Метод ветвей и границ. Задача коммивояжера - метод ветвей и границ

Введение

При рассмотрении целого ряда задач, необходимо учитывать требование целочисленности используемых переменных. Методы решения задач линейного программирования не гарантируют целочисленности решения.

Иногда задачи целочисленного линейного программирования решают приближенно. Для этого решают задачу без учета целочисленности переменных, затем в полученном оптимальном решении округляют результаты до ближайших целых значений. Использование таких решений допустимо в тех ситуациях, где значения переменных достаточно велики, и погрешностью округления можно пренебречь. Если значения переменных невелики, то округление может привести к значительному расхождению с оптимальным решением.

Одним из широко распространенных методов решения целочисленных задач является метод ветвей и границ, впервые, он был предложен Ленд и Дойг в 1960 г.

ветвь граница линейное программирование

Метод ветвей и границ

Алгоритм метода ветвей и границ предусматривает декомпозицию исходной задачи линейного программирования (ЗЛП) на последовательность задач, содержащих дополнительные ограничения на переменные, которые затем оптимизируются.

1. Процесс начинают с решения задачи симплексным или графическим методом без учета требования на целочисленность переменных. Эту задачу называют ЗЛП-0. Если все переменные оптимального плана целые, то этот план также является оптимальными для задач целочисленного программирования.

2. Если некоторая переменная, не получила целочисленного значения, то производится ветвление на две новые задачи ЗЛП-1, ЗЛП-2. Одна из задач ЗЛП-1 представляет собой задачу ЗЛП-0, дополненную ограничением где - целая часть числа. Вторая образуется путем добавления к задаче ЗЛП-0 ограничения. Следует отметить, что выбор целочисленной переменной может быть произвольным определяться следующим образом:

по возрастанию или убыванию индексов;

переменная представляет важное решение принимаемое в рамках данной задачи;

коэффициент в целевой функции при этой переменной существенно превосходит все остальные.

3. Задачи ЗЛП-1 и ЗЛП-2 решаются самостоятельно. Ветвь оканчивается, если область допустимых решений пуста, либо её оптимальное решение полностью целочисленное. В противном случае возникает необходимость ветвления с п.2, обозначая следующие номера задач ЗЛП в естественном порядке ЗЛП-3, ЗЛП-4.

Процесс решения можно представить в виде дерева, в котором вершина ЗЛП-0 отвечает начальному плану решения задачи, а каждая из соединенных с ней ветвью вершин отвечает оптимальному плану следующей задачи.

Рассмотрим следующий пример. Максимизировать целевую функцию

при ограничениях

Воспользуемся графическим методом решения задачи линейного программирования.

1. Решим исходную задачу без учета требования целочисленности переменных.

Обозначим эту задачу линейного программирования ЗЛП-0.

На рисунке 1.1 штриховкой выделен многоугольник решений данной задачи. Максимальное значение достигается в точке Решение не является целочисленным.

Следующий шаг метода ветвей и границ состоит в ветвлении по одной из целочисленных переменных, имеющих дробное значение, например. Для этого добавим к задаче ЗЛП-0 два новых ограничения и Этими ограничениями удаляется интервал = в котором нет целых значений. Таким образом, в процессе ветвления создаются две новые задачи ЗЛП-1 и ЗЛП-2.

Рисунок 1.1 Решение задачи ЗЛП-0

2. Решим задачу ЗЛП-1 графически.

На рисунке 1.2 изображена допустимая область задачи ЗЛП-1. Максимальное значение достигается в точке. Решение задачи нецелочисленное.

Рисунок 1.2 Решение задачи ЗЛП-1

3. Решим задачу ЗЛП-2 графически.

В данном случае множество допустимых решений пусто (рисунок 1.2). Система ограничений несовместна, и задачу ЗЛП-2 можно исключить из дальнейшего рассмотрения.

Рисунок 1.3 Решение задачи ЗЛП-2

Теперь продолжим исследование задачи ЗЛП-1, поскольку значение нецелое. Произведем еще одно ветвление, путем введения ограничений и. В результате получаем две новые задачи ЗЛП-3 и ЗЛП-4.

Определения

называется непустое конечное множество, состоящее из двух подмножеств и . Первое подмножество (вершины) состоит из любого множества элементов. Второе подмножество (дуги) состоит из упорядоченных пар элементов первого подмножества . Если вершины и такие, что , то это вершины смежные.

Маршрутом в графе

называется последовательность вершин не обязательно попарно различных, где для любого смежно с . Маршрут называется цепью, если все его ребра попарно различны. Если то маршрут называется замкнутым. Замкнутая цепь называется циклом.

Постановка задачи

Коммивояжер должен объездить n городов. Для того чтобы сократить расходы, он хочет построить такой маршрут, чтобы объездить все города точно по одному разу и вернуться в исходный с минимумом затрат.

В терминах теории графов задачу можно сформулировать следующим образом. Задано n вершин и матрица {c ij }, где c ij ≥0 – длинна (или цена) дуги (i , j ),

. Под маршрутом коммивояжера z будем понимать цикл i 1 , i 2 ,…, i n , i 1 точек 1,2,…, n. Таким образом, маршрут является набором дуг. Если между городами i и j нет перехода, то в матрице ставится символ «бесконечность». Он обязательно ставится по диагонали, что означает запрет на возвращение в точку, через которую уже проходил маршрут коммивояжера , длина маршрута l (z ) равна сумме длин дуг, входящих в маршрут. Пусть Z – множество всех возможных маршрутов. Начальная вершина i 1 – фиксирована. Требуется найти маршрут z 0 ÎZ , такой, что l (z 0)= minl (z ), z ÎZ .

Решение задачи

Основная идея метода ветвей и границ состоит в том, что вначале строят нижнюю границу φ длин множества маршрутов Z. Затем множество маршрутов разбивается на два подмножества таким образом, чтобы первое подмножество

состояло из маршрутов, содержащих некоторую дугу (i, j), а другое подмножество не содержало этой дуги. Для каждого из подмножеств определяются нижние границы по тому же правилу, что и для первоначального множества маршрутов. Полученные нижние границы подмножеств и оказываются не меньше нижней границы множества всех маршрутов, т.е. φ(Z)≤ φ (), φ(Z) ≤ φ ().

Сравнивая нижние границы φ (

) и φ (), можно выделить то, подмножество маршрутов, которое с большей вероятностью содержит маршрут минимальной длины.

Затем одно из подмножеств

или по аналогичному правилу разбивается на два новых и . Для них снова отыскиваются нижние границы φ (), и φ () и т.д. Процесс ветвления продолжается до тех пор, пока не отыщется единственный маршрут. Его называют первым рекордом. Затем просматривают оборванные ветви. Если их нижние границы больше длины первого рекорда, то задача решена. Если же есть такие, для которых нижние границы меньше, чем длина первого рекорда, то подмножество с наименьшей нижней границей подвергается дальнейшему ветвлению, пока не убеждаются, что оно не содержит лучшего маршрута .

Если же такой найдется, то анализ оборванных ветвей продолжается относительно нового значения длины маршрута. Его называют вторым рекордом. Процесс решения заканчивается, когда будут проанализированы все подмножества.

Для практической реализации метода ветвей и границ применительно к задаче коммивояжера укажем прием определения нижних границ подмножеств и разбиения множества маршрутов на подмножества (ветвление).

Для того чтобы найти нижнюю границу воспользуемся следующим соображением: если к элементам любого ряда матрицы задачи коммивояжера (строке или столбцу) прибавить или вычесть из них некоторое число, то от этого оптимальность плана не изменится. Длина же любого маршрутом коммивояжера изменится на данную величину.

Вычтем из каждой строки число, равное минимальному элементу этой строки. Вычтем из каждого столбца число, равное минимальному элементу этого столбца. Полученная матрица называется приведенной по строкам и столбцам. Сумма всех вычтенных чисел называется константой приведения.

Константу приведения следует выбирать в качестве нижней границы длины маршрутов.

Разбиение множества маршрутов на подмножества

Для выделения претендентов на включение во множество дуг, по которым производится ветвление, рассмотрим в приведенной матрице все элементы, равные нулю. Найдем степени Θ ij нулевых элементов этой матрицы. Степень нулевого элемента Θ ij равна сумме минимального элемента в строке i и минимального элемента в столбце j (при выборе этих минимумов c ij – не учитывается). С наибольшей вероятностью искомому маршруту принадлежат дуги с максимальной степенью нуля.

Для получения платежной матрицы маршрутов, включающей дугу (i , j ) вычеркиваем в матрице строку i и столбец j , а чтобы не допустить образования цикла в маршруте, заменяем элемент, замыкающий текущую цепочку на бесконечность.

Множество маршрутов, не включающих дугу (i , j ) получаем путем замены элемента c ij на бесконечность.

Пример решения задачи коммивояжера методом ветвей и границ

Коммивояжер должен объездить 6городов. Для того чтобы сократить расходы, он хочет построить такой маршрут, чтобы объездить все города точно по одному разу и вернуться в исходный с минимумом затрат. Исходный город A. Затраты на перемещение между городами заданы следующей матрицей:

A B C D E F
A 26 42 15 29 25
B 7 16 1 30 25
C 20 13 35 5 0
D 21 16 25 18 18
E 12 46 27 48 5
F 23 5 5 9 5

Решение задачи

Для удобства изложения везде ниже в платежной матрице заменим имена городов (A, B, …, F) номерами соответствующих строк и столбцов (1, 2, …, 6).

Найдем нижнюю границу длин множества всех маршрутов. Вычтем из каждой строки число, равное минимальному элементу этой строки, далее вычтем из каждого столбца число, равное минимальному элементу этого столбца, и таким образом приведем матрицу по строкам и столбцам. Минимумы по строкам: r 1 =15, r 2 =1, r 3 =0, r 4 =16, r 5 =5, r 6 =5.

После их вычитания по строкам получим:


1 2 3 4 5 6
1 11 27 0 14 10
2 6 15 0 29 24
3 20 13 35 5 0
4 5 0 9 2 2
5 7 41 22 43 0
6 18 0 0 4 0

Минимумы по столбцам: h 1 =5, h 2 =h 3 =h 4 =h 5 =h 6 .

После их вычитания по столбцам получим приведенную матрицу:

1 2 3 4 5 6
1 11 27 0 14 10
2 1 15 0 29 24
3 15 13 35 5 0
4 0 0 9 2 2
5 2 41 22 43 0
6 13 0 0 4 0

Найдем нижнюю границу φ (Z ) = 15+1+0+16+5+5+5 = 47.

Для выделения претендентов на включение во множество дуг, по которым производится ветвление, найдем степени Θ ij нулевых элементов этой матрицы (суммы минимумов по строке и столбцу). Θ 14 = 10 + 0,
Θ 24 = 1 + 0, Θ 36 = 5+0, Θ 41 = 0 + 1, Θ 42 = 0 + 0, Θ 56 = 2 + 0, Θ 62 = 0 + 0,
Θ 63 = 0 + 9, Θ 65 = 0 + 2. Наибольшая степень Θ 14 = 10. Ветвление проводим по дуге (1, 4).

Ниже приведено условие задачи и текстовая часть решения. Все решение полностью, в формате doc в архиве, вы можете скачать. Некоторые символы могут не отображаться на странице, но документе word все отображается. Еще примеры работ по ЭМММ можно посмотреть

ПОСТАНОВКА ЗАДАЧИ

Издательское предприятие должно выполнить в течении недели (число дней m = 5) работу по набору текста с помощью работников n категорий (высокая, средняя, ниже средней, низкая). Требуются определить оптимальную численность работников по категориям, при которой обеспечивается выполнение работы с минимальным расходом фонда зарплаты при заданных ограничениях. Исходные данные приведены в таблице 1 и 2.

Таблица 1

Таблица 2

Задача должна решаться методом целочисленного линейного программирования в Mathcad 2000/2001.

ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ
РЕШЕНИЯ
ЗАДАЧИ

Для расчета оптимальной численности работников, при которой обеспечивается минимум расхода фонда зарплаты, составляется математическая модель целочисленного линейного программирования, так как численность работников не может быть дробной величиной.

Решение задачи целочисленного программирования выполняется в два этапа.

На первом этапе выполняется задача линейного программирования без учета целочисленности.

На втором этапе производится пошаговый процесс замены нецелочисленных переменных ближайшими верхними или нижними целыми значениями.

Сначала решается, задача без учета условия целочисленности.

Целевая функция определяется по формуле:

где Q - общий фонд зарплаты на выполнение работы;

x 1 , x 2 , …, x n - численность работников по категориям;

n - число категорий работников;

c 1 , c 2 ,…, c n - дневная тарифная ставка одного работника по категориям;

m - число рабочих дней в неделю, m = 5.

Целевую функцию можно записать в векторной форме:

При решении задачи должны выполняться следующие ограничения. Ограничение сверху

x d (1)

задает максимальную численность работников по категориям, где d —вектор, определяющий численность по категориям.

В ограничении

учтено, что общая численность работников не должна превышать k max .

В ограничении снизу

р × х≥Р (3)

отражается, что все работники вместе должны выполнить заданный объем работ Р .

В качестве последнего ограничения записывается условие неотрицательности вектора переменных

x ≥0 (4)

Математическая модель решения задачи без учета условия целочисленности включает следующие выражения:

x d

р × х≥Р ,

x ≥ 0 .

Модель целочисленного программирования должна включать выражения (5), а также дополнительные ограничения, с помощью которых нецелочисленные переменные х заменяются целочисленными значениями. Конкретные выражения модели с целочисленными переменными рассмотрены в следующем подразделе.

РЕШЕНИЕ ЗАДАЧИ ОПТИМИЗАЦИИ В MATHCAD

Исходные данные для примера даны в табл. 1 и 2.

Для решения задачи используется пакет Mathcad с функцией Minimize. Данная функция определяет вектор решения задачи:

х := Minimize (Q , x ),

где Q — выражение целевой функции, определяющей минимальный фонд зарплаты, х - вектор переменных.

Сначала задача решается без учета условия целочисленности. Это решение приведено в Приложении 1. В первой строке введены нулевые начальные значения вектора х и целевая функция Q (x ) . После слова Given и перед функцией Minimize указаны ограничения. В результате получена нецелочисленная оптимальная численность по категориям:

х =

с фондом зарплаты Q = 135 у. е.

Из данного решения находится целочисленное решение методом ветвей и границ.

Сначала в полученном решении анализируется дробная величина х 4 =
= 1,143. Для нее можно задать два целочисленных значения: х 4 = 1 и х 4 = 2. Начинается построение дерева решений (Приложение 2). На дереве решений откладывается начальный нулевой узел. Затем он соединяется первым узлом х 4 , и из этого узла проводятся две ветви, соответствующие ограничениям: х 4 = 1 и х 4 = 2.

Для ветви с ограничением х 4 = 1 решается задача линейного программирования, данная в Приложении 1, с учетом этого ограничения.

В результате получено решение этой задачи. Переменная х 1 стала целочисленная, но переменная х 2 стала дробной х 2 = 0,9.

Для продолжения ветви создается узел х 3 и ветвь х 3 = 1. Снова выполняется задача линейного программирования со всеми тремя ограничениями: x 4 = 1, х 2 = 1, х 3 = 1. С этими ограничениями задача имеет решение х Т =
= (1,938 1 1 1).

Для продолжения ветви создается узел х 1 и ветвь х 1 = 2. Снова выполняется задача линейного программирования со всеми тремя ограничениями: x 4 = 1, х 2 = 1, х 3 = 1, х 1 = 2. С этими ограничениями задача имеет решение х Т = = (2 1 1 1).

Процесс построения дерева решении и выполнение задачи линейного программирования повторяется, пока не будут построены все ветви.

В Приложении 2 приводится полное дерево возможных целочисленных решений, из которого следуют, что в задаче имеется 4 результативных решения.

Из результативных выбирается наилучшее и оно принимается как оптимальное целочисленное решение всей задачи с минимальной величиной Q (x ) . В нашем случае мы имеем два оптимальных целочисленных решения

Q (х) = 140,

x T = (2 1 1 1),

x T = (1 1 2 2).

Следовательно, издательская организация должна привлечь для набора текста двух работников высокой категории, одного работника средней категории, одного работника ниже средней категории и одного работника низкой категории. Возможен так же другой равнозначный вариант привлечения работников: один работник высокой категории, один работник средней категории, два работника категории ниже средней и два работника низкой категории. В обоих вариантах затраты будут минимальными и составят 140 ден. ед.

Скачать решение задачи:


Имя файла: 2.rar
Размер файла: 24.99 Kb

Если закачивание файла не начнется через 10 сек, кликните

В основе метода ветвей и границ лежит идея последовательного разбиения множества допустимых решений на подмножества. На каждом шаге метода для элементов разбиения выполняется проверка для выяснения, содержит данное подмножество оптимальное решение или нет. Для этого вычисляется нижняя оценка целевой функции на данном подмножестве.

Если оценка снизу не меньше рекорда (наилучшего из найденных решений), то подмножество может больше не рассматриваться. Проверяемое подмножество может быть отброшено еще и в том случае, когда в нем удается найти наилучшее решение. Если значение целевой функции на найденном решении меньше рекорда, то происходит смена рекорда. По окончанию работы алгоритма рекорд является результатом его работы. Если удается отбросить все элементы разбиения, то рекорд - оптимальное решение задачи. В противном случае, из неотброшенных подмножеств выбирается наиболее перспективное (например, с наименьшим значением нижней оценки), и подвергается разбиению. Новые подмножества вновь подвергаются проверке и т.д. Вычисление нижней границы является важнейшим элементом данной схемы.

Для каждой конкретной задачи целочисленного программирования (другими словами, дискретной оптимизации) метод ветвей и границ реализуется по-своему. Есть много модификаций этого метода.

Рассмотрим реализацию метода ветвей и границ для задачи коммивояжёра и задачи о рюкзаке.

Рассмотрим алгоритм Литтла (методом ветвей и границ) для задачи коммивояжера. Идею можно сформулировать следующим образом. В каждой строке матрицы расстояний находится минимальный элемент и вычитается из всех элементов соответствующей строки. Получается матрица, приведенная по строкам. Аналогично приводится матрица по столбцам. Получается матрица, приведенная по строкам и столбцам. Суммируя при приведении минимальные элементы, получим константу приведения, которая будет нижней границей множества всех допустимых гамильтоновых контуров. После находятся степени нулей для приведенной матрицы (сумма минимальных элементов строки и столбца, соответствующих этому нулю) и выбирается дуга , для которой степень нулевого элемента достигает максимального значения. Множество всех гамильтоновых контуров разбивается на два подмножества, одно из которых содержит дугу , второе эту дугу не содержит. После этого приводятся полученные матрицы гамильтоновых контуров и сравниваются нижние границы подмножества гамильтоновых контуров с целью выбора для дальнейшего разбиения множества с меньшей нижней границей. Процесс разбиения множеств на подмножества сопровождается построением дерева ветвлений. Сравнивая длину гамильтонова контура с нижними границами оборванных ветвей, выбирается для дальнейшего ветвления подмножество с нижней границей, меньшей полученного контура, до тех пор, пока не получен маршрут с наименьшей длиной или не становится ясно, что такого маршрута не существует.



Пример.

Пусть в задаче коммивояжера задана следующая матрица стоимостей переездов

Находим в каждой строке матрицы минимальный элемент и вычитаем его из всех элементов соответствующей строки. Получим матрицу, приведенную по строкам, с элементами

.

Если в матрице , приведенной по строкам, окажутся столбцы, не содержащие нуля, то приводим ее по столбцам. Для этого в каждом столбце матрицы выбираем минимальный элемент , и вычитаем его из всех элементов соответствующего столбца. Получим матрицу

,

каждая строка и столбец, которой содержит хотя бы один нуль. Такая матрица называется приведенной по строкам и столбцам.

Суммируя элементы и , получим константу приведения:

.

Находим степени нулей для приведенной по строкам и столбцам матрицы. Для этого мысленно нули в матице заменяем на знак и находим сумму минимальных элементов строки и столбца, соответствующих этому нулю. Записываем ее в правом верхнем углу клетки:

.

Выбираем дугу , для которой степень нулевого элемента достигает максимального значения

Разбиваем множество всех допустимых маршрутов на два подмножества:

– подмножество, содержащее дугу ;

– подмножество, не содержащее дугу

Для вычисления оценки затрат для маршрутов, включающих дугу , вычеркиваем в матрице строку и столбец и заменяем симметричный элемент на знак . Приводим полученную матрицу и вычисляем сумму констант приведения .

Коммивояжер (бродячий торговец) желает посетить ряд городов и вернуться в исходный город, минимизируя суммарную длину (стоимость) переездов. Эта задача в математической форме формулируется как задача нахождения во взвешенном графе гамильтонова цикла минимальной длины и называется задачей коммивояжера.

В качестве её практического приложения можно указать следующее. Пусть имеется станок, способный выполнять несколько операций. Его перенастройка с одной операции на другую требует определенных затрат. Требуется использовать станок в циклическом режиме, минимизируя суммарные затраты на перенастройку.

В данной задаче перенастройка с одной операции на другую и обратная перенастройка могут требовать, вообще говоря, различных затрат. Поэтому и в общем случае в задаче коммивояжера рассматривается взвешенный ориентированный граф, дуги которого в прямом и обратном направлении могут иметь различные веса.

Для решения задачи коммивояжера можно попытаться использовать «жадный алгоритм», успешно примененный в задаче о минимальном остовном дереве. Упорядочим предварительно дуги по весам и будем включать дуги минимального веса, следя за тем, чтобы не возникли вершины, полустепень исхода или захода которых превышает единицу, и не появились негамильтоновы циклы. Однако, как легко убедиться, данный подход не гарантирует получение оптимального решения. В качестве простейшего контрпримера можно рассмотреть следующий граф.

Здесь каждому ребру соответствует две дуги такого же веса.

«Жадный алгоритм» прежде всего включит в цикл ребро
, как имеющее минимальный вес. Включение этого ребра, как непосредственно легко проверить, необходимо ведет к гамильтонову циклу
веса 29. Оптимальный

же гамильтонов цикл
имеет вес 12. Поэтому «жадный алгоритм» не гарантирует получения оптимального решения, хотя он может быть использован на практике в качестве полезной эвристики, во многих случаях приводящей к решениям, близким к оптимальным.

Для задачи коммивояжера не известно какого – либо эффективного алгоритма. Весьма вероятно, что такого алгоритма не существует, хотя это и не удалось до сих пор доказать. Подобные задачи не редки в дискретной математике. В случае небольшой размерности их точные решения удается получать на компьютере с помощью метода «ветвей и границ».

Под методом «ветвей и границ» понимается широкий класс методов сокращенного перебора, суть которых сводится к следующему. Множество допустимых решений А разбивается на два подмножества А 0 и А 1 , затем каждое из подмножеств также разбивается на два подмножества и т.д. Схематически это можно представить в виде дерева, начинающегося с множества всех решений и заканчивающегося его одноэлементными подмножествами, т.е. допустимыми решениями, которыми в нашем случае являются гамильтоновы циклы.

Среди допустимых решений выбирается оптимальное по функционалу качества, которым в нашем случае является длина гамильтонова цикла. Смысл метода «ветвей и границ» состоит, однако, в том, чтобы не просматривать все допустимые решения, а отсекать большинство ветвей на возможно более раннем этапе. Для этого с помощью эвристических соображений стараются сразу пойти по ветви, ведущей к решению, близкому по качеству к оптимальному. После этого большинство других ветвей отсекают с помощью границ для функционала качества, когда удается показать, что в подмножестве решений не содержится решения, лучшего по качеству, чем уже имеющееся.

Рассмотрим метод «ветвей и границ» на примере задачи коммивояжера. Пусть взвешенный орграф задан матрицей расстояний. Если некоторая дуга в графе отсутствует, то соответствующий элемент матрицы будем полагать равным ∞. Заметим, что если длины всех дуг, входящих в некоторую вершину, уменьшить на одно и то же число, то и длина оптимального гамильтонова цикла уменьшится на это же число. То же самое относится и к множеству выходящих дуг. Будем последовательно вычитать из строк и столбцов матрицы расстояний положительные числа так, чтобы элементы матрицы оставались неотрицательными. Так как длина оптимального гамильтонова цикла для графа с неотрицательной матрицей расстояний также неотрицательна, то сумма вычтенных количеств будет нижней границей для длины оптимального цикла исходного графа.

Рассмотрим пример. Пусть задан граф G с симметрической матрицей расстояний.

Значки « ∞ » на диагонали соответствуют отсутствию в графе петель – дуг, ведущих из вершины в эту же вершину. Получим, прежде всего, нижнюю границу для длины кратчайшего гамильтонового цикла. Из первой, второй, третьей и четвертой строк можно вычесть по единице, из пятой строки – два, а из пятого столбца можно вычесть ещё единицу. Это дает нижнюю границу 7, а матрица расстояний приобретает вид

Теперь выберем дугу для ветвления, т.е. разобьем множество гамильтоновых циклов на два подмножества: включающих и не включающих эту дугу. Мы рассчитываем, что данная дуга будет входить в оптимальный или близкий к оптимальному цикл. Для этого будем следовать следующему эвристическому правилу: из множества дуг нулевой длины выбирать ту, исключение которой ведет к максимальному росту нижней оценки. В нашем случае такой дугой является дуга (1,2). Запрещение этой дуги приводит к матрице

из первой строки и второго столбца которой можно вычесть по единице, что увеличивает нижнюю границу на 2 и делает её равной 9.

Включение же дуги (1,2) приводит к тому, что исключаются все остальные дуги, ведущие в вершину 2, и все остальные дуги, выходящие из вершины 1. Поэтому первую строку и второй столбец матрицы можно далее не рассматривать, и они вычеркиваются из матрицы. Кроме того, исключается дуга (2,1). Матрица принимает вид

Из её первой строки и первого столбца можно вычесть по единице, что приводит к матрице

Нижняя оценка здесь возрастает на 2 и также становится равной 9.

Нижняя оценка длины оптимального цикла остается неизменной.

Дуга (2,5) должна быть запрещена, как ведущая к появлению негамильтонова цикла, и матрица принимает вид

Нижняя оценка длины гамильтонова цикла остается, по – прежнему, равной 9.

Схематически представим проведенный анализ в виде дерева, где в кружочках стоят нижние оценки длины гамильтонова цикла.

Взглянув на это дерево, непосредственно убеждаемся, что полученный гамильтонов цикл является кратчайшим, т.к. движение по любой другой ветви дерева не может привести к более короткому циклу.

    Существует ли эффективный алгоритм для решения задачи коммивояжера? а) да; б) нет; в) неизвестно.

    Является ли описанный метод « ветвей и границ» эффективным алгоритмом для решения задачи коммивояжера? а) да; б) нет; в) неизвестно.