Обозначим через х\, хі, хт, число бревен, распили­ваемых соответственно 1,"2-и 3-м способами. Из них можно полу­чить 2хі + *2 заготовок по 1,2 м и 2л\ + Зх2 заготовок по 0,9 м. Общее количество бревен обозначим I. Тогда математическая модель задачи примет вид:

I 2х, + х2 - х4 = 50, }